Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Interactions of the histamine and hypocretin systems in CNS disorders

Key Points

  • Over-the-counter histamine H1 receptor antagonists (antihistamines) block the effects of histamine, have sedating properties and are commonly used to treat insomnia

  • A large increase in the number of histamine neurons is seen in type 1 narcolepsy (narcolepsy with cataplexy), but not in animal models of narcolepsy

  • Low levels of cerebrospinal fluid (CSF) hypocretin are characteristic of type 1 narcolepsy; changes in CSF histamine levels are small and variable in this disorder

  • In several neurological disorders including Parkinson and Alzheimer diseases, hypocretin-containing cells degenerate while the number of histamine cells and histamine levels are in the normal range

  • Histamine H3 receptor antagonists and inverse agonists promote histamine release and are a promising class of drugs for the promotion of wakefulness, as has been shown in patients with narcolepsy

Abstract

Histamine and hypocretin neurons are localized to the hypothalamus, a brain area critical to autonomic function and sleep. Narcolepsy type 1, also known as narcolepsy with cataplexy, is a neurological disorder characterized by excessive daytime sleepiness, impaired night-time sleep, cataplexy, sleep paralysis and short latency to rapid eye movement (REM) sleep after sleep onset. In narcolepsy, 90% of hypocretin neurons are lost; in addition, two groups reported in 2014 that the number of histamine neurons is increased by 64% or more in human patients with narcolepsy, suggesting involvement of histamine in the aetiology of this disorder. Here, we review the role of the histamine and hypocretin systems in sleep–wake modulation. Furthermore, we summarize the neuropathological changes to these two systems in narcolepsy and discuss the possibility that narcolepsy-associated histamine abnormalities could mediate or result from the same processes that cause the hypocretin cell loss. We also review the changes in the hypocretin and histamine systems, and the associated sleep disruptions, in Parkinson disease, Alzheimer disease, Huntington disease and Tourette syndrome. Finally, we discuss novel therapeutic approaches for manipulation of the histamine system.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neurons containing histamine, hypocretin and melanin-concentrating hormone in the human hypothalamus.
Figure 2: The hypocretin and histamine systems in the mouse brain—origin and general projections.
Figure 3: Loss of hypocretin neurons and increase in histamine neurons in narcolepsy.
Figure 4: A schematic model of autoimmune-triggered histaminergic involvement in hypocretin neuron degeneration.
Figure 5: Specific degeneration of histamine, MCH and hypocretin neurons in PD.
Figure 6: Effects of pitolisant, modafinil and placebo on patients with narcolepsy.

Similar content being viewed by others

References

  1. von Economo, C. Sleep as a problem of localization. J. Nerv. Ment. Dis. 71, 249–259 (1930).

    Google Scholar 

  2. Peyron, C. et al. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat. Med. 6, 991–997 (2000).

    CAS  PubMed  Google Scholar 

  3. Thannickal, T. C. et al. Reduced number of hypocretin neurons in human narcolepsy. Neuron 27, 469–474 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. American Academy of Sleep Medicine. International Classification of Sleep Disorders: Diagnostic and Coding Manual 3rd edn (AASM, 2014).

  5. John, J. et al. Greatly increased numbers of histamine cells in human narcolepsy with cataplexy. Ann. Neurol. 74, 786–793 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Valko, P. O. et al. Increase of histaminergic tuberomammillary neurons in narcolepsy. Ann. Neurol. 74, 794–804 (2013).

    CAS  PubMed  Google Scholar 

  7. Haas, H. L., Sergeeva, O. A. & Selbach, O. Histamine in the nervous system. Physiol. Rev. 88, 1183–1241 (2008).

    CAS  PubMed  Google Scholar 

  8. Panula, P. & Nuutinen, S. The histaminergic network in the brain: basic organization and role in disease. Nat. Rev. Neurosci. 14, 472–487 (2013).

    CAS  PubMed  Google Scholar 

  9. Blouin, A. M. et al. Human hypocretin and melanin-concentrating hormone levels are linked to emotion and social interaction. Nat. Commun. 4, 1547 (2013).

    PubMed  Google Scholar 

  10. Kiyashchenko, L. I. et al. Release of hypocretin (orexin) during waking and sleep states. J. Neurosci. 22, 5282–5286 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. McGregor, R., Wu, M. F., Barber, G., Ramanathan, L. & Siegel, J. M. Highly specific role of hypocretin (orexin) neurons: differential activation as a function of diurnal phase, operant reinforcement versus operant avoidance and light level. J. Neurosci. 31, 15455–15467 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Mileykovskiy, B. Y., Kiyashchenko, L. I. & Siegel, J. M. Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 46, 787–798 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Trottier, S. et al. Co-localization of histamine with GABA but not with galanin in the human tuberomamillary nucleus. Brain Res. 939, 52–64 (2002).

    CAS  PubMed  Google Scholar 

  14. Ericson, H., Watanabe, T. & Kohler, C. Morphological analysis of the tuberomammillary nucleus in the rat brain: delineation of subgroups with antibody against L-histidine decarboxylase as a marker. J. Comp. Neurol. 263, 1–24 (1987).

    CAS  PubMed  Google Scholar 

  15. Sherin, J. E., Elmquist, J. K., Torrealba, F. & Saper, C. B. Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat. J. Neurosci. 18, 4705–4721 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zecharia, A. Y. et al. GABAergic inhibition of histaminergic neurons regulates active waking but not the sleep-wake switch or propofol-induced loss of consciousness. J. Neurosci. 32, 13062–13075 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. John, J., Kodama, T. & Siegel, J. M. Caffeine promotes glutamate and histamine release in the posterior hypothalamus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R704–R710 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Yu, X. et al. Circadian factor BMAL1 in histaminergic neurons regulates sleep architecture. Curr. Biol. 24, 2838–2844 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Krolewski, D. M. et al. Expression patterns of corticotropin-releasing factor, arginine vasopressin, histidine decarboxylase, melanin-concentrating hormone, and orexin genes in the human hypothalamus. J. Comp. Neurol. 518, 4591–4611 (2010).

    PubMed  PubMed Central  Google Scholar 

  20. Fronczek, R., Lammers, G. J., Balesar, R., Unmehopa, U. A. & Swaab, D. F. The number of hypothalamic hypocretin (orexin) neurons is not affected in Prader–Willi syndrome. J. Clin. Endocrinol. Metab. 90, 5466–5470 (2005).

    CAS  PubMed  Google Scholar 

  21. Sakurai, T. et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92, 573–585 (1998).

    CAS  PubMed  Google Scholar 

  22. Chou, T. C. et al. Orexin (hypocretin) neurons contain dynorphin. J. Neurosci. 21, RC168 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Crocker, A. et al. Concomitant loss of dynorphin, NARP, and orexin in narcolepsy. Neurology 65, 1184–1188 (2005).

    CAS  PubMed  Google Scholar 

  24. Torrealba, F., Yanagisawa, M. & Saper, C. B. Colocalization of orexin a and glutamate immunoreactivity in axon terminals in the tuberomammillary nucleus in rats. Neuroscience 119, 1033–1044 (2003).

    CAS  PubMed  Google Scholar 

  25. Reti, I. M., Reddy, R., Worley, P. F. & Baraban, J. M. Selective expression of Narp, a secreted neuronal pentraxin, in orexin neurons. J. Neurochem. 82, 1561–1565 (2002).

    CAS  PubMed  Google Scholar 

  26. Blouin, A. M. et al. Narp immunostaining of human hypocretin (orexin) neurons: loss in narcolepsy. Neurology 65, 1189–1192 (2005).

    CAS  PubMed  Google Scholar 

  27. Appelbaum, L. et al. Circadian and homeostatic regulation of structural synaptic plasticity in hypocretin neurons. Neuron 68, 87–98 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Maret, S. et al. Homer1a is a core brain molecular correlate of sleep loss. Proc. Natl Acad. Sci. USA 104, 20090–20095 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Muschamp, J. W. et al. Hypocretin (orexin) facilitates reward by attenuating the antireward effects of its cotransmitter dynorphin in ventral tegmental area. Proc. Natl Acad. Sci. USA 111, E1648–E1655 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Vourdas, A. et al. Narcolepsy and psychopathology: is there an association? Sleep Med. 3, 353–360 (2002).

    CAS  PubMed  Google Scholar 

  31. Mignot, E., Hayduk, R., Black, J., Grumet, F. C. & Guilleminault, C. HLA DQB1*0602 is associated with cataplexy in 509 narcoleptic patients. Sleep 20, 1012–1020 (1997).

    CAS  PubMed  Google Scholar 

  32. Oh, S. W. et al. A mesoscale connectome of the mouse brain. Nature 508, 207–214 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Peyron, C. et al. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J. Neurosci. 18, 9996–10015 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Yamanaka, A. et al. Orexins activate histaminergic neurons via the orexin 2 receptor. Biochem. Biophys. Res. Commun. 290, 1237–1245 (2002).

    CAS  PubMed  Google Scholar 

  35. Huang, Z. L. et al. Arousal effect of orexin A depends on activation of the histaminergic system. Proc. Natl Acad. Sci. USA 98, 9965–9970 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Chemelli, R. M. et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98, 437–451 (1999).

    CAS  PubMed  Google Scholar 

  37. Eriksson, K. S., Sergeeva, O., Brown, R. E. & Haas, H. L. Orexin/hypocretin excites the histaminergic neurons of the tuberomammillary nucleus. J. Neurosci. 21, 9273–9279 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Schone, C. et al. Optogenetic probing of fast glutamatergic transmission from hypocretin/orexin to histamine neurons in situ. J. Neurosci. 32, 12437–12443 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sundvik, M. et al. The histaminergic system regulates wakefulness and orexin/hypocretin neuron development via histamine receptor H1 in zebrafish. FASEB J. 25, 4338–4347 (2011).

    CAS  PubMed  Google Scholar 

  40. Panula, P., Sundvik, M. & Karlstedt, K. Developmental roles of brain histamine. Trends Neurosci. 37, 159–168 (2014).

    CAS  PubMed  Google Scholar 

  41. Sundvik, M. & Panula, P. Interactions of the orexin/hypocretin neurones and the histaminergic system. Acta Physiol. (Oxf.) 213, 321–333 (2015).

    CAS  Google Scholar 

  42. Sakurai, T. et al. Input of orexin/hypocretin neurons revealed by a genetically encoded tracer in mice. Neuron 46, 297–308 (2005).

    CAS  PubMed  Google Scholar 

  43. Yoshida, K., McCormack, S., Espana, R. A., Crocker, A. & Scammell, T. E. Afferents to the orexin neurons of the rat brain. J. Comp. Neurol. 494, 845–861 (2006).

    PubMed  PubMed Central  Google Scholar 

  44. Steininger, T. L., Alam, M. N., Gong, H., Szymusiak, R. & McGinty, D. Sleep–waking discharge of neurons in the posterior lateral hypothalamus of the albino rat. Brain Res. 840, 138–147 (1999).

    CAS  PubMed  Google Scholar 

  45. Lin, J. S. Brain structures and mechanisms involved in the control of cortical activation and wakefulness, with emphasis on the posterior hypothalamus and histaminergic neurons. Sleep Med. Rev. 4, 471–503 (2000).

    CAS  PubMed  Google Scholar 

  46. Parmentier, R. et al. Anatomical, physiological, and pharmacological characteristics of histidine decarboxylase knock-out mice: evidence for the role of brain histamine in behavioral and sleep-wake control. J. Neurosci. 22, 7695–7711 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Huang, Z. L. et al. Altered sleep-wake characteristics and lack of arousal response to H3 receptor antagonist in histamine H1 receptor knockout mice. Proc. Natl Acad. Sci. USA 103, 4687–4692 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ishiguro, T. et al. Impaired ventilation and metabolism response to hypoxia in histamine H1 receptor-knockout mice. Respir. Physiol. Neurobiol. 154, 331–341 (2006).

    CAS  PubMed  Google Scholar 

  49. Gondard, E. et al. Enhanced histaminergic neurotransmission and sleep-wake alterations, a study in histamine H3-receptor knock-out mice. Neuropsychopharmacology 38, 1015–1031 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Nishino, S. et al. Decreased brain histamine content in hypocretin/orexin receptor-2 mutated narcoleptic dogs. Neurosci. Lett. 313, 125–128 (2001).

    CAS  PubMed  Google Scholar 

  51. Yoshida, Y. et al. Fluctuation of extracellular hypocretin-1 (orexin A) levels in the rat in relation to the light-dark cycle and sleep–wake activities. Eur. J. Neurosci. 14, 1075–1081 (2001).

    CAS  PubMed  Google Scholar 

  52. Anaclet, C. et al. Orexin/hypocretin and histamine: distinct roles in the control of wakefulness demonstrated using knock-out mouse models. J. Neurosci. 29, 14423–14438 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Shan, L. et al. Diurnal fluctuation in histidine decarboxylase expression, the rate limiting enzyme for histamine production, and its disorder in neurodegenerative diseases. Sleep 35, 713–715 (2012).

    PubMed  PubMed Central  Google Scholar 

  54. Zeitzer, J. M. et al. Time-course of cerebrospinal fluid histamine in the wake-consolidated squirrel monkey. J. Sleep Res. 21, 189–194 (2012).

    PubMed  Google Scholar 

  55. Kiviranta, T., Tuomisto, L. & Airaksinen, E. M. Diurnal and age-related changes in cerebrospinal fluid tele-methylhistamine levels during infancy and childhood. Pharmacol. Biochem. Behav. 49, 997–1000 (1994).

    CAS  PubMed  Google Scholar 

  56. Salomon, R. M. et al. Diurnal variation of cerebrospinal fluid hypocretin-1 (Orexin-A) levels in control and depressed subjects. Biol. Psychiatry 54, 96–104 (2003).

    CAS  PubMed  Google Scholar 

  57. Lin, L. et al. Measurement of hypocretin/orexin content in the mouse brain using an enzyme immunoassay: the effect of circadian time, age and genetic background. Peptides 23, 2203–2211 (2002).

    CAS  PubMed  Google Scholar 

  58. Dauvilliers, Y., Siegel, J. M., Lopez, R., Torontali, Z. A. & Peever, J. H. Cataplexy—clinical aspects, pathophysiology and management strategy. Nat. Rev. Neurol. 10, 386–395 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Dauvilliers, Y., Arnulf, I. & Mignot, E. Narcolepsy with cataplexy. Lancet 369, 499–511 (2007).

    PubMed  Google Scholar 

  60. Ripley, B. et al. CSF hypocretin/orexin levels in narcolepsy and other neurological conditions. Neurology 57, 2253–2258 (2001).

    CAS  PubMed  Google Scholar 

  61. Mignot, E. et al. The role of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias. Arch. Neurol. 59, 1553–1562 (2002).

    PubMed  Google Scholar 

  62. Nishino, S., Ripley, B., Overeem, S., Lammers, G. J. & Mignot, E. Hypocretin (orexin) deficiency in human narcolepsy. Lancet 355, 39–40 (2000).

    CAS  PubMed  Google Scholar 

  63. Thannickal, T. C., Nienhuis, R. & Siegel, J. M. Localized loss of hypocretin (orexin) cells in narcolepsy without cataplexy. Sleep 32, 993–998 (2009).

    PubMed  PubMed Central  Google Scholar 

  64. Scammell, T. E., Willie, J. T., Guilleminault, C., Siegel, J. M. & International Working Group on Rodent Models of, N. A consensus definition of cataplexy in mouse models of narcolepsy. Sleep 32, 111–116 (2009).

    PubMed  PubMed Central  Google Scholar 

  65. Nishino, S. et al. Decreased CSF histamine in narcolepsy with and without low CSF hypocretin-1 in comparison to healthy controls. Sleep 32, 175–180 (2009).

    PubMed  PubMed Central  Google Scholar 

  66. Wu, M. F. et al. Locus coeruleus neurons: cessation of activity during cataplexy. Neuroscience 91, 1389–1399 (1999).

    CAS  PubMed  Google Scholar 

  67. Siegel, J. M. et al. Neuronal activity in narcolepsy: identification of cataplexy-related cells in the medial medulla. Science 252, 1315–1318 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. John, J., Wu, M. F., Boehmer, L. N. & Siegel, J. M. Cataplexy-active neurons in the hypothalamus: implications for the role of histamine in sleep and waking behavior. Neuron 42, 619–634 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Siegel, J. M. in Principles and Practice of Sleep Medicine 5th edn (eds Kryger, M. H. et al.) 92–111 (Elsevier Saunders, 2011).

    Google Scholar 

  70. Tabuchi, S. et al. Conditional ablation of orexin/hypocretin neurons: a new mouse model for the study of narcolepsy and orexin system function. J. Neurosci. 34, 6495–6509 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Dauvilliers, Y. et al. Normal cerebrospinal fluid histamine and tele-methylhistamine levels in hypersomnia conditions. Sleep 35, 1359–1366 (2012).

    PubMed  PubMed Central  Google Scholar 

  72. Fontana, A. et al. Narcolepsy: autoimmunity, effector T cell activation due to infection, or T cell independent, major histocompatibility complex class II induced neuronal loss? Brain 133, 1300–1311 (2010).

    PubMed  Google Scholar 

  73. Aran, A. et al. Elevated anti-streptococcal antibodies in patients with recent narcolepsy onset. Sleep 32, 979–983 (2009).

    PubMed  PubMed Central  Google Scholar 

  74. Dauvilliers, Y. et al. Increased risk of narcolepsy in children and adults after pandemic H1N1 vaccination in France. Brain 136, 2486–2496 (2013).

    PubMed  Google Scholar 

  75. Partinen, M. et al. Narcolepsy as an autoimmune disease: the role of H1N1 infection and vaccination. Lancet Neurol. 13, 600–613 (2014).

    CAS  PubMed  Google Scholar 

  76. Bergman, P. et al. Narcolepsy patients have antibodies that stain distinct cell populations in rat brain and influence sleep patterns. Proc. Natl Acad. Sci. USA 111, E3735–E3744 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Cvetkovic-Lopes, V. et al. Elevated Tribbles homolog 2-specific antibody levels in narcolepsy patients. J. Clin. Invest. 120, 713–719 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Pedotti, R., De Voss, J. J., Steinman, L. & Galli, S. J. Involvement of both 'allergic' and 'autoimmune' mechanisms in EAE, MS and other autoimmune diseases. Trends Immunol. 24, 479–484 (2003).

    CAS  PubMed  Google Scholar 

  79. Alonso, A., Jick, S. S. & Hernan, M. A. Allergy, histamine 1 receptor blockers, and the risk of multiple sclerosis. Neurology 66, 572–575 (2006).

    CAS  PubMed  Google Scholar 

  80. Lock, C. et al. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat. Med. 8, 500–508 (2002).

    CAS  PubMed  Google Scholar 

  81. Dauvilliers, Y. A., Lehmann, S., Jaussent, I. & Gabelle, A. Hypocretin and brain beta-amyloid peptide interactions in cognitive disorders and narcolepsy. Front. Aging Neurosci. 6, 119 (2014).

    PubMed  PubMed Central  Google Scholar 

  82. Steinman, L. Optic neuritis, a new variant of experimental encephalomyelitis, a durable model for all seasons, now in its seventieth year. J. Exp. Med. 197, 1065–1071 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Steinman, L. Multiple sclerosis: a two-stage disease. Nat. Immunol. 2, 762–764 (2001).

    CAS  PubMed  Google Scholar 

  84. Jutel, M., Watanabe, T., Akdis, M., Blaser, K. & Akdis, C. A. Immune regulation by histamine. Curr. Opin. Immunol. 14, 735–740 (2002).

    CAS  PubMed  Google Scholar 

  85. Teuscher, C. et al. Central histamine H3 receptor signaling negatively regulates susceptibility to autoimmune inflammatory disease of the CNS. Proc. Natl Acad. Sci. USA 104, 10146–10151 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Magistretti, P. J. Regulation of glycogenolysis by neurotransmitters in the central nervous system. Diabete. Metab. 14, 237–246 (1988).

    CAS  PubMed  Google Scholar 

  87. Heier, M. S., Skinningsrud, A., Paus, E. & Gautvik, K. M. Increased cerebrospinal fluid levels of nerve cell biomarkers in narcolepsy with cataplexy. Sleep Med. 15, 614–618 (2014).

    CAS  PubMed  Google Scholar 

  88. Jutel, M. et al. Histamine regulates T-cell and antibody responses by differential expression of H1 and H2 receptors. Nature 413, 420–425 (2001).

    CAS  PubMed  Google Scholar 

  89. Silver, R., Silverman, A. J., Vitković, L. & Lederhendler, I. I. Mast cells in the brain: evidence and functional significance. Trends Neurosci. 19, 25–31 (1996).

    CAS  PubMed  Google Scholar 

  90. Chikahisa, S. et al. Histamine from brain resident MAST cells promotes wakefulness and modulates behavioral states. PLoS ONE 8, e78434 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Rocha, S. M., Pires, J., Esteves, M., Graca, B. & Bernardino, L. Histamine: a new immunomodulatory player in the neuron-glia crosstalk. Front. Cell. Neurosci. 8, 120 (2014).

    PubMed  PubMed Central  Google Scholar 

  92. Obukuro, K. et al. Nitric oxide mediates selective degeneration of hypothalamic orexin neurons through dysfunction of protein disulfide isomerase. J. Neurosci. 33, 12557–12568 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Stone, T. W. Kynurenines in the CNS: from endogenous obscurity to therapeutic importance. Prog. Neurobiol. 64, 185–218 (2001).

    CAS  PubMed  Google Scholar 

  94. Katsuki, H. & Akaike, A. Excitotoxic degeneration of hypothalamic orexin neurons in slice culture. Neurobiol. Dis. 15, 61–69 (2004).

    CAS  PubMed  Google Scholar 

  95. Shan, L., Bao, A. M. & Swaab, D. F. The human histaminergic system in neuropsychiatric disorders. Trends Neurosci. 38, 167–177 (2015).

    CAS  PubMed  Google Scholar 

  96. Anichtchik, O. V., Rinne, J. O., Kalimo, H. & Panula, P. An altered histaminergic innervation of the substantia nigra in Parkinson's disease. Exp. Neurol. 163, 20–30 (2000).

    CAS  PubMed  Google Scholar 

  97. Rinne, J. O. et al. Increased brain histamine levels in Parkinson's disease but not in multiple system atrophy. J. Neurochem. 81, 954–960 (2002).

    CAS  PubMed  Google Scholar 

  98. Liu, C. Q., Chen, Z., Liu, F. X., Hu, D. N. & Luo, J. H. Involvement of brain endogenous histamine in the degeneration of dopaminergic neurons in 6-hydroxydopamine-lesioned rats. Neuropharmacology 53, 832–841 (2007).

    CAS  PubMed  Google Scholar 

  99. Liu, C. Q., Hu, D. N., Liu, F. X., Chen, Z. & Luo, J. H. Apomorphine-induced turning behavior in 6-hydroxydopamine lesioned rats is increased by histidine and decreased by histidine decarboxylase, histamine H1 and H2 receptor antagonists, and an H3 receptor agonist. Pharmacol. Biochem. Behav. 90, 325–330 (2008).

    CAS  PubMed  Google Scholar 

  100. Defina, P. A., Moser, R. S., Glenn, M., Lichtenstein, J. D. & Fellus, J. Alzheimer's disease clinical and research update for health care practitioners. J. Aging Res. 2013, 207178 (2013).

    PubMed  PubMed Central  Google Scholar 

  101. Van Someren, E. J. Circadian and sleep disturbances in the elderly. Exp. Gerontol. 35, 1229–1237 (2000).

    PubMed  Google Scholar 

  102. Bianchetti, A. et al. Predictors of mortality and institutionalization in Alzheimer disease patients 1 year after discharge from an Alzheimer dementia unit. Dementia 6, 108–112 (1995).

    CAS  PubMed  Google Scholar 

  103. Braak, H., Braak, E. & Bohl, J. Staging of Alzheimer-related cortical destruction. Eur. Neurol. 33, 403–408 (1993).

    CAS  PubMed  Google Scholar 

  104. Shan, L., Swaab, D. F. & Bao, A. M. Neuronal histaminergic system in aging and age-related neurodegenerative disorders. Exp. Gerontol. 48, 603–607 (2013).

    CAS  PubMed  Google Scholar 

  105. Liguori, C. et al. Orexinergic system dysregulation, sleep impairment, and cognitive decline in Alzheimer disease. JAMA Neurol. 71, 1498–1505 (2014).

    PubMed  Google Scholar 

  106. Kang, J. E. et al. Amyloid-β dynamics are regulated by orexin and the sleep-wake cycle. Science 326, 1005–1007 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Scammell, T. E., Matheson, J. K., Honda, M., Thannickal, T. C. & Siegel, J. M. Coexistence of narcolepsy and Alzheimer's disease. Neurobiol. Aging 33, 1318–1319 (2012).

    CAS  PubMed  Google Scholar 

  108. Fronczek, R. et al. Hypocretin (orexin) loss in Alzheimer's disease. Neurobiol. Aging 33, 1642–1650 (2012).

    CAS  PubMed  Google Scholar 

  109. Airaksinen, M. S. et al. Histamine neurons in human hypothalamus: anatomy in normal and Alzheimer diseased brains. Neuroscience 44, 465–481 (1991).

    CAS  PubMed  Google Scholar 

  110. Shan, L., Bossers, K., Unmehopa, U., Bao, A. M. & Swaab, D. F. Alterations in the histaminergic system in Alzheimer's disease: a postmortem study. Neurobiol. Aging 33, 2585–2598 (2012).

    CAS  PubMed  Google Scholar 

  111. Motawaj, M., Peoc'h, K., Callebert, J. & Arrang, J. M. CSF levels of the histamine metabolite tele-methylhistamine are only slightly decreased in Alzheimer's disease. J. Alzheimers Dis. 22, 861–871 (2010).

    CAS  PubMed  Google Scholar 

  112. Hoogendijk, W. J. et al. Increased activity of surviving locus ceruleus neurons in Alzheimer's disease. Ann. Neurol. 45, 82–91 (1999).

    CAS  PubMed  Google Scholar 

  113. Szot, P. et al. Compensatory changes in the noradrenergic nervous system in the locus ceruleus and hippocampus of postmortem subjects with Alzheimer's disease and dementia with Lewy bodies. J. Neurosci. 26, 467–478 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Passani, M. B. & Blandina, P. Histamine receptors in the CNS as targets for therapeutic intervention. Trends Pharmacol. Sci. 32, 242–249 (2011).

    CAS  PubMed  Google Scholar 

  115. Egan, M. et al. Pilot randomized controlled study of a histamine receptor inverse agonist in the symptomatic treatment of AD. Curr. Alzheimer Res. 9, 481–490 (2012).

    CAS  PubMed  Google Scholar 

  116. Haig, G. M. et al. A randomized study of H3 antagonist ABT-288 in mild-to-moderate Alzheimer's dementia. J. Alzheimers Dis. 42, 959–971 (2014).

    CAS  PubMed  Google Scholar 

  117. Grove, R. A. et al. A randomized, double-blind, placebo-controlled, 16-week study of the H3 receptor antagonist, GSK239512 as a monotherapy in subjects with mild-to-moderate Alzheimer's disease. Curr. Alzheimer Res. 11, 47–58 (2014).

    CAS  PubMed  Google Scholar 

  118. Sulzer, D. Multiple hit hypotheses for dopamine neuron loss in Parkinson's disease. Trends Neurosci. 30, 244–250 (2007).

    CAS  PubMed  Google Scholar 

  119. Braak, H. et al. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol. Aging 24, 197–211 (2003).

    PubMed  Google Scholar 

  120. De Cock, V. C., Vidailhet, M. & Arnulf, I. Sleep disturbances in patients with parkinsonism. Nat. Clin. Pract. Neurol. 4, 254–266 (2008).

    PubMed  Google Scholar 

  121. Hobson, D. E. et al. Excessive daytime sleepiness and sudden-onset sleep in Parkinson disease: a survey by the Canadian Movement Disorders Group. JAMA 287, 455–463 (2002).

    PubMed  Google Scholar 

  122. Abbott, R. D. et al. Excessive daytime sleepiness and subsequent development of Parkinson disease. Neurology 65, 1442–1446 (2005).

    CAS  PubMed  Google Scholar 

  123. Arnulf, I. Excessive daytime sleepiness in parkinsonism. Sleep Med. Rev. 9, 185–200 (2005).

    PubMed  Google Scholar 

  124. Arnulf, I. et al. Parkinson's disease and sleepiness: an integral part of PD. Neurology 58, 1019–1024 (2002).

    CAS  PubMed  Google Scholar 

  125. Cochen De Cock, V. et al. Daytime sleepiness in Parkinson's disease: a reappraisal. PLoS ONE 9, e107278 (2014).

    PubMed  PubMed Central  Google Scholar 

  126. Thannickal, T. C., Lai, Y. Y. & Siegel, J. M. Hypocretin (orexin) and melanin concentrating hormone loss and the symptoms of Parkinson's disease. Brain 131, e87 (2008).

    PubMed  Google Scholar 

  127. Fronczek, R. et al. Hypocretin (orexin) loss in Parkinson's disease. Brain 130, 1577–1585 (2007).

    PubMed  Google Scholar 

  128. Drouot, X. et al. Low levels of ventricular CSF orexin/hypocretin in advanced PD. Neurology 61, 540–543 (2003).

    CAS  PubMed  Google Scholar 

  129. Overeem, S. et al. Normal hypocretin-1 levels in Parkinson's disease patients with excessive daytime sleepiness. Neurology 58, 498–499 (2002).

    CAS  PubMed  Google Scholar 

  130. Compta, Y. et al. Cerebrospinal hypocretin, daytime sleepiness and sleep architecture in Parkinson's disease dementia. Brain 132, 3308–3317 (2009).

    PubMed  Google Scholar 

  131. Shan, L. et al. Neuronal histamine production remains unaltered in Parkinson's disease despite the accumulation of Lewy bodies and Lewy neurites in the tuberomamillary nucleus. Neurobiol. Aging 33, 1343–1344 (2012).

    CAS  PubMed  Google Scholar 

  132. Nakamura, S. et al. Large neurons in the tuberomammillary nucleus in patients with Parkinson's disease and multiple system atrophy. Neurology 46, 1693–1696 (1996).

    CAS  PubMed  Google Scholar 

  133. Garbarg, M., Javoy-Agid, F., Schwartz, J. C. & Agid, Y. Brain histidine decarboxylase activity in Parkinson's disease. Lancet 1, 74–75 (1983).

    CAS  PubMed  Google Scholar 

  134. Prell, G. D. & Green, J. P. Histamine metabolites and pros-methylimidazoleacetic acid in human cerebrospinal fluid. Agents Actions Suppl. 33, 343–363 (1991).

    CAS  PubMed  Google Scholar 

  135. Phillips, W., Shannon, K. M. & Barker, R. A. The current clinical management of Huntington's disease. Mov. Disord. 23, 1491–1504 (2008).

    PubMed  Google Scholar 

  136. Kremer, B. et al. A worldwide study of the Huntington's disease mutation. The sensitivity and specificity of measuring CAG repeats. N. Engl. J. Med. 330, 1401–1406 (1994).

    CAS  PubMed  Google Scholar 

  137. Aziz, A. et al. Hypocretin and melanin-concentrating hormone in patients with Huntington disease. Brain Pathol. 18, 474–483 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Aziz, N. A., Swaab, D. F., Pijl, H. & Roos, R. A. Hypothalamic dysfunction and neuroendocrine and metabolic alterations in Huntington's disease: clinical consequences and therapeutic implications. Rev. Neurosci. 18, 223–251 (2007).

    CAS  PubMed  Google Scholar 

  139. Petersen, A. et al. Orexin loss in Huntington's disease. Hum. Mol. Genet. 14, 39–47 (2005).

    CAS  PubMed  Google Scholar 

  140. Mangiarini, L. et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87, 493–506 (1996).

    CAS  PubMed  Google Scholar 

  141. Baumann, C. R., Hersberger, M. & Bassetti, C. L. Hypocretin-1 (orexin A) levels are normal in Huntington's disease. J. Neurol. 253, 1232–1233 (2006).

    PubMed  Google Scholar 

  142. van Wamelen, D. J. et al. Functional increase of brain histaminergic signaling in Huntington's disease. Brain Pathol. 21, 419–427 (2011).

    CAS  PubMed  Google Scholar 

  143. Williams, R. H., Morton, A. J. & Burdakov, D. Paradoxical function of orexin/hypocretin circuits in a mouse model of Huntington's disease. Neurobiol. Dis. 42, 438–445 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Morton, A. J. et al. Disintegration of the sleep-wake cycle and circadian timing in Huntington's disease. J. Neurosci. 25, 157–163 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Morton, A. J. Circadian and sleep disorder in Huntington's disease. Exp. Neurol. 243, 34–44 (2013).

    PubMed  Google Scholar 

  146. Arnulf, I. et al. Rapid eye movement sleep disturbances in Huntington disease. Arch. Neurol. 65, 482–488 (2008).

    PubMed  Google Scholar 

  147. Ercan-Sencicek, A. G. et al. L-histidine decarboxylase and Tourette's syndrome. N. Engl. J. Med. 362, 1901–1908 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Karagiannidis, I. et al. Support of the histaminergic hypothesis in Tourette syndrome: association of the histamine decarboxylase gene in a large sample of families. J. Med. Genet. 50, 760–764 (2013).

    CAS  PubMed  Google Scholar 

  149. Castellan Baldan, L. et al. Histidine decarboxylase deficiency causes tourette syndrome: parallel findings in humans and mice. Neuron 81, 77–90 (2014).

    CAS  Google Scholar 

  150. Ghosh, D. et al. Sleep disorders in children with Tourette syndrome. Pediatr. Neurol. 51, 31–35 (2014).

    PubMed  Google Scholar 

  151. Hartmann, A., Worbe, Y. & Arnulf, I. Increasing histamine neurotransmission in Gilles de la Tourette syndrome. J. Neurol. 259, 375–376 (2012).

    PubMed  Google Scholar 

  152. Lieberman, P. Histamine, antihistamines, and the central nervous system. Allergy Asthma Proc. 30, 482–486 (2009).

    CAS  PubMed  Google Scholar 

  153. Krystal, A. D., Richelson, E. & Roth, T. Review of the histamine system and the clinical effects of H1 antagonists: basis for a new model for understanding the effects of insomnia medications. Sleep Med. Rev. 17, 263–272 (2013).

    PubMed  Google Scholar 

  154. Roth, T. et al. Efficacy and safety of doxepin 1 mg, 3 mg, and 6 mg in adults with primary insomnia. Sleep 30, 1555–1561 (2007).

    PubMed  PubMed Central  Google Scholar 

  155. Lin, J. S. et al. An inverse agonist of the histamine H(3) receptor improves wakefulness in narcolepsy: studies in orexin−/− mice and patients. Neurobiol. Dis. 30, 74–83 (2008).

    PubMed  Google Scholar 

  156. Inocente, C. et al. Pitolisant, an inverse agonist of the histamine H3 receptor: an alternative stimulant for narcolepsy-cataplexy in teenagers with refractory sleepiness. Clin. Neuropharmacol. 35, 55–60 (2012).

    CAS  PubMed  Google Scholar 

  157. Dauvilliers, Y. et al. Pitolisant versus placebo or modafinil in patients with narcolepsy: a double-blind, randomised trial. Lancet Neurol. 12, 1068–1075 (2013).

    CAS  PubMed  Google Scholar 

  158. Kanbayashi, T. et al. CSF histamine contents in narcolepsy, idiopathic hypersomnia and obstructive sleep apnea syndrome. Sleep 32, 181–187 (2009).

    PubMed  PubMed Central  Google Scholar 

  159. Shan, L. Qi, X. R., Balesar, R., Swaab, D. F. & Bao, A. M. Unaltered histaminergic system in depression: a postmortem study. J. Affect. Disord. 146, 220–223 (2013).

    CAS  PubMed  Google Scholar 

  160. Spitzer, N. C. Activity-dependent neurotransmitter respecification. Nat. Rev. Neurosci. 13, 94–106 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Lee, D. A. & Blackshaw, S. Functional implications of hypothalamic neurogenesis in the adult mammalian brain. Int. J. Dev. Neurosci. 30, 615–621 (2012).

    PubMed  PubMed Central  Google Scholar 

  162. Migaud, M. et al. Emerging new sites for adult neurogenesis in the mammalian brain: a comparative study between the hypothalamus and the classical neurogenic zones. Eur. J. Neurosci. 32, 2042–2052 (2010).

    PubMed  Google Scholar 

  163. Lecendreux, M. et al. Impact of cytokine in type 1 narcolepsy: role of pandemic H1N1 vaccination? J. Autoimmun. 60, 20–31 (2015).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the National Institutes of Health (NS14610, MH064109, DA034748) and the Medical Research Service of the US Department of Veterans Affairs for support. L.S. is supported by a 2014 NARSAD Young Investigator Grant from the Brain & Behaviour Research Foundation. The authors want to thank Dr Ronald McGregor for drawing Figure 4.

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in writing the article, and provided substantial contributions to the discussion of content and to the editing the manuscript before submission.

Corresponding author

Correspondence to Jerome M. Siegel.

Ethics declarations

Competing interests

Y.D. has received funds for speaking and board engagements from Bioprojet, Jazz and UCB Pharma. L.S. and J.S. declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, L., Dauvilliers, Y. & Siegel, J. Interactions of the histamine and hypocretin systems in CNS disorders. Nat Rev Neurol 11, 401–413 (2015). https://doi.org/10.1038/nrneurol.2015.99

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2015.99

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing