Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The neural bases of emotion regulation

Abstract

Emotions are powerful determinants of behaviour, thought and experience, and they may be regulated in various ways. Neuroimaging studies have implicated several brain regions in emotion regulation, including the ventral anterior cingulate and ventromedial prefrontal cortices, as well as the lateral prefrontal and parietal cortices. Drawing on computational approaches to value-based decision-making and reinforcement learning, we propose a unifying conceptual framework for understanding the neural bases of diverse forms of emotion regulation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A valuation perspective on emotional reactivity and regulation.
Figure 2: Regions implicated in emotion regulation.
Figure 3: Schematic of model-based and model-free emotion regulation.
Figure 4: Example of emotion regulation as a decision-making process.

Similar content being viewed by others

References

  1. Gross, J. J. Handbook of Emotion Regulation 2nd edn (Guilford, 2014).

    Google Scholar 

  2. Aldao, A., Nolen-Hoeksema, S. & Schweizer, S. Emotion-regulation strategies across psychopathology: a meta-analytic review. Clin. Psychol. Rev. 30, 217–237 (2010).

    Article  PubMed  Google Scholar 

  3. Mauss, I. B., Levenson, R. W., McCarter, L., Wilhelm, F. H. & Gross, J. J. The tie that binds? Coherence among emotion experience, behavior, and physiology. Emotion 5, 175–190 (2005).

    Article  PubMed  Google Scholar 

  4. Lang, P. J., Greenwald, M. K., Bradley, M. M. & Hamm, A. O. Looking at pictures: affective, facial, visceral, and behavioral reactions. Psychophysiology 30, 261–273 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Bradley, M. M., Codispoti, M., Cuthbert, B. N. & Lang, P. J. Emotion and motivation I: defensive and appetitive reactions in picture processing. Emotion 1, 276–298 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Rangel, A., Camerer, C. & Montague, P. R. A framework for studying the neurobiology of value-based decision making. Nat. Rev. Neurosci. 9, 545–556 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gross, J. J. Emotion regulation: current status and future prospects. Psychol. Inquiry 26, 1–26 (2015).

    Article  Google Scholar 

  8. Ochsner, K. N. in Handbook of Emotion Regulation 2nd edn (ed. Gross, J. J.) 23–42 (Guilford Press, 2014).

    Google Scholar 

  9. Sabatinelli, D. et al. Emotional perception: meta-analyses of face and natural scene processing. NeuroImage 54, 2524–2533 (2011).

    Article  PubMed  Google Scholar 

  10. Mechias, M. L., Etkin, A. & Kalisch, R. A meta-analysis of instructed fear studies: implications for conscious appraisal of threat. NeuroImage 49, 1760–1768 (2010).

    Article  PubMed  Google Scholar 

  11. Costafreda, S. G., Brammer, M. J., David, A. S. & Fu, C. H. Predictors of amygdala activation during the processing of emotional stimuli: a meta-analysis of 385 PET and fMRI studies. Brain Res. Rev. 58, 57–70 (2008).

    Article  PubMed  Google Scholar 

  12. Murphy, F. C., Nimmo-Smith, I. & Lawrence, A. D. Functional neuroanatomy of emotions: a meta-analysis. Cogn. Affect. Behav. Neurosci. 3, 207–233 (2003).

    Article  PubMed  Google Scholar 

  13. Wager, T. D. et al. in Handbook of Emotions 3rd edn (eds Lewis, M. et al.) 249–271 (Guilford Press, 2008).

    Google Scholar 

  14. McHugh, S. B. et al. Aversive prediction error signals in the amygdala. J. Neurosci. 34, 9024–9033 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Li, S. S. & McNally, G. P. The conditions that promote fear learning: prediction error and Pavlovian fear conditioning. Neurobiol. Learn. Mem. 108, 14–21 (2014).

    Article  PubMed  Google Scholar 

  16. McNally, G. P., Johansen, J. P. & Blair, H. T. Placing prediction into the fear circuit. Trends Neurosci. 34, 283–292 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Furlong, T. M., Cole, S., Hamlin, A. S. & McNally, G. P. The role of prefrontal cortex in predictive fear learning. Behav. Neurosci. 124, 574–586 (2010).

    Article  PubMed  Google Scholar 

  18. Spoormaker, V. I. et al. The neural correlates of negative prediction error signaling in human fear conditioning. NeuroImage 54, 2250–2256 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Cauda, F. et al. Meta-analytic clustering of the insular cortex: characterizing the meta-analytic connectivity of the insula when involved in active tasks. NeuroImage 62, 343–355 (2012).

    Article  PubMed  Google Scholar 

  20. Menon, V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn. Sci. 15, 483–506 (2011).

    Article  PubMed  Google Scholar 

  21. Beissner, F., Meissner, K., Bar, K. J. & Napadow, V. The autonomic brain: an activation likelihood estimation meta-analysis for central processing of autonomic function. J. Neurosci. 33, 10503–10511 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gyurak, A., Gross, J. J. & Etkin, A. Explicit and implicit emotion regulation: a dual-process framework. Cogn. Emotion 25, 400–412 (2011).

    Article  Google Scholar 

  23. Buhle, J. T. et al. Cognitive reappraisal of emotion: a meta-analysis of human neuroimaging studies. Cereb. Cortex 24, 2981–2990 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kohn, N. et al. Neural network of cognitive emotion regulation — an ALE meta-analysis and MACM analysis. NeuroImage 87, 345–355 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Sotres-Bayon, F. & Quirk, G. J. Prefrontal control of fear: more than just extinction. Curr. Opin. Neurobiol. 20, 231–235 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Quirk, G. J., Garcia, R. & González-Lima, F. Prefrontal mechanisms in extinction of conditioned fear. Biol. Psychiatry 60, 337–343 (2006).

    Article  PubMed  Google Scholar 

  27. Maren, S. & Quirk, G. J. Neuronal signalling of fear memory. Nat. Rev. Neurosci. 5, 844–852 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Schiller, D., Levy, I., Niv, Y., LeDoux, J. E. & Phelps, E. A. From fear to safety and back: reversal of fear in the human brain. J. Neurosci. 28, 11517–11525 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lissek, S. et al. Neural substrates of classically conditioned fear-generalization in humans: a parametric fMRI study. Soc. Cogn. Affect. Neurosci. 9, 1134–1142 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Greenberg, T., Carlson, J. M., Cha, J., Hajcak, G. & Mujica-Parodi, L. R. Ventromedial prefrontal cortex reactivity is altered in generalized anxiety disorder during fear generalization. Depress. Anxiety 30, 242–250 (2013).

    Article  PubMed  Google Scholar 

  31. Nili, U., Goldberg, H., Weizman, A. & Dudai, Y. Fear thou not: activity of frontal and temporal circuits in moments of real-life courage. Neuron 66, 949–962 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Mobbs, D. et al. When fear is near: threat imminence elicits prefrontal–periaqueductal gray shifts in humans. Science 317, 1079–1083 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Egner, T., Etkin, A., Gale, S. & Hirsch, J. Dissociable neural systems resolve conflict from emotional versus nonemotional distracters. Cereb. Cortex 18, 1475–1484 (2008).

    Article  PubMed  Google Scholar 

  34. Etkin, A., Egner, T., Peraza, D. M., Kandel, E. R. & Hirsch, J. Resolving emotional conflict: a role for the rostral anterior cingulate cortex in modulating activity in the amygdala. Neuron 51, 871–882 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Etkin, A., Prater, K. E., Hoeft, F., Menon, V. & Schatzberg, A. F. Failure of anterior cingulate activation and connectivity with the amygdala during implicit regulation of emotional processing in generalized anxiety disorder. Am. J. Psychiatry 167, 545–554 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kerns, J. G. et al. Anterior cingulate conflict monitoring and adjustments in control. Science 303, 1023–1026 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Daw, N. D., Niv, Y. & Dayan, P. Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat. Neurosci. 8, 1704–1711 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Dayan, P. & Niv, Y. Reinforcement learning: the good, the bad and the ugly. Curr. Opin. Neurobiol. 18, 185–196 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Rushworth, M. F. & Behrens, T. E. Choice, uncertainty and value in prefrontal and cingulate cortex. Nat. Neurosci. 11, 389–397 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Rushworth, M. F., Noonan, M. P., Boorman, E. D., Walton, M. E. & Behrens, T. E. Frontal cortex and reward-guided learning and decision-making. Neuron 70, 1054–1069 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Doya, K. Modulators of decision making. Nat. Neurosci. 11, 410–416 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Bartra, O., McGuire, J. T. & Kable, J. W. The valuation system: a coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. NeuroImage 76, 412–427 (2013).

    Article  PubMed  Google Scholar 

  43. Clithero, J. A. & Rangel, A. Informatic parcellation of the network involved in the computation of subjective value. Soc. Cogn. Affect. Neurosci. 9, 1289–1302 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chase, H. W., Kumar, P., Eickhoff, S. B. & Dombrovski, A. Y. Reinforcement learning models and their neural correlates: an activation likelihood estimation meta-analysis. Cogn. Affect. Behav. Neurosci. 15, 435–459 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lee, S. W., Shimojo, S. & O'Doherty, J. P. Neural computations underlying arbitration between model-based and model-free learning. Neuron 81, 687–699 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Smittenaar, P., FitzGerald, T. H., Romei, V., Wright, N. D. & Dolan, R. J. Disruption of dorsolateral prefrontal cortex decreases model-based in favor of model-free control in humans. Neuron 80, 914–919 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Otto, A. R., Gershman, S. J., Markman, A. B. & Daw, N. D. The curse of planning: dissecting multiple reinforcement-learning systems by taxing the central executive. Psychol. Sci. 24, 751–761 (2013).

    Article  PubMed  Google Scholar 

  48. Otto, A. R., Raio, C. M., Chiang, A., Phelps, E. A. & Daw, N. D. Working-memory capacity protects model-based learning from stress. Proc. Natl Acad. Sci. USA 110, 20941–20946 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dixon, M. L. & Christoff, K. The lateral prefrontal cortex and complex value-based learning and decision making. Neurosci. Biobehav. Rev. 45, 9–18 (2014).

    Article  PubMed  Google Scholar 

  50. Hutcherson, C. A., Plassmann, H., Gross, J. J. & Rangel, A. Cognitive regulation during decision making shifts behavioral control between ventromedial and dorsolateral prefrontal value systems. J. Neurosci. 32, 13543–13554 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Etkin, A., Egner, T. & Kalisch, R. Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn. Sci. 15, 85–93 (2011).

    Article  PubMed  Google Scholar 

  52. Etkin, A. & Wager, T. D. Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am. J. Psychiatry 164, 1476–1488 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Stroop, J. R. Studies of interference in serial verbal reactions. J. Exp. Psychol. 18, 643–662 (1935).

    Article  Google Scholar 

  54. Maier, M. E. & di Pellegrino, G. Impaired conflict adaptation in an emotional task context following rostral anterior cingulate cortex lesions in humans. J. Cogn. Neurosci. 24, 2070–2079 (2012).

    Article  PubMed  Google Scholar 

  55. McRae, K., Ciesielski, B. & Gross, J. J. Unpacking cognitive reappraisal: goals, tactics, and outcomes. Emotion 12, 250–255 (2012).

    Article  PubMed  Google Scholar 

  56. McRae, K. et al. The neural bases of distraction and reappraisal. J. Cogn. Neurosci. 22, 248–262 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wager, T. D., Davidson, M. L., Hughes, B. L., Lindquist, M. A. & Ochsner, K. N. Prefrontal–subcortical pathways mediating successful emotion regulation. Neuron 59, 1037–1050 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lee, H., Heller, A. S., van Reekum, C. M., Nelson, B. & Davidson, R. J. Amygdala-prefrontal coupling underlies individual differences in emotion regulation. NeuroImage 62, 1575–1581 (2012).

    Article  PubMed  Google Scholar 

  59. Lapate, R. C. et al. Amygdalar function reflects common individual differences in emotion and pain regulation success. J. Cogn. Neurosci. 24, 148–158 (2012).

    Article  PubMed  Google Scholar 

  60. Woo, C. W., Roy, M., Buhle, J. T. & Wager, T. D. Distinct brain systems mediate the effects of nociceptive input and self-regulation on pain. PLoS Biol. 13, e1002036 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Dosenbach, N. U. et al. Distinct brain networks for adaptive and stable task control in humans. Proc. Natl Acad. Sci. USA 104, 11073–11078 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dosenbach, N. U. et al. A core system for the implementation of task sets. Neuron 50, 799–812 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Niendam, T. A. et al. Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cogn. Affect. Behav. Neurosci. 12, 241–268 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Schmeichel, B. J., Volokhov, R. N. & Demaree, H. A. Working memory capacity and the self-regulation of emotional expression and experience. J. Pers. Soc. Psychol. 95, 1526–1540 (2008).

    Article  PubMed  Google Scholar 

  65. Feeser, M., Prehn, K., Kazzer, P., Mungee, A. & Bajbouj, M. Transcranial direct current stimulation enhances cognitive control during emotion regulation. Brain Stimul. 7, 105–112 (2014).

    Article  PubMed  Google Scholar 

  66. Raio, C. M., Orederu, T. A., Palazzolo, L., Shurick, A. A. & Phelps, E. A. Cognitive emotion regulation fails the stress test. Proc. Natl Acad. Sci. USA 110, 15139–15144 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lupien, S. J., Gillin, C. J. & Hauger, R. L. Working memory is more sensitive than declarative memory to the acute effects of corticosteroids: a dose-response study in humans. Behav. Neurosci. 113, 420–430 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Schoofs, D., Wolf, O. T. & Smeets, T. Cold pressor stress impairs performance on working memory tasks requiring executive functions in healthy young men. Behav. Neurosci. 123, 1066–1075 (2009).

    Article  PubMed  Google Scholar 

  69. Qin, S., Hermans, E. J., van Marle, H. J., Luo, J. & Fernández, G. Acute psychological stress reduces working memory-related activity in the dorsolateral prefrontal cortex. Biol. Psychiatry 66, 25–32 (2009).

    Article  PubMed  Google Scholar 

  70. Goldin, P. R., McRae, K., Ramel, W. & Gross, J. J. The neural bases of emotion regulation: reappraisal and suppression of negative emotion. Biol. Psychiatry 63, 577–586 (2008).

    Article  PubMed  Google Scholar 

  71. Vanderhasselt, M. A., Kuhn, S. & De Raedt, R. 'Put on your poker face': neural systems supporting the anticipation for expressive suppression and cognitive reappraisal. Soc. Cogn. Affect. Neurosci. 8, 903–910 (2013).

    Article  PubMed  Google Scholar 

  72. Wager, T. D. et al. An fMRI-based neurologic signature of physical pain. N. Engl. J. Med. 368, 1388–1397 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kriegeskorte, N., Mur, M. & Bandettini, P. Representational similarity analysis — connecting the branches of systems neuroscience. Front. Syst. Neurosci. 2, 4 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Winecoff, A. et al. Ventromedial prefrontal cortex encodes emotional value. J. Neurosci. 33, 11032–11039 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Delgado, M. R., Nearing, K. I., Ledoux, J. E. & Phelps, E. A. Neural circuitry underlying the regulation of conditioned fear and its relation to extinction. Neuron 59, 829–838 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rescorla, R. A. & Wagner, A. R. in Classical Conditioning II: Current Theory and Research (eds Black, A. H. & Prokasy, W. F.) 64–99 (Appleton-Century Crofts, 1972).

    Google Scholar 

  77. Pearce, J. M. & Hall, G. A model for Pavlovian learning: variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychol. Rev. 87, 532–552 (1980).

    Article  CAS  PubMed  Google Scholar 

  78. Boll, S., Gamer, M., Gluth, S., Finsterbusch, J. & Buchel, C. Separate amygdala subregions signal surprise and predictiveness during associative fear learning in humans. Eur. J. Neurosci. 37, 758–767 (2013).

    Article  PubMed  Google Scholar 

  79. Li, J., Schiller, D., Schoenbaum, G., Phelps, E. A. & Daw, N. D. Differential roles of human striatum and amygdala in associative learning. Nat. Neurosci. 14, 1250–1252 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Watanabe, N., Sakagami, M. & Haruno, M. Reward prediction error signal enhanced by striatum–amygdala interaction explains the acceleration of probabilistic reward learning by emotion. J. Neurosci. 33, 4487–4493 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Staudinger, M. R., Erk, S., Abler, B. & Walter, H. Cognitive reappraisal modulates expected value and prediction error encoding in the ventral striatum. NeuroImage 47, 713–721 (2009).

    Article  PubMed  Google Scholar 

  82. Gu, X., Kirk, U., Lohrenz, T. M. & Montague, P. R. Cognitive strategies regulate fictive, but not reward prediction error signals in a sequential investment task. Hum. Brain Mapp. 35, 3738–3749 (2014).

    Article  PubMed  Google Scholar 

  83. Silvetti, M., Alexander, W., Verguts, T. & Brown, J. W. From conflict management to reward-based decision making: actors and critics in primate medial frontal cortex. Neurosci. Biobehav. Rev. 46, 44–57 (2014).

    Article  PubMed  Google Scholar 

  84. Rutledge, R. B., Skandali, N., Dayan, P. & Dolan, R. J. A computational and neural model of momentary subjective well-being. Proc. Natl Acad. Sci. USA 111, 12252–12257 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sheppes, G., Scheibe, S., Suri, G. & Gross, J. J. Emotion-regulation choice. Psychol. Sci. 22, 1391–1396 (2011).

    Article  PubMed  Google Scholar 

  86. Sheppes, G. et al. Emotion regulation choice: a conceptual framework and supporting evidence. J. Exp. Psychol. Gen. 143, 163–181 (2014).

    Article  PubMed  Google Scholar 

  87. Milad, M. R. et al. Deficits in conditioned fear extinction in obsessive-compulsive disorder and neurobiological changes in the fear circuit. JAMA Psychiatry 70, 608–618; quiz 554 (2013).

    Article  PubMed  Google Scholar 

  88. Milad, M. R. et al. Neurobiological basis of failure to recall extinction memory in posttraumatic stress disorder. Biol. Psychiatry 66, 1075–1082 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Etkin, A. & Schatzberg, A. F. Common abnormalities and disorder-specific compensation during implicit regulation of emotional processing in generalized anxiety and major depressive disorders. Am. J. Psychiatry 168, 968–978 (2011).

    Article  PubMed  Google Scholar 

  90. Greening, S. G., Osuch, E. A., Williamson, P. C. & Mitchell, D. G. The neural correlates of regulating positive and negative emotions in medication-free major depression. Soc. Cogn. Affect. Neurosci. 9, 628–637 (2014).

    Article  PubMed  Google Scholar 

  91. Kanske, P., Heissler, J., Schonfelder, S. & Wessa, M. Neural correlates of emotion regulation deficits in remitted depression: the influence of regulation strategy, habitual regulation use, and emotional valence. NeuroImage 61, 686–693 (2012).

    Article  PubMed  Google Scholar 

  92. Smoski, M. J., Keng, S. L., Schiller, C. E., Minkel, J. & Dichter, G. S. Neural mechanisms of cognitive reappraisal in remitted major depressive disorder. J. Affect. Disord. 151, 171–177 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Johnstone, T., van Reekum, C. M., Urry, H. L., Kalin, N. H. & Davidson, R. J. Failure to regulate: counterproductive recruitment of top-down prefrontal-subcortical circuitry in major depression. J. Neurosci. 27, 8877–8884 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Dillon, D. G. & Pizzagalli, D. A. Evidence of successful modulation of brain activation and subjective experience during reappraisal of negative emotion in unmedicated depression. Psychiatry Res. 212, 99–107 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Ball, T. M., Ramsawh, H. J., Campbell-Sills, L., Paulus, M. P. & Stein, M. B. Prefrontal dysfunction during emotion regulation in generalized anxiety and panic disorders. Psychol. Med. 43, 1475–1486 (2013).

    Article  PubMed  Google Scholar 

  96. Goldin, P. R., Manber, T., Hakimi, S., Canli, T. & Gross, J. J. Neural bases of social anxiety disorder: emotional reactivity and cognitive regulation during social and physical threat. Arch. Gen. Psychiatry 66, 170–180 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Goldin, P. R., Manber-Ball, T., Werner, K., Heimberg, R. & Gross, J. J. Neural mechanisms of cognitive reappraisal of negative self-beliefs in social anxiety disorder. Biol. Psychiatry 66, 1091–1099 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  98. New, A. S. et al. A functional magnetic resonance imaging study of deliberate emotion regulation in resilience and posttraumatic stress disorder. Biol. Psychiatry 66, 656–664 (2009).

    Article  PubMed  Google Scholar 

  99. Rabinak, C. A. et al. Focal and aberrant prefrontal engagement during emotion regulation in veterans with posttraumatic stress disorder. Depress. Anxiety 31, 851–861 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A.E. is funded by the Sierra-Pacific Mental Illness Research, Education and Clinical Center (MIRECC) at the Veterans Affairs Palo Alto Healthcare System. A.E. and J.J.G. are funded by US National Institutes of Health grants R01MH091860 and R21MH097984. C.B. is funded by European Research Council (ERC) grant ERC-2010-AdG_20100407 and the German Research Foundation (DFG; SFB TRR 58).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Etkin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Computational modelling

The application of algorithms representing functions computed by the brain to explain observed behaviour through latent variables.

Conditioned stimulus

(CS). A previously neutral stimulus that takes on aversive or rewarding properties after being associated with an unconditioned stimulus.

Limbic regions

Deep brain structures (for example, the amygdala, ventral striatum and brain stem nuclei) involved in emotional and motivational processes.

Prediction errors

Discrepancies between experienced stimuli and expectations about them.

Reinforcement learning

An area of study describing changes in behaviour driven by the experience of rewards or punishments.

Transcranial magnetic stimulation

(TMS). A method for non-invasive stimulation of the brain using a focal pulsed magnetic field, which can be used to excite or inhibit brain activity.

Unconditioned stimulus

(US). A naturally aversive or rewarding stimulus.

Value

A dimensionless 'universal currency' that denotes the relative 'good for me' or 'bad for me' motivational relevance of a stimulus or action.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Etkin, A., Büchel, C. & Gross, J. The neural bases of emotion regulation. Nat Rev Neurosci 16, 693–700 (2015). https://doi.org/10.1038/nrn4044

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn4044

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing