Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

A new mechanism of nervous system plasticity: activity-dependent myelination

Abstract

The synapse is the focus of experimental research and theory on the cellular mechanisms of nervous system plasticity and learning, but recent research is expanding the consideration of plasticity into new mechanisms beyond the synapse, notably including the possibility that conduction velocity could be modifiable through changes in myelin to optimize the timing of information transmission through neural circuits. This concept emerges from a confluence of brain imaging that reveals changes in white matter in the human brain during learning, together with cellular studies showing that the process of myelination can be influenced by action potential firing in axons. This Opinion article summarizes the new research on activity-dependent myelination, explores the possible implications of these studies and outlines the potential for new research.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Development of oligodendrocytes.
Figure 2: Myelin and the node of Ranvier.
Figure 3: Changes in white matter tracts after learning.
Figure 4: Non-synaptic junctions on myelinating glia promote preferential myelination of electrically active axons.
Figure 5: Myelin stabilization is promoted by vesicle release from axons in zebrafish.
Figure 6: Activity-dependent myelination in nervous system plasticity and learning.

Similar content being viewed by others

References

  1. Fields, R. D. in Neuroglia 3rd edn (eds Kettenmann, H. & Ransom, B. R.) 573–585 (Oxford Univ. Press, 2013).

    Google Scholar 

  2. Fields, R. D. White matter in learning, cognition and psychiatric disorders. Trends Neurosci. 31, 361–370 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yakovlev, P. I. & Lecours, A.-R. in Regional Development of the Brain in Early Life (ed. Minkowski, A.) 3–70 (Blackwell Scientific, 1987).

    Google Scholar 

  4. Mabbott, D. J., Noseworthy, M., Bouffet, E., Laughlin, S. & Rockel, C. White matter growth as a mechanism of cognitive development in children. Neuroimage 33, 936–946 (2006).

    Article  PubMed  Google Scholar 

  5. Nagy, Z. et al. Maturation of white matter is associated with the development of cognitive functions during childhood. J. Cogn. Neurosci. 16, 1227–1233 (2004).

    Article  PubMed  Google Scholar 

  6. Kraft, R. H., Mitchell, O. R., Languis, M. L. & Wheatley, G. H. Hemispheric asymmetries during six- to eight-year-olds performance of Piagetian conservation and reading tasks. Neuropsychologia 18, 637–643 (1980).

    Article  CAS  PubMed  Google Scholar 

  7. Pujol, J. et al. Myelination of language-related areas in the developing brain. Neurology 66, 339–343 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Liston, C. et al. Frontostriatal microstructure modulates efficient recruitment of cognitive control. Cereb. Cortex 16, 553–560 (2006).

    Article  PubMed  Google Scholar 

  9. Giedd, J. N. Structural magnetic resonance imaging of the adolescent brain. Ann. NY Acad. Sci. 1021, 77–85 (2004).

    Article  PubMed  Google Scholar 

  10. Schrager, P. & Novakovic, S. D. Control of myelination, axonal growth, and synapse formation in spinal cord explants by ion channels and electrical activity. Brain Res. Dev. Brain Res. 88, 68–78 (1995).

    Article  Google Scholar 

  11. Demerens, C. et al. Induction of myelination in the central nervous system by electrical activity. Proc. Natl Acad. Sci. USA 93, 9887–9892 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stevens, B., Tanner, S. & Fields, R. D. Control of myelination by specific patterns of neural impulses. J. Neurosci. 18, 9303–9311 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stevens, B., Porta, S., Haak, L. L., Gallo, V. & Fields, R. D. Adenosine: a neuron-glial transmitter promoting myelination in the CNS in response to action potentials. Neuron 36, 855–868 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stevens, B., Ishibashi, T., Chen, J. F. & Fields, R. D. Adenosine: an activity-dependent axonal signal regulating MAP kinase and proliferation in developing Schwann cells. Neuron Glia Biol. 1, 23–34 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ishibashi, T. et al. Astrocytes promote myelination in response to electrical impulses. Neuron 49, 823–823 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wake, H., Lee, P. R. & Fields, R. D. Control of local protein synthesis and initial events in myelination by action potentials. Science 333, 1647–1651 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang, I. H. et al. Axon myelination and electrical stimulation in a microfluidic compartmentalized cell culture platform. Neuromolecular Med. 14, 112–118 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Malone, M. et al. Neuronal activity promotes myelination via a cAMP pathway. Glia 61, 843–854 (2013).

    Article  PubMed  Google Scholar 

  19. Luundgard, L. et al. Neuregulin and BDNF induce a switch to NMDA receptor-dependent myelination by oligodendrocytes. PLoS Biol. 11, e1001743 (2013).

    Article  Google Scholar 

  20. Dan, Y. & Poo, M. M. Spike timing-dependent plasticity: from synapse to perception. Physiol. Rev. 86, 1033–1048 (2006).

    Article  PubMed  Google Scholar 

  21. Fields, R. D. Myelination: an overlooked mechanism of synaptic plasticity? Neuroscientist 11, 528–531 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Buzsáki, G. Rhythms of the Brain (Oxford Univ. Press, 2006).

    Book  Google Scholar 

  23. Ainsworth, M. et al. Rates and rhythms: a synergistic view of frequency and temporal coding in neuronal networks. Neuron 75, 572–583 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Nunez, P. L. Srinivasan, R. & Fields, R. D. EEG functional connectivity, axon delays and white matter disease. Clin. Neurophysiol. 126, 110–120 (2015).

    Article  PubMed  Google Scholar 

  25. Pajevic, S., Basser, P. J. & Fields, R. D. Role of myelin plasticity in oscillations and synchrony of neuronal activity. Neuroscience 276, 135–147 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Zatorre, R. J., Fields, R. D. & Johansen-Berg, H. Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nat. Neurosci. 15, 528–536 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bengtsson, S. L. et al. Extensive piano practicing has regionally specific effects on white matter development. Nat. Neurosci. 8, 1148–1150 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Carreiras, M. et al. An anatomical signature for literacy. Nature 461, 983–986 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Scholz, J., Klein, M. C., Behrens, T. E. & Johansen-Berg, H. Training induces changes in white-matter architecture. Nat. Neurosci. 12, 1370–1371 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fields, R. D. Imaging learning: The search for a memory trace. Neuroscientist 17, 185–196 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gibson, E. M. et al. Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344, 1252304 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Hines, H. H., Ravanelli, A. M., Schwindt, R., Scott, E. K. & Appel, B. Neuronal activity biases axon selection for myelination in vivo. Nat. Neurosci. 18, 683–689 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mensch, S. et al. Synaptic vesicle release regulates myelin sheath number of individual oligodendrocytes in vivo. Nat. Neurosci. 18, 628–630 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Swadlow, H. A. Physiological properties of individual cerebral axons studied in vivo for as long as one year. J. Neurophysiol. 54, 1346–1362 (1985).

    Article  CAS  PubMed  Google Scholar 

  35. Liu, J. et al. Impaired adult myelination in the prefrontal cortex of socially isolated mice. Nat. Neurosci. 15, 1621–1623 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Makinodan, M., Rosen, K. M., Ito, S. & Corfas, G. A critical period for social experience-dependent oligodendrocyte maturation and myelination. Science 337, 1357–1360 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Okuda, H. et al. Environmental enrichment stimulates progenitor cell proliferation in the amygdala. J. Neurosci. Res. 87, 3546–3553 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Zhao, U. Y. et al. Enriched environment increases the total number of CNPase positive cells in the corpus callosum of middle-aged rats. Acta Neurobiol. Exp. 71, 322–330 (2011).

    Google Scholar 

  39. Simon, C., Gotz, M. & Dimou, L. Progenitors in adult cerebral cortex: cell cycle properties and regulation by physiological stimuli and injury. Glia 59, 869–881 (2011).

    Article  PubMed  Google Scholar 

  40. McKenzie, I. et al. Motor skill learning requires central myelination. Science 346, 318–322 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Blumenfeld-Katzir, T., Pasternak, O., Dagan, M. & Assaf, Y. Diffusion MRI of structural brain plasticity induced by a learning and memory task. PLoS ONE 6, e20678 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kleim, J. A. et al. Motor learning-dependent synaptogenesis is localized to functionally reorganized motor cortex. Neurobiol. Learn. Mem. 77, 63–77 (2002).

    Article  PubMed  Google Scholar 

  43. Sampaio-Baptista, C. et al. Motor skill learning induces changes in white matter microstructure and myelination. J. Neurosci. 33, 19499–19503 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hofstetter, S., Tavor, I., Moryosef, S. T. & Assaf, Y. Short-term learning induces white matter plasticity in the fornix. J. Neurosci. 33, 12844–12850 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yang, S. et al. Effects of an enriched environment on myelin sheaths in the white matter of rats during normal aging: A stereological study. Neuroscience 234, 13–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Engvig, A. et al. Memory training impacts short-term changes in aging white matter: a longitudinal diffusion tensor imaging study. Hum. Brain Mapp. 33, 2390–2406 (2012).

    Article  PubMed  Google Scholar 

  47. Engvig, A. et al. Effects of memory training on cortical thickness in the elderly. Neuroimage 52, 667–1676 (2010).

    Article  Google Scholar 

  48. Kennedy, K. M. & Raz, N. Aging white matter and cognition: Differential effects of regional variations in diffusion properties on memory, executive funcitons, and speed. Neuropsychologia 47, 916–927 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Marner, L., Nyengaard, J. R., Tang, Y. & Pakkenberg, B. Marked loss of myelinated nerve fibers in the human brain with age. J. Comp. Neurol. 462, 144–152 (2003).

    Article  PubMed  Google Scholar 

  50. Salat, D. H. et al. Age-related alterations in white matter microstructure measured by diffusion tensor imaging. Neurobiol. Aging 26, 1215–1227 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Bartzokis, G. Age-related myelin breakdown: A developmental model of cognitive decline and Alzheimer's disease. Neurobiol. Aging 25, 5–18 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Ransom, B. R. & Orkand, R. K. Glial-neuronal interactions in non-synaptic areas of the brain: studies in the optic nerve. Trends Neurosci. 19, 352–358 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Káradóttir, R., Cavelier, P., Bergersen, L. H. & Attwell, D. NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature. 438, 1162–1166 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Stevens, B. & Fields, R. D. Response of Schwann cells to action potentials in development. Science. 287, 2267–2271 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Gallo, V. et al. Oligodendrocyte progenitor cell proliferation and lineage progression are regulated by glutamate receptor-mediated K1 channel block. J. Neurosci. 16, 2659–2670 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mangin, J. M., Li, P., Scafidi, J. & Gallo, V. Experience-dependent regulation of NG2 progenitors in the developing barrel cortex. Nat. Neurosci. 15, 1192–1194 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zonouzi, M. et al. GABAergic regulation of cerebellar NG2 cell development is altered in perinatal white matter injury. Nat. Neurosci. 18, 674–682 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fields, R. D. Nonsynaptic and nonvesicular ATP release from neurons and relevance to neuron–glia signaling. Semin. Cell Dev. Biol. 22, 214–219 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Burnstock, G. Physiology and pathophysiology of purinergic neurotransmission. Physiol. Rev. 87, 659–797 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Zhang, Z. W., Kang, J. I. & Vaucher, E. Axonal varicosity density as an index of local neuronal interactions. PLoS ONE 6, e22543 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kriegler, S. & Chiu, S. Y. Calcium signaling of glial cells along mammalian axons. J. Neurosci. 13, 4229–4245 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Orkand, R. K., Nicholls, J. G. & Kuffler, S. W. Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J. Neurophysiol. 29, 788–806 (1966).

    Article  CAS  PubMed  Google Scholar 

  63. Fields, R. D. & Ni, Y. Nonsynaptic communication through ATP release from volume-activated anion channels in axons. Sci. Signal. 3, ra73 (2010).

    PubMed  PubMed Central  Google Scholar 

  64. Fields, R. D. Imaging single photons and intrinsic optical signals for studies of vesicular and non-vesicular ATP release from axons. Front. Neuroanat. 5, 32 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Micu, I. et al. NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia. Nature 439, 988–992 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Butt, A. M., Fern, R. F. & Matute, C. Neurotransmitter signaling in white matter. Glia. 62, 1762–1779 (2014).

    Article  PubMed  Google Scholar 

  67. Fern, R. F., Matute, C. & Stys, P. K. White matter injury: Ischemic and nonischemic. Glia 62, 1780–1789 (2014).

    Article  PubMed  Google Scholar 

  68. Garthwaite, G., Hampden-Smith, K., Wilson, G. W., Goodwin, D. A. & Garthwaite, J. Nitric oxide targets oligodendrocytes and promotes their morphological differentiation. Glia 63, 383–399 (2015).

    Article  PubMed  Google Scholar 

  69. Itoh, K., Stevens, B., Schachner, M. & Fields, R. D. Regulated expression of the neural cell adhesion molecule L1 by specific patterns of neural impulses. Science. 270, 1369–1372 (1995).

    Article  CAS  PubMed  Google Scholar 

  70. Itoh, K., Ozaki, M., Stevens, B. & Fields, R. D. Activity-dependent regulation of N-cadherin in DRG neurons: differential regulation of N-cadherin, NCAM, and L1 by distinct patterns of action potentials. J. Neurobiol. 33, 735–748 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Yuen, T. J. et al. Oligodendrocyte-encoded HIF function couples postnatal myelination and white matter angiogenesis. Cell. 158, 383–396 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bergles, D. E., Roberts, J. D., Somogyi, P. & Jahr, C. E. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature. 405, 187–191 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Horner, P. J. et al. Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord. J. Neurosci. 20, 2218–2228 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dawson, M. R. L., Polito, A., Levine, J. M. & Reynolds, R. NG2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS. Mol. Cell. Neurosci. 24, 476–488 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Young, K. M. et al. Oligodendrocyte dynamics in healthy adult CNS: evidence for myelin remodeling. Neuron 77, 873–853 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lin, S. C. et al. Climbing fiber innervation of NG2-expressing glia in the mammalian cerebellum. Neuron. 46, 773–785 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Kukley, M., Capetillo-Zarate, E. & Dietrich, D. Vesicular glutamate release from axons in white matter. Nat. Neurosci. 10, 311–320 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Kukley, M. et al. Glial cells are born with synapses. FASEB J. 22, 2957–2969 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Maldonado, P. P., Velez-Fort, M. & Angulo, M. C. Is neuronal communication with NG2 cells synaptic or extrasynaptic? J. Anat. 219, 8–17 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Wake, H. et al. Non-synaptic junctions on myelinating glia promote preferential myelination of electrically-active axons. Nat. Commun. 6, 7844 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Sakry, D. et al. Oligodendrocyte precursor cells modulate the neuronal network by activity-dependent ectodomain cleavage of NG2. PLoS Biol 12, 1001–1092 (2014).

    Article  CAS  Google Scholar 

  82. Bakhti, M., Winter, C. & Simons, M. Inhibition of myelin membrane sheath formation by oligodendrocyte-derived exosome-like vesicles. J. Biol. Chem. 286, 787–796 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Frühbeis, C. et al. Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication. PLoS Biol. 11, e1001604 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Pusic, A. D. & Kraig, R. P. Youth and environmental enrichment generate serum exosomes containing miR-219 that promote CNS myelination. Glia 62, 284–299 (2014).

    Article  PubMed  Google Scholar 

  85. Luse, S. A. in The Biology of Myelin (ed. Korey, S. R.) 59 (Paul B. Hoeber, 1959).

    Google Scholar 

  86. Krämer, E. M., Klein, C., Koch, T., Boytinck, M. & Trotter, J. Compartmentation of Fyn kinase with glycosylphosphatidylinositol-anchored molecules in oligodendrocytes facilitates kinase activation during myelination. J. Biol. Chem. 274, 29042–29049 (1999).

    Article  PubMed  Google Scholar 

  87. Laursen, L. S., Chan, C. W. & ffrench-Constant, C. An integrin-contactin complex regulates CNS myelination by differential Fyn phosphorylation. J. Neurosci. 29, 9174–9185 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. White, R. et al. Activation of oligodendroglial Fyn kinase enhances translation of mRNAs transported in hnRNP A2-dependent RNA granules. J. Cell Biol. 181, 579–586 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Barbin, G. et al. Axonal cell-adhesion molecule L1 in CNS myelination. Neuron Glia Biol. 1, 65–72 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Seilheimer, B., Persohn, E. & Schachner, M. Neural cell adhesion molecule expression is regulated by Schwann cell-neuron interactions in culture. J. Cell Biol. 108, 1909–1915 (1989).

    Article  CAS  PubMed  Google Scholar 

  91. Wood, P. M., Schachner, M. & Bunge, R. P. Inhibition of Schwann cell myelination in vitro by antibody to the L1 adhesion molecule. J. Neurosci. 10, 3635–3645 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chiu, S. Y. & Wilson, G. F. The role of potassium channels in Schwann cell proliferation in Wallerian degeneration of explant rabbit sciatic nerves. J. Physiol. 408, 199–222 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pappas, C. A., Ullrich, N. & Sontheimer, H. Reduction of glial proliferation by K+ channel blockers is mediated by changes in pH. Neuroreport 6, 193–196 (1994).

    Article  CAS  PubMed  Google Scholar 

  94. Knutson, P. et al. K+ channel expression and cell proliferation are regulated by intracellular sodium and membrane depolarization in oligodendrocyte progenitor cells. J. Neurosci. 17, 2669–2682 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gudz, T. I., Komuro, H. & Macklin, W. B. Glutamate stimulates oligodendrocyte progenitor migration mediated via an alphav integrin/myelin proteolipid protein complex. J. Neurosci. 26, 2458–2466 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Xiao, L. et al. NMDA receptor couples Rac1-GEF Tiam1 to direct oligodendrocyte precursor cell migration. Glia. 61, 2078–2099 (2013).

    Article  PubMed  Google Scholar 

  97. Fields, R. D. & Burnstock, G. Purinergic signaling in neuron-glia interactions. Nat. Rev. Neurosci. 7, 423–436 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Barres, B. A. & Raff, M. C. Proliferation of oligodendrocyte precursor cells depends on electrical activity in axons. Nature. 361, 258–260 (1993).

    Article  CAS  PubMed  Google Scholar 

  99. Van't Veer, A. et al. Brain-derived neurotrophic factor effects on oligodendrocyte progenitors of the basal forebrain are mediated through trkB and the MAP kinase pathway. J. Neurosci. Res. 87, 69–78 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Fulmer, C. G. et al. Astrocyte-derived BDNF supports myelin protein synthesis after cuprizone-induced demyelination. J. Neurosci. 34, 8186–8196 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Xiao, J., Wong, A. W., Willingham, M. M. vanden Buuse, M., Kilpatrick, T. J. & Murray, S. S. Brain-derived neurotrophic factor promotes central nervous system myelination via a direct effect upon oligodendrocytes. Neurosignals 18, 186–202 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Czopka, T., ffrench-Constant, C. & Lyons, D. A. Individual oligodendrocytes have only a few hours in which to generate new myelin sheaths in vivo. Dev. Cell. 25, 599–609 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kole, M. H. P. & Stuart, G. J. Signal processing in the axon initial segment. Neuron 73, 235–247 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Kuba, H., Oichi, Y. & Ohmori, H. Presynaptic activity regulates Na+ channel distribution at the axon initial segment. Nature 465, 1075–1078 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Grubb, M. S. & Burrone, J. Activity-dependent relocation of the axon initial segment fine-tunes neuronal excitability. Nature 465, 1070–1074 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Tagoe, T., Barker, M., Jones, A., Allcock, N. & Hamann, M. Auditory nerve perinodal dysmyelination in noise-induced hearing loss. J. Neurosci. 34, 2684–2688 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Fields, R. D. Myelin — more than insulation. Science 344, 264–266 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tomassy, G. S. et al. Distinct profiles of myelin distribution along single axons of pyramidal neurons in the neocortex. Science 334, 319–324 (2014).

    Article  CAS  Google Scholar 

  109. Schwab, M. E. & Strittmatter, S. M. Nogo limits neural plasticity and recovery from injury. Curr. Opin. Neurobiol. 27, 53–60 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Bukalo, O. & Fields, R. D. Synaptic plasticity by antidromic firing during hippocampal network oscillations. Proc. Natl Acad. Sci. USA 110, 5175–5180 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bullock, T. H., Moore, J. K. & Fields, R. D. Evolution of myelin sheaths: both lamprey and hagfish lack myelin. Neurosci. Lett. 48, 145–148 (1984).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by funds for intramural research from the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD). Electron micrographs in Figure 2 are courtesy of Louis Dye, Microscopy Imaging Core, NICHD. 3D reconstruction is courtesy of Emily Benson and Grahame Kidd, Renovo, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Douglas Fields.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Glossary

Axolemma

The cell membrane of an axon.

Fractional anisotropy

(FA). A measure of the symmetry of water diffusion in tissue analysed by MRI. Increased FA reflects more restricted diffusion of water, as occurs when axons become myelinated or more highly compacted, thus restricting water diffusion parallel to the axons.

Non-synaptic transmission

Intercellular communication in the nervous system that does not involve synapses. This includes neurotransmitters released from vesicles fusing with the neuronal membrane outside synapses, as well as the release of neurotransmitters through membrane channels and other mechanisms.

Synaptic coupling

A specialized junction between cells in the nervous system for rapid communication by electrical signalling. Neurotransmitters released from synaptic vesicles in the presynaptic neuron in response to electrical depolarization activate neurotransmitter receptors on the membrane of the postsynaptic cell to depolarize or hyperpolarize the postsynaptic membrane potential.

Uncinate fasciculus

A white matter tract that connects the hippocampus, amygdala and temporal lobe with the orbitofrontal cortex of the brain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fields, R. A new mechanism of nervous system plasticity: activity-dependent myelination. Nat Rev Neurosci 16, 756–767 (2015). https://doi.org/10.1038/nrn4023

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn4023

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing