Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Finding the engram

Key Points

  • An engram is the physical trace of a memory in the brain. Although many attempts have been made to localize engrams, the engram has remained largely elusive until now.

  • Here, we develop four defining criteria for engram identification and apply these criteria to recent capture studies that have attempted to observe, erase and artificially express engrams in rodents.

  • Capture studies (allocate-and-manipulate or tag-and-manipulate) allow neurons that were active at the time of learning (engram encoding) to be captured and permanently tagged for later visualization and/or manipulation.

  • Observation studies have established that neurons active at the time of encoding are reactivated when the corresponding memory is retrieved.

  • Erasure studies have shown that silencing of engram neurons prevents memory expression, and thus establish that activation of these neurons is necessary for successful retrieval.

  • Conversely, stimulation of these engram neurons has been used effectively to induce artificial memory recovery, and thus establish that activation of engram neurons is sufficient for retrieval.

Abstract

Many attempts have been made to localize the physical trace of a memory, or engram, in the brain. However, until recently, engrams have remained largely elusive. In this Review, we develop four defining criteria that enable us to critically assess the recent progress that has been made towards finding the engram. Recent 'capture' studies use novel approaches to tag populations of neurons that are active during memory encoding, thereby allowing these engram-associated neurons to be manipulated at later times. We propose that findings from these capture studies represent considerable progress in allowing us to observe, erase and express the engram.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The lifetime of an engram.
Figure 2: Multiple levels of analysis of an engram.
Figure 3: The tag-and-manipulate approach to finding the engram.
Figure 4: The allocate-and-manipulate approach to finding the engram.

Similar content being viewed by others

References

  1. Semon, R. The Mneme (G. Allen & Unwin, 1921).

    Google Scholar 

  2. Semon, R. Mnemic Psychology (G. Allen & Unwin, 1923).

    Google Scholar 

  3. Franz, S. I. & Lashley, K. S. The retention of habits by the rat after destruction of the frontal portion of the cerebrum. Psychobiology 1, 3–18 (1917).

    Article  Google Scholar 

  4. Lashley, K. S. in Society of Experimental Biology Symposium, No. 4: Psychological Mechanisms in Animal Behavior (eds Danielli, J. F. & Brown, R.) 454–482 (Academic Press, 1950).

    Google Scholar 

  5. Bruce, D. Fifty years since Lashley's In search of the Engram: refutations and conjectures. J. Hist. Neurosci. 10, 308–318 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Thompson, R. F. The search for the engram. Am. Psychol. 31, 209–227 (1976).

    Article  CAS  PubMed  Google Scholar 

  7. Dudai, Y. & Eisenberg, M. Rites of passage of the engram: reconsolidation and the lingering consolidation hypothesis. Neuron 44, 93–100 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Josselyn, S. A. Continuing the search for the engram: examining the mechanism of fear memories. J. Psychiatry Neurosci. 35, 221–228 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Schacter, D. L. Forgotten Ideas, Neglected Pioneers: Richard Semon and the Story of Memory (Psychology Press, 2001).

    Google Scholar 

  10. Moscovitch, M. in Science of Memory: Concepts (eds Roediger, H. L. III, Dudai, Y. & Fitzpatrick, S. M.) 17–29 (Oxford Univ. Press, 2007).

    Google Scholar 

  11. Kandel, E. R. The Cellular Basis of Behavior (W. H. Freeman, 1976).

    Google Scholar 

  12. Milner, P. M. The Autonomous Brain: A Neural Theory of Attention and Learning (Psychology Press, 1999).

    Book  Google Scholar 

  13. LeDoux, J. E. Emotion circuits in the brain. Annu. Rev. Neurosci. 23, 155–184 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Bliss, T. V. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Nadel, L. in Science of Memory: Concepts (eds Roediger, H. L., Dudai, Y. & Fitzpatrick, S. M.) 177–182 (Oxford Univ. Press, 2007).

    Google Scholar 

  16. Dudai, Y. Neurobiology. The shaky trace. Nature 406, 686–687 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Nader, K. Memory traces unbound. Trends Neurosci. 26, 65–72 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Ramon y Cajal, S. The Croonian lecture: la fine structure des centre nerveux. Proc. R. Soc. Lond. 55, 444–468 (in French) (1894).

    Article  Google Scholar 

  19. Ramon y Cajal, S. A quelle epoque apparaissent les expansions des cellules nerveuses de la moëlle épinière du poulet? Anat. Anz. 5, 609–613, 631–639 (in French) (1890).

    Google Scholar 

  20. Stefanowska, M. Les appendices terminaux des dendrites cerebraux et leur differents etats physiologiques. Ann. Soc. R. Sci. Med. Nat. Brux. 6, 351–407 (in French) (1897).

    Google Scholar 

  21. Stefanowska, M. Sur les appendices des dendrites. Bull. Soc. R. Sci. Med. Nat. Brux. 55, 76–81 (in French) (1897).

    Google Scholar 

  22. Hebb, D. O. The Organization of Behavior: A Neuropsychological Theory (Wiley, 1949).

    Google Scholar 

  23. Volkmar, F. R. & Greenough, W. T. Rearing complexity affects branching of dendrites in the visual cortex of the rat. Science 176, 1445–1447 (1972).

    Article  CAS  PubMed  Google Scholar 

  24. Moser, M. B., Trommald, M. & Andersen, P. An increase in dendritic spine density on hippocampal CA1 pyramidal cells following spatial learning in adult rats suggests the formation of new synapses. Proc. Natl Acad. Sci. USA 91, 12673–12675 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Muller, D., Toni, N. & Buchs, P. A. Spine changes associated with long-term potentiation. Hippocampus 10, 596–604 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Bosch, M. & Hayashi, Y. Structural plasticity of dendritic spines. Curr. Opin. Neurobiol. 22, 383–388 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Day, J. J. & Sweatt, J. D. Epigenetic mechanisms in cognition. Neuron 70, 813–829 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Sacktor, T. C. How does PKMζ maintain long-term memory? Nat. Rev. Neurosci. 12, 9–15 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Lisman, J., Schulman, H. & Cline, H. The molecular basis of CaMKII function in synaptic and behavioural memory. Nat. Rev. Neurosci. 3, 175–190 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Silva, A. J., Kogan, J. H., Frankland, P. W. & Kida, S. CREB and memory. Annu. Rev. Neurosci. 21, 127–148 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Josselyn, S. A. & Nguyen, P. V. CREB, synapses and memory disorders: past progress and future challenges. Current Drug Targets CNS Neurol. Disord. 4, 481–497 (2005).

    Article  CAS  Google Scholar 

  32. Guzowski, J. F. Insights into immediate-early gene function in hippocampal memory consolidation using antisense oligonucleotide and fluorescent imaging approaches. Hippocampus 12, 86–104 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Horn, G. Pathways of the past: the imprint of memory. Nat. Rev. Neurosci. 5, 108–120 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Horn, G. Memory, Imprinting, and the Brain: An Inquiry into Mechanisms (Clarendon Press, 1985).

    Book  Google Scholar 

  35. Whitlock, J. R., Heynen, A. J., Shuler, M. G. & Bear, M. F. Learning induces long-term potentiation in the hippocampus. Science 313, 1093–1097 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Rumpel, S., LeDoux, J., Zador, A. & Malinow, R. Postsynaptic receptor trafficking underlying a form of associative learning. Science 308, 83–88 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Rogan, M. T., Staubli, U. V. & LeDoux, J. E. Fear conditioning induces associative long-term potentiation in the amygdala. Nature 390, 604–607 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. McKernan, M. G. & Shinnick-Gallagher, P. Fear conditioning induces a lasting potentiation of synaptic currents in vitro. Nature 390, 607–611 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Oh, M. M., Kuo, A. G., Wu, W. W., Sametsky, E. A. & Disterhoft, J. F. Watermaze learning enhances excitability of CA1 pyramidal neurons. J. Neurophysiol. 90, 2171–2179 (2003).

    Article  PubMed  Google Scholar 

  40. Dias, B. G. & Ressler, K. J. Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat. Neurosci. 17, 89–96 (2014).

    Article  PubMed  CAS  Google Scholar 

  41. Graff, J. & Mansuy, I. M. Epigenetic codes in cognition and behaviour. Behav. Brain Res. 192, 70–87 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Barria, A. & Malinow, R. NMDA receptor subunit composition controls synaptic plasticity by regulating binding to CaMKII. Neuron 48, 289–301 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Kristensen, A. S. et al. Mechanism of Ca2+/calmodulin-dependent kinase II regulation of AMPA receptor gating. Nat. Neurosci. 14, 727–735 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Barth, A. L., Gerkin, R. C. & Dean, K. L. Alteration of neuronal firing properties after in vivo experience in a FosGFP transgenic mouse. J. Neurosci. 24, 6466–6475 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Dudai, Y. in Science of Memory: Concepts (eds Roediger, H. L., Dudai, Y. & Fitzpatrick, S. M.) 13–16 (Oxford Univ. Press, 2007).

    Google Scholar 

  46. Wilson, M. A. & McNaughton, B. L. Reactivation of hippocampal ensemble memories during sleep. Science 265, 676–679 (1994).

    Article  CAS  PubMed  Google Scholar 

  47. Kudrimoti, H. S., Barnes, C. A. & McNaughton, B. L. Reactivation of hippocampal cell assemblies: effects of behavioral state, experience, and EEG dynamics. J. Neurosci. 19, 4090–4101 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nadasdy, Z., Hirase, H., Czurko, A., Csicsvari, J. & Buzsaki, G. Replay and time compression of recurring spike sequences in the hippocampus. J. Neurosci. 19, 9497–9507 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Karlsson, M. P. & Frank, L. M. Network dynamics underlying the formation of sparse, informative representations in the hippocampus. J. Neurosci. 28, 14271–14281 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Carr, M. F., Jadhav, S. P. & Frank, L. M. Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval. Nat. Neurosci. 14, 147–153 (2011). A comprehensive review of neural replay studies in rodents, which describe how replay of patterns of neuronal activity in wakefulness and sleep contribute to memory retrieval and consolidation.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Skaggs, W. E. & McNaughton, B. L. Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science 271, 1870–1873 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Ji, D. & Wilson, M. A. Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat. Neurosci. 10, 100–107 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Dupret, D., O'Neill, J., Pleydell-Bouverie, B. & Csicsvari, J. The reorganization and reactivation of hippocampal maps predict spatial memory performance. Nat. Neurosci. 13, 995–1002 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Nakashiba, T., Buhl, D. L., McHugh, T. J. & Tonegawa, S. Hippocampal CA3 output is crucial for ripple-associated reactivation and consolidation of memory. Neuron 62, 781–787 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Girardeau, G., Benchenane, K., Wiener, S. I., Buzsaki, G. & Zugaro, M. B. Selective suppression of hippocampal ripples impairs spatial memory. Nat. Neurosci. 12, 1222–1223 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Ego-Stengel, V. & Wilson, M. A. Disruption of ripple-associated hippocampal activity during rest impairs spatial learning in the rat. Hippocampus 20, 1–10 (2010).

    PubMed  PubMed Central  Google Scholar 

  57. Jadhav, S. P. & Frank, L. M. Reactivating memories for consolidation. Neuron 62, 745–746 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Johnson, A., van der Meer, M. A. & Redish, A. D. Integrating hippocampus and striatum in decision-making. Curr. Opin. Neurobiol. 17, 692–697 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Steiner, A. P. & Redish, A. D. Behavioral and neurophysiological correlates of regret in rat decision-making on a neuroeconomic task. Nat. Neurosci. 17, 995–1002 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Wu, X. & Foster, D. J. Hippocampal replay captures the unique topological structure of a novel environment. J. Neurosci. 34, 6459–6469 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Jadhav, S. P., Kemere, C., German, P. W. & Frank, L. M. Awake hippocampal sharp-wave ripples support spatial memory. Science 336, 1454–1458 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Singer, A. C., Carr, M. F., Karlsson, M. P. & Frank, L. M. Hippocampal SWR activity predicts correct decisions during the initial learning of an alternation task. Neuron 77, 1163–1173 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Karlsson, M. P. & Frank, L. M. Awake replay of remote experiences in the hippocampus. Nat. Neurosci. 12, 913–918 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Foster, D. J. & Wilson, M. A. Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature 440, 680–683 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Diba, K. & Buzsaki, G. Forward and reverse hippocampal place-cell sequences during ripples. Nat. Neurosci. 10, 1241–1242 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Davidson, T. J., Kloosterman, F. & Wilson, M. A. Hippocampal replay of extended experience. Neuron 63, 497–507 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Peigneux, P. et al. Are spatial memories strengthened in the human hippocampus during slow wave sleep? Neuron 44, 535–545 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Maquet, P. et al. Experience-dependent changes in cerebral activation during human REM sleep. Nat. Neurosci. 3, 831–836 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Peigneux, P. et al. Offline persistence of memory-related cerebral activity during active wakefulness. PLoS Biol. 4, e100 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Deuker, L. et al. Memory consolidation by replay of stimulus-specific neural activity. J. Neurosci. 33, 19373–19383 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Staresina, B. P., Alink, A., Kriegeskorte, N. & Henson, R. N. Awake reactivation predicts memory in humans. Proc. Natl Acad. Sci. USA 110, 21159–21164 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tambini, A., Ketz, N. & Davachi, L. Enhanced brain correlations during rest are related to memory for recent experiences. Neuron 65, 280–290 (2010). A human fMRI study showing that patterns of hippocampal–cortical connectivity after an associative encoding task during rest are task-specific and predict subsequent memory performance for these associations at retrieval.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Watrous, A. J., Fell, J., Ekstrom, A. D. & Axmacher, N. More than spikes: common oscillatory mechanisms for content specific neural representations during perception and memory. Curr. Opin. Neurobiol. 31, 33–39 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Tatsuno, M., Lipa, P. & McNaughton, B. L. Methodological considerations on the use of template matching to study long-lasting memory trace replay. J. Neurosci. 26, 10727–10742 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Greenberg, M. E. & Ziff, E. B. Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene. Nature 311, 433–438 (1984).

    Article  CAS  PubMed  Google Scholar 

  76. Curran, T. & Morgan, J. I. Superinduction of c-fos by nerve growth factor in the presence of peripherally active benzodiazepines. Science 229, 1265–1268 (1985).

    Article  CAS  PubMed  Google Scholar 

  77. Morgan, J. I. & Curran, T. Stimulus-transcription coupling in neurons: role of cellular immediate-early genes. Trends Neurosci. 12, 459–462 (1989).

    Article  CAS  PubMed  Google Scholar 

  78. Link, W. et al. Somatodendritic expression of an immediate early gene is regulated by synaptic activity. Proc. Natl Acad. Sci. USA 92, 5734–5738 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lyford, G. L. et al. Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron 14, 433–445 (1995).

    Article  CAS  PubMed  Google Scholar 

  80. Guzowski, J. F., McNaughton, B. L., Barnes, C. A. & Worley, P. F. Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nat. Neurosci. 2, 1120–1124 (1999). An elegant application of IEG technology to identify neuronal ensembles coding different contexts.

    Article  CAS  PubMed  Google Scholar 

  81. Reijmers, L. G., Perkins, B. L., Matsuo, N. & Mayford, M. Localization of a stable neural correlate of associative memory. Science 317, 1230–1233 (2007). This study introduced the influential TetTag approach that allows permanent labelling of neuronal ensembles that are activated during fear memory encoding. These authors showed that tagged neurons were reactivated at above chance levels when the corresponding memory is later recalled.

    Article  CAS  PubMed  Google Scholar 

  82. Denny, C. A. et al. Hippocampal memory traces are differentially modulated by experience, time, and adult neurogenesis. Neuron 83, 189–201 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Guenthner, C. J., Miyamichi, K., Yang, H. H., Heller, H. C. & Luo, L. Permanent genetic access to transiently active neurons via TRAP: targeted recombination in active populations. Neuron 78, 773–784 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Tayler, K. K., Tanaka, K. Z., Reijmers, L. G. & Wiltgen, B. J. Reactivation of neural ensembles during the retrieval of recent and remote memory. Curr. Biol. 23, 99–106 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Liu, X. et al. Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484, 381–385 (2012). The first example of an experiment using the tag-and-manipulate approach to convincingly demonstrate that stimulation of a fear memory engram induces artificial memory expression in the absence of external cues or internally guided retrieval attempts.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Polyn, S. M., Natu, V. S., Cohen, J. D. & Norman, K. A. Category-specific cortical activity precedes retrieval during memory search. Science 310, 1963–1966 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Rugg, M. D., Johnson, J. D., Park, H. & Uncapher, M. R. Encoding–retrieval overlap in human episodic memory: a functional neuroimaging perspective. Prog. Brain Res. 169, 339–352 (2008).

    Article  PubMed  Google Scholar 

  88. Frankland, P. W. & Bontempi, B. The organization of recent and remote memories. Nat. Rev. Neurosci. 6, 119–130 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Komiyama, T. et al. Learning-related fine-scale specificity imaged in motor cortex circuits of behaving mice. Nature 464, 1182–1186 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Yassin, L. et al. An embedded subnetwork of highly active neurons in the neocortex. Neuron 68, 1043–1050 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. McIntosh, A. R. Towards a network theory of cognition. Neural Netw. 13, 861–870 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Maren, S. Neurotoxic basolateral amygdala lesions impair learning and memory but not the performance of conditional fear in rats. J. Neurosci. 19, 8696–8703 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Winocur, G., Moscovitch, M., Fogel, S., Rosenbaum, R. S. & Sekeres, M. Preserved spatial memory after hippocampal lesions: effects of extensive experience in a complex environment. Nat. Neurosci. 8, 273–275 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Scoville, W. B. & Milner, B. Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry 20, 11–21 (1957).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Milner, B., Squire, L. R. & Kandel, E. R. Cognitive neuroscience and the study of memory. Neuron 20, 445–468 (1998).

    Article  CAS  PubMed  Google Scholar 

  96. O'Keefe, J. & Dostrovsky, J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34, 171–175 (1971).

    Article  CAS  PubMed  Google Scholar 

  97. Morris, R. G., Garrud, P., Rawlins, J. N. & O'Keefe, J. Place navigation impaired in rats with hippocampal lesions. Nature 297, 681–683 (1982).

    Article  CAS  PubMed  Google Scholar 

  98. Milner, P. M. Cell assemblies: whose idea? Psycholoquy [online], (1999).

    Google Scholar 

  99. Han, J. H. et al. Neuronal competition and selection during memory formation. Science 316, 457–460 (2007). This study shows that neurons with higher CREB activity in the LA are more likely than their neighbours with lower CREB activity to be allocated to a fear memory engram.

    Article  CAS  PubMed  Google Scholar 

  100. Josselyn, S. A. et al. Long-term memory is facilitated by cAMP response element-binding protein overexpression in the amygdala. J. Neurosci. 21, 2404–2412 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Davis, M. The role of the amygdala in fear and anxiety. Annu. Rev. Neurosci. 15, 353–375 (1992).

    Article  CAS  PubMed  Google Scholar 

  102. Maren, S. The amygdala, synaptic plasticity, and fear memory. Ann. NY Acad. Sci. 985, 106–113 (2003).

    Article  PubMed  Google Scholar 

  103. Fanselow, M. S. & Gale, G. D. The amygdala, fear, and memory. Ann. NY Acad. Sci. 985, 125–134 (2003).

    Article  PubMed  Google Scholar 

  104. Frankland, P. W. & Josselyn, S. A. Memory allocation. Neuropsychopharmacology 40, 243 (2015).

    Article  PubMed  Google Scholar 

  105. Zhou, Y. et al. CREB regulates excitability and the allocation of memory to subsets of neurons in the amygdala. Nat. Neurosci. 12, 1438–1443 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Hsiang, H. L. et al. Manipulating a “cocaine engram” in mice. J. Neurosci. 34, 14115–14127 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Sano, Y. et al. CREB regulates memory allocation in the insular cortex. Curr. Biol. 24, 2833–2837 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Sekeres, M. J. et al. Increasing CRTC1 function in the dentate gyrus during memory formation or reactivation increases memory strength without compromising memory quality. J. Neurosci. 32, 17857–17868 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Yiu, A. P. et al. Neurons are recruited to a memory trace based on relative neuronal excitability immediately before training. Neuron 83, 722–735 (2014). Along with reference 105, this study establishes that allocation of neurons to the engram is governed by neuronal excitability; that is, more excitable cells are more likely than their less excitable neighbours to become part of an engram for a fear memory.

    Article  CAS  PubMed  Google Scholar 

  110. Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S. & Roth, B. L. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl Acad. Sci. USA 104, 5163–5168 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Deisseroth, K. Optogenetics. Nat. Methods 8, 26–29 (2011).

    Article  CAS  PubMed  Google Scholar 

  112. Gouty-Colomer, L. A. et al. Arc expression identifies the lateral amygdala fear memory trace. Mol. Psychiatry http://dx.doi.org/10.1038/mp.2015.18 (2015).

  113. Kim, D., Pare, D. & Nair, S. S. Assignment of model amygdala neurons to the fear memory trace depends on competitive synaptic interactions. J. Neurosci. 33, 14354–14358 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Han, J. H. et al. Selective erasure of a fear memory. Science 323, 1492–1496 (2009). Using an allocate-and-manipulate approach, this paper is the first to show that fear memories may be 'erased' by ablating engram neurons in the LA.

    Article  CAS  PubMed  Google Scholar 

  115. Tanaka, K. Z. et al. Cortical representations are reinstated by the hippocampus during memory retrieval. Neuron 84, 347–354 (2014). A recent study showing that optogenetic silencing of engram neurons in the hippocampus prevents reactivation of engram ensembles in the cortex, leading to retrieval failure.

    Article  CAS  PubMed  Google Scholar 

  116. Koya, E. et al. Targeted disruption of cocaine-activated nucleus accumbens neurons prevents context-specific sensitization. Nat. Neurosci. 12, 1069–1073 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Bossert, J. M. et al. Ventral medial prefrontal cortex neuronal ensembles mediate context-induced relapse to heroin. Nat. Neurosci. 14, 420–422 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Marr, D. Simple memory: a theory for archicortex. Phil. Trans. R. Soc. Lond. B 262, 23–81 (1971).

    Article  CAS  Google Scholar 

  119. Alvarez, P. & Squire, L. R. Memory consolidation and the medial temporal lobe: a simple network model. Proc. Natl Acad. Sci. USA 91, 7041–7045 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Treves, A. & Rolls, E. T. Computational analysis of the role of the hippocampus in memory. Hippocampus 4, 374–391 (1994).

    Article  CAS  PubMed  Google Scholar 

  121. van den Heuvel, M. P. & Sporns, O. Network hubs in the human brain. Trends Cogn. Sci. 17, 683–696 (2013).

    Article  PubMed  Google Scholar 

  122. Wheeler, A. L. et al. Identification of a functional connectome for long-term fear memory in mice. PLoS Comput. Biol. 9, e1002853 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Penfield, W. & Perot, P. The brain's record of auditory and visual experience. A final summary discussion. Brain 86, 595–696 (1963).

    Article  CAS  PubMed  Google Scholar 

  124. Hamani, C. et al. Memory enhancement induced by hypothalamic/fornix deep brain stimulation. Ann. Neurol. 63, 119–123 (2008).

    Article  PubMed  Google Scholar 

  125. Hamani, C. et al. Deep brain stimulation of the anterior nucleus of the thalamus: effects of electrical stimulation on pilocarpine-induced seizures and status epilepticus. Epilepsy Res. 78, 117–123 (2008).

    Article  PubMed  Google Scholar 

  126. Wang, J. X. et al. Targeted enhancement of cortical–hippocampal brain networks and associative memory. Science 345, 1054–1057 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Redondo, R. L. et al. Bidirectional switch of the valence associated with a hippocampal contextual memory engram. Nature 513, 426–430 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Ramirez, S. et al. Activating positive memory engrams suppresses depression-like behaviour. Nature 522, 335–339 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Garner, A. R. et al. Generation of a synthetic memory trace. Science 335, 1513–1516 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Cowansage, K. K. et al. Direct reactivation of a coherent neocortical memory of context. Neuron 84, 432–441 (2014). This study shows that stimulation of engram-associated neurons in a single cortical region (of a distributed engram) is sufficient for retrieval of the corresponding fear memory.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Penfield, W. Engrams in the human brain. Mechanisms of memory. Proc. R. Soc. Med. 61, 831–840 (1968).

    PubMed  PubMed Central  CAS  Google Scholar 

  132. Tulving, E. & Thomson, D. Encoding specificity and retrieval processes in episodic memory. Psychol. Rev. 80, 352–373 (1973).

    Article  Google Scholar 

  133. Richards, B. A. & Frankland, P. W. The conjunctive trace. Hippocampus 23, 207–212 (2013).

    Article  PubMed  Google Scholar 

  134. Bartlett, F. C. Remembering: A Study in Experimental and Social Psychology (Cambridge Univ. Press, 1932).

    Google Scholar 

  135. Schacter, D. L. Constructive memory: past and future. Dialogues Clin. Neurosci. 14, 7–18 (2012).

    PubMed  PubMed Central  Google Scholar 

  136. Ramirez, S. et al. Creating a false memory in the hippocampus. Science 341, 387–391 (2013). In this study, a 'false' memory was generated by pairing artificial activation of engram neurons coding for a safe (non-shocked) context with a footshock.

    Article  CAS  PubMed  Google Scholar 

  137. Ohkawa, N. et al. Artificial association of pre-stored information to generate a qualitatively new memory. Cell Rep. 11, 261–269 (2015).

    Article  CAS  PubMed  Google Scholar 

  138. Nader, K., Schafe, G. E. & LeDoux, J. E. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 406, 722–726 (2000).

    Article  CAS  PubMed  Google Scholar 

  139. Kim, J., Kwon, J. T., Kim, H. S., Josselyn, S. A. & Han, J. H. Memory recall and modifications by activating neurons with elevated CREB. Nat. Neurosci. 17, 65–72 (2014). This study established that artificially expressed fear memories also undergo protein synthesis-dependent reconsolidation and, therefore, share properties with natural fear memories.

    Article  CAS  PubMed  Google Scholar 

  140. Allen, T. A., Morris, A. M., Mattfeld, A. T., Stark, C. E. & Fortin, N. J. A sequence of events model of episodic memory shows parallels in rats and humans. Hippocampus 24, 1178–1188 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Eichenbaum, H. & Fortin, N. J. Bridging the gap between brain and behavior: cognitive and neural mechanisms of episodic memory. J. Exp. Anal. Behav. 84, 619–629 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Tulving, E. Episodic memory: from mind to brain. Annu. Rev. Psychol. 53, 1–25 (2002).

    Article  PubMed  Google Scholar 

  143. Lashley, K. S. Integrative functions of the cerebral cortex. Physiol. Rev. 13, 1–42 (1933).

    Article  Google Scholar 

  144. Lashley, K. S. Studies of cerebral funciton in learning. XI. The beahvior of the rat in latch-box situations. Comparative Psychol. Monographs 11, 5–42 (1935).

    Google Scholar 

  145. Lewis, D. J. Psychobiology of active and inactive memory. Psychol. Bull. 86, 1054–1083 (1979).

    Article  CAS  PubMed  Google Scholar 

  146. Tronel, S., Milekic, M. H. & Alberini, C. M. Linking new information to a reactivated memory requires consolidation and not reconsolidation mechanisms. PLoS Biol. 3, e293 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Debiec, J., Doyere, V., Nader, K. & LeDoux, J. E. Directly reactivated, but not indirectly reactivated, memories undergo reconsolidation in the amygdala. Proc. Natl Acad. Sci. USA 103, 3428–3433 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. O'Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Clarendon Press, 1978).

    Google Scholar 

  149. Olds, J., Disterhoft, J. F., Segal, M., Kornblith, C. L. & Hirsh, R. Learning centers of rat brain mapped by measuring latencies of conditioned unit responses. J. Neurophysiol. 35, 202–219 (1972).

    Article  CAS  PubMed  Google Scholar 

  150. Weinberger, N. M. & Bakin, J. S. Research on auditory cortex plasticity. Science 280, 1174 (1998).

    Article  CAS  PubMed  Google Scholar 

  151. Pascoe, J. P. & Kapp, B. S. Electrophysiological characteristics of amygdaloid central nucleus neurons during Pavlovian fear conditioning in the rabbit. Behav. Brain Res. 16, 117–133 (1985).

    Article  CAS  PubMed  Google Scholar 

  152. McCormick, D. A., Clark, G. A., Lavond, D. G. & Thompson, R. F. Initial localization of the memory trace for a basic form of learning. Proc. Natl Acad. Sci. USA 79, 2731–2735 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. LeDoux, J. E., Cicchetti, P., Xagoraris, A. & Romanski, L. M. The lateral amygdaloid nucleus: sensory interface of the amygdala in fear conditioning. J. Neurosci. 10, 1062–1069 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Campeau, S. & Davis, M. Involvement of subcortical and cortical afferents to the lateral nucleus of the amygdala in fear conditioning measured with fear-potentiated startle in rats trained concurrently with auditory and visual conditioned stimuli. J. Neurosci. 15, 2312–2327 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Mishkin, M. Memory in monkeys severely impaired by combined but not by separate removal of amygdala and hippocampus. Nature 273, 297–298 (1978).

    Article  CAS  PubMed  Google Scholar 

  156. Brown, M. W. & Xiang, J. Z. Recognition memory: neuronal substrates of the judgement of prior occurrence. Prog. Neurobiol. 55, 149–189 (1998).

    Article  CAS  PubMed  Google Scholar 

  157. Fuster, J. M. & Alexander, G. E. Neuron activity related to short-term memory. Science 173, 652–654 (1971).

    Article  CAS  PubMed  Google Scholar 

  158. Miyashita, Y., Kameyama, M., Hasegawa, I. & Fukushima, T. Consolidation of visual associative long-term memory in the temporal cortex of primates. Neurobiol. Learn. Mem. 70, 197–211 (1998).

    Article  CAS  PubMed  Google Scholar 

  159. Sakai, K. & Miyashita, Y. Neural organization for the long-term memory of paired associates. Nature 354, 152–155 (1991).

    Article  CAS  PubMed  Google Scholar 

  160. Rey, H. G. et al. Single-cell recordings in the human medial temporal lobe. J. Anat. http://dx.doi.org/10.1111/joa.12228 (2014).

  161. Squire, L. R. Memory and Brain (Oxford Univ. Press, 1987).

    Google Scholar 

  162. Moscovitch, M. et al. Functional neuroanatomy of remote episodic, semantic and spatial memory: a unified account based on multiple trace theory. J. Anat. 207, 35–66 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Rissman, J. & Wagner, A. D. Distributed representations in memory: insights from functional brain imaging. Annu. Rev. Psychol. 63, 101–128 (2012).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by Canadian Institutes of Health Research grants to P.W.F. (MOP-86762), S.A.J. (MOP-74650) and S.K. (MOP-93644). The authors thank A. Santoro for artwork, and N. Insel for comments on earlier drafts of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheena A. Josselyn, Stefan Köhler or Paul W. Frankland.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Neuronal ensembles

Collections of neurons that show coordinated firing activity, equivalent to the cell assembly defined by Hebb.

Consolidation

The transformation of engrams from an initially labile state (in which they are vulnerable to disruption) to a more permanent state (in which they are resistant to disruption).

Replay

Recapitulation of experience-induced patterns of neuronal activity that occur during sleep or awake rest periods following an experience.

Sharp wave–ripple

High-frequency neural oscillations that occur in the hippocampus during periods of slow-wave sleep and behavioural immobility.

Functional connectivity

Task-specific coordination of activity between different elements (for example, neuronal ensembles) within neural systems.

Cued fear conditioning

A form of Pavlovian conditioning in which an initially neutral conditioned stimulus is paired with an aversive unconditioned stimulus. Subsequent presentation of the conditioned stimulus alone induces a conditioned fear response.

Contextual fear conditioning

A one-trial learning paradigm that is hippocampus and amygdala dependent, in which animals are placed in a specific context and administered one or a series of footshocks.

Cyclic AMP-responsive element-binding protein

(CREB). A transcription factor that, when activated, results in the expression of downstream proteins thought to be important for long-term memory.

Designer receptors exclusively activated by designer drugs

(DREADDs). Engineered G protein-coupled receptors that are no longer activated by the endogenous ligand but are instead activated by otherwise inert drug-like small molecules, used to control G protein signalling in vivo.

Opsins

Light-sensitive proteins that change their conformation from a resting state to a signalling state upon light absorption, used to excite or inhibit neuronal populations using light (that is, optogenetics).

Graph theory

Graph theory is a branch of mathematics used to compare both global (for example, 'small worldness') and local ('hubs') properties of networks.

Pattern completion

The ability of a network to retrieve stored information on the basis of partial or degraded input patterns.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Josselyn, S., Köhler, S. & Frankland, P. Finding the engram. Nat Rev Neurosci 16, 521–534 (2015). https://doi.org/10.1038/nrn4000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn4000

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing