Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Is the din really harmless? Long-term effects of non-traumatic noise on the adult auditory system

Abstract

People are increasingly being exposed to environmental noise from traffic, media and other sources that falls within and outside legal limits. Although such environmental noise is known to cause stress in the auditory system, it is still generally considered to be harmless. This complacency may be misplaced: even in the absence of cochlear damage, new findings suggest that environmental noise may progressively degrade hearing through alterations in the way sound is represented in the adult auditory cortex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Typical range of common noise exposure durations and levels for a day.
Figure 2: Multilevel consequences of noise exposure and ageing.
Figure 3: Cortical response depression, tonotopic map disruption and reorganization after passive long-lasting exposure to moderate-level sounds.
Figure 4: Comparison of cortical reorganizations by environmental, traumatic and combined exposures in the cat.
Figure 5: Overview of effects of short-term and long-term exposure to non-traumatic environmental noise.

Similar content being viewed by others

References

  1. Clark, W. W. Hearing: the effects of noise. Otolaryngol. Head Neck Surg. 106, 669–676 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. American Academy of Audiology. Preventing noise-induced occupational hearing loss (position statement) [online], (AAA, 2003).

  3. Liberman, M. C. & Kiang, N. Y. Acoustic trauma in cats. Cochlear pathology and auditory-nerve activity. Acta Otolaryngol. Suppl. 358, 1–63 (1978).

    CAS  PubMed  Google Scholar 

  4. Wang, Y., Hirose, K. & Liberman, M. C. Dynamics of noise-induced cellular injury and repair in the mouse cochlea. J. Assoc. Res. Otolaryngol. 3, 248–268 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Syka, J. Plastic changes in the central auditory system after hearing loss, restoration of function, and during learning. Physiol. Rev. 82, 601–636 (2002).

    Article  PubMed  Google Scholar 

  6. Goldstein, M. H. & Kiang, N. Y.-S. Synchrony of neural activity in electric responses evoked by transient acoustic stimuli. J. Acoust. Soc. Am. 30, 107–114 (1958).

    Article  Google Scholar 

  7. Scholl, B. & Wehr, M. Disruption of balanced cortical excitation and inhibition by acoustic trauma. J. Neurophysiol. 100, 646–656 (2008).

    Article  PubMed  Google Scholar 

  8. Browne, C. J., Morley, J. W. & Parsons, C. H. Tracking the expression of excitatory and inhibitory neurotransmission-related proteins and neuroplasticity markers after noise induced hearing loss. PLoS ONE 7, e33272 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Godfrey, D. A. et al. Amino acid concentrations in the hamster central auditory system and long-term effects of intense tone exposure. J. Neurosci. Res. 90, 2214–2224 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brozoski, T., Odintsov, B. & Bauer, C. γ-aminobutyric acid and glutamic acid levels in the auditory pathway of rats with chronic tinnitus: a direct determination using high resolution point-resolved proton magnetic resonance spectroscopy (H-MRS). Front. Syst. Neurosci. 6, 9 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Qiu, C., Salvi, R., Ding, D. & Burkard, R. Inner hair cell loss leads to enhanced response amplitudes in auditory cortex of unanesthetized chinchillas: evidence for increased system gain. Hear. Res. 139, 153–171 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Salvi, R. J., Wang, J. & Ding, D. Auditory plasticity and hyperactivity following cochlear damage. Hear Res. 147, 261–274 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, J., Ding, D. & Salvi, R. J. Functional reorganization in chinchilla inferior colliculus associated with chronic and acute cochlear damage. Hear. Res. 168, 238–249 (2002).

    Article  PubMed  Google Scholar 

  14. Caspary, D. M., Ling, L., Turner, J. G. & Hughes, L. F. Inhibitory neurotransmission, plasticity and aging in the mammalian central auditory system. J. Exp. Biol. 211, 1781–1791 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pujol, R. & Puel, J. L. Excitotoxicity, synaptic repair, and functional recovery in the mammalian cochlea: a review of recent findings. Ann. NY Acad. Sci. 884, 249–254 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Spoendlin, H. Primary structural changes in the organ of Corti after acoustic overstimulation. Acta Otolaryngol. 71, 166–176 (1971).

    Article  CAS  PubMed  Google Scholar 

  17. Robertson, D. Functional significance of dendritic swelling after loud sounds in the guinea pig cochlea. Hear. Res. 9, 263–278 (1983).

    Article  CAS  PubMed  Google Scholar 

  18. Matthews, G. & Fuchs, P. The diverse roles of ribbon synapses in sensory neurotransmission. Nature Rev. Neurosci. 11, 812–822 (2010).

    Article  CAS  Google Scholar 

  19. Papakonstantinou, A., Strelcyk, O. & Dau, T. Relations between perceptual measures of temporal processing, auditory-evoked brainstem responses and speech intelligibility in noise. Hear. Res. 280, 30–37 (2011).

    Article  PubMed  Google Scholar 

  20. Dubno, J. R., Horwitz, A. R. & Ahlstrom, J. B. Word recognition in noise at higher-than-normal levels: decreases in scores and increases in masking. J. Acoust. Soc. Am. 118, 914–922 (2005).

    Article  PubMed  Google Scholar 

  21. Léger, A. C., Moore, B. C. J. & Lorenzi, C. Abnormal speech processing in frequency regions where absolute thresholds are normal for listeners with high-frequency hearing loss. Hear. Res. 294, 95–103 (2012).

    Article  PubMed  Google Scholar 

  22. Kujawa, S. G. & Liberman, M. C. Adding insult to injury: cochlear nerve degeneration after 'temporary' noise-induced hearing loss. J. Neurosci. 29, 14077–14085 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kujawa, S. G. & Liberman, M. C. Acceleration of age-related hearing loss by early noise exposure: evidence of a misspent youth. J. Neurosci. 26, 2115–2123 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Occupational Safety & Health Administration. Occupational noise exposure [online], (OSHA, 1974).

  25. The National Institute for Occupational Safety and Health. Criteria for a recommended standard: occupational noise exposure [online], (NIOSH, 1974).

  26. Eggermont, J. J. Hearing loss, hyperacusis, or tinnitus: what is modeled in animal research? Hear. Res. 295, 140–149 (2013).

    Article  PubMed  Google Scholar 

  27. Wang, Y. & Ren, C. Effects of repeated 'benign' noise exposures in young, CBA mice: shedding light on age-related hearing loss. J. Assoc. Res. Otolaryngol. 13, 505–515 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Babisch, W. & Ising, H. [The effect of music in discothèques on hearing ability.] Soz. Präventivmed. 34, 239–242 (in German) (1989).

    Article  CAS  PubMed  Google Scholar 

  29. International Organization for Standardization. Acoustics: determination of occupational noise exposure and estimation of noise-induced hearing impairment (ISO, 1990).

  30. Ising, H. [Potential hearing loss caused by loud music. Current status of knowledge and need for management.] HNO 42, 465–466 (in German) (1994).

    CAS  PubMed  Google Scholar 

  31. Becher, S., Struwe, F., Schwenzer, C. & Weber, K. [Risk of hearing loss caused by high volume music—presenting an educational concept for preventing hearing loss in adolescents.] Gesundheitswesen 58, 91–95 (in German) (1996).

    CAS  PubMed  Google Scholar 

  32. Passchier-Vermeer, W. & Passchier, W. F. Noise exposure and public health. Environ. Health Perspect. 108 (Suppl. 1), 123–131 (2000).

    PubMed  PubMed Central  Google Scholar 

  33. Schink, T., Kreutz, G., Busch, V., Pigeot, I. & Ahrens, W. Incidence and relative risk of hearing disorders in professional musicians. Occup. Environ. Med. 71, 472–476 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  34. O'Brien, I., Wilson, W. & Bradley, A. Nature of orchestral noise. J. Acoust. Soc. Am. 124, 926–939 (2008).

    Article  PubMed  Google Scholar 

  35. Jansen, E. J. M., Helleman, H. W., Dreschler, W. A. & de Laat, J. A. P. M. Noise induced hearing loss and other hearing complaints among musicians of symphony orchestras. Int. Arch. Occup. Environ. Health 82, 153–164 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Ruggles, D., Bharadwaj, H. & Shinn-Cunningham, B. G. Normal hearing is not enough to guarantee robust encoding of suprathreshold features important in everyday communication. Proc. Natl Acad. Sci. USA 108, 15516–15521 (2011).

    Article  PubMed  Google Scholar 

  37. Kryter, K. D. The Handbook of Hearing and the Effects of Noise: Physiology, Psychology, and Public Health (Emerald Group, 1994).

    Google Scholar 

  38. Ising, H., Babisch, W. & Kruppa, B. Noise-induced endocrine effects and cardiovascular risk. Noise Health 1, 37–48 (1999).

    PubMed  Google Scholar 

  39. Kight, C. R. & Swaddle, J. P. How and why environmental noise impacts animals: an integrative, mechanistic review. Ecol. Lett. 14, 1052–1061 (2011).

    Article  PubMed  Google Scholar 

  40. World Health Organization. Guidelines for community noise[online], (WHO, 1999).

  41. Maschke, C. Stress hormone changes persons exposed simulated night noise. Noise Health 5, 35–45 (2003).

    CAS  PubMed  Google Scholar 

  42. Ward, W. D., Cushing, E. M. & Burns, E. M. Effective quiet and moderate TTS: Implications for noise exposure standards. J. Acoust. Soc. Am. 59, 160–165 (1976).

    Article  CAS  PubMed  Google Scholar 

  43. World Health Organization. Environmental health criteria 12: noise[online], (WHO, 1980).

  44. Scientific Committee on Emerging and Newly Identified Health Risks. Potential health risks of exposure to noise from personal music players and mobile phones including a music playing function. European Commission [online], (European Commission, 1998).

  45. Canlon, B. & Fransson, A. Morphological and functional preservation of the outer hair cells from noise trauma by sound conditioning. Hear. Res. 84, 112–124 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Noreña, A. J., Gourévitch, B., Aizawa, N. & Eggermont, J. J. Spectrally enhanced acoustic environment disrupts frequency representation in cat auditory cortex. Nature Neurosci. 9, 932–939 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Chang, E. F. & Merzenich, M. M. Environmental noise retards auditory cortical development. Science 300, 498–502 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. De Villers-Sidani, E., Chang, E. F., Bao, S. & Merzenich, M. M. Critical period window for spectral tuning defined in the primary auditory cortex (A1) in the rat. J. Neurosci. 27, 180–189 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Villers-Sidani, E. de, Simpson, K. L., Lu, Y.-F., Lin, R. C. S. & Merzenich, M. M. Manipulating critical period closure across different sectors of the primary auditory cortex. Nature Neurosci. 11, 957–965 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Sanes, D. H. & Woolley, S. M. N. A behavioral framework to guide research on central auditory development and plasticity. Neuron 72, 912–929 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pienkowski, M., Munguia, R. & Eggermont, J. J. Passive exposure of adult cats to bandlimited tone pip ensembles or noise leads to long-term response suppression in auditory cortex. Hear. Res. 277, 117–126 (2011).

    Article  PubMed  Google Scholar 

  52. Pienkowski, M. & Eggermont, J. J. Passive exposure of adult cats to moderate-level tone pip ensembles differentially decreases AI and AII responsiveness in the exposure frequency range. Hear. Res. 268, 151–162 (2010).

    Article  PubMed  Google Scholar 

  53. Pienkowski, M. & Eggermont, J. J. Intermittent exposure with moderate-level sound impairs central auditory function of mature animals without concomitant hearing loss. Hear. Res. 261, 30–35 (2010).

    Article  PubMed  Google Scholar 

  54. Pienkowski, M. & Eggermont, J. J. Long-term, partially-reversible reorganization of frequency tuning in mature cat primary auditory cortex can be induced by passive exposure to moderate-level sounds. Hear. Res. 257, 24–40 (2009).

    Article  PubMed  Google Scholar 

  55. Engineer, N. D. et al. Environmental enrichment improves response strength, threshold, selectivity, and latency of auditory cortex neurons. J. Neurophysiol. 92, 73–82 (2004).

    Article  PubMed  Google Scholar 

  56. Huang, S. et al. Pull-push neuromodulation of LTP and LTD enables bidirectional experience-induced synaptic scaling in visual cortex. Neuron 73, 497–510 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Seol, G. H. et al. Neuromodulators control the polarity of spike-timing-dependent synaptic plasticity. Neuron 55, 919–929 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pawlak, V., Wickens, J. R., Kirkwood, A. & Kerr, J. N. D. Timing is not everything: neuromodulation opens the STDP gate. Front. Synaptic Neurosci. 2, 146 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Sheynikhovich, D., Otani, S. & Arleo, A. Dopaminergic control of long-term depression/long-term potentiation threshold in prefrontal cortex. J. Neurosci. 33, 13914–13926 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhou, X. & Merzenich, M. M. Environmental noise exposure degrades normal listening processes. Nature Commun. 3, 843 (2012).

    Article  CAS  Google Scholar 

  61. Zheng, W. Auditory map reorganization and pitch discrimination in adult rats chronically exposed to low-level ambient noise. Front. Syst. Neurosci. 6, 65 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Dean, I., Harper, N. S. & McAlpine, D. Neural population coding of sound level adapts to stimulus statistics. Nature Neurosci. 8, 1684–1689 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Robinson, B. L. & McAlpine, D. Gain control mechanisms in the auditory pathway. Curr. Opin. Neurobiol. 19, 402–407 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Dean, I., Robinson, B. L., Harper, N. S. & McAlpine, D. Rapid neural adaptation to sound level statistics. J. Neurosci. 28, 6430–6438 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rothman, J. S., Cathala, L., Steuber, V. & Silver, R. A. Synaptic depression enables neuronal gain control. Nature 457, 1015–1018 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Burrone, J. & Murthy, V. N. Synaptic gain control and homeostasis. Curr. Opin. Neurobiol. 13, 560–567 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Pratt, K. G. & Aizenman, C. D. Homeostatic regulation of intrinsic excitability and synaptic transmission in a developing visual circuit. J. Neurosci. 27, 8268–8277 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Turrigiano, G. G. Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Trends Neurosci. 22, 221–227 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Turrigiano, G. G. & Nelson, S. B. Homeostatic plasticity in the developing nervous system. Nature Rev. Neurosci. 5, 97–107 (2004).

    Article  CAS  Google Scholar 

  70. Turrigiano, G. Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. Annu. Rev. Neurosci. 34, 89–103 (2011).

    Article  CAS  Google Scholar 

  71. Marder, E. & Goaillard, J.-M. Variability, compensation and homeostasis in neuron and network function. Nature Rev. Neurosci. 7, 563–574 (2006).

    Article  CAS  Google Scholar 

  72. Franklin, J. L., Fickbohm, D. J. & Willard, A. L. Long-term regulation of neuronal calcium currents by prolonged changes of membrane potential. J. Neurosci. 12, 1726–1735 (1992).

    Article  CAS  PubMed  Google Scholar 

  73. Ransdell, J. L., Nair, S. S. & Schulz, D. J. Rapid homeostatic plasticity of intrinsic excitability in a central pattern generator network stabilizes functional neural network output. J. Neurosci. 32, 9649–9658 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhang, W. & Linden, D. J. The other side of the engram: experience-driven changes in neuronal intrinsic excitability. Nature Rev. Neurosci. 4, 885–900 (2003).

    Article  CAS  Google Scholar 

  75. Pozo, K. & Goda, Y. Unraveling mechanisms of homeostatic synaptic plasticity. Neuron 66, 337–351 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tyagarajan, S. K. & Fritschy, J.-M. GABAA receptors, gephyrin and homeostatic synaptic plasticity. J. Physiol. 588, 101–106 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Wang, H., Brozoski, T. J. & Caspary, D. M. Inhibitory neurotransmission in animal models of tinnitus: maladaptive plasticity. Hear. Res. 279, 111–117 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Pienkowski, M., Munguia, R. & Eggermont, J. J. Effects of passive, moderate-level sound exposure on the mature auditory cortex: spectral edges, spectrotemporal density, and real-world noise. Hear. Res. 296, 121–130 (2013).

    Article  PubMed  Google Scholar 

  79. Pienkowski, M. & Eggermont, J. J. Reversible long-term changes in auditory processing in mature auditory cortex in the absence of hearing loss induced by passive, moderate-level sound exposure. Ear Hear. 33, 305–314 (2012).

    Article  PubMed  Google Scholar 

  80. Norena, A. J. & Eggermont, J. J. Neural correlates of an auditory afterimage in primary auditory cortex. J. Assoc. Res. Otolaryngol. 4, 312–328 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kvale, M. N. & Schreiner, C. E. Short-term adaptation of auditory receptive fields to dynamic stimuli. J. Neurophysiol. 91, 604–612 (2004).

    Article  PubMed  Google Scholar 

  82. Gourévitch, B. & Eggermont, J. J. Spectro-temporal sound density-dependent long-term adaptation in cat primary auditory cortex. Eur. J. Neurosci. 27, 3310–3321 (2008).

    Article  PubMed  Google Scholar 

  83. Turner, J. G. et al. Acoustic experience alters the aged auditory system. Ear Hear. 34, 151–159 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Kotak, V. C. et al. Hearing loss raises excitability in the auditory cortex. J. Neurosci. 25, 3908–3918 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Norena, A. J. & Eggermont, J. J. Enriched acoustic environment after noise trauma abolishes neural signs of tinnitus. Neuroreport 17, 559–563 (2006).

    Article  PubMed  Google Scholar 

  86. Mulders, W. H. A. M. & Robertson, D. Development of hyperactivity after acoustic trauma in the guinea pig inferior colliculus. Hear. Res. 298, 104–108 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Noreña, A. J. & Eggermont, J. J. Enriched acoustic environment after noise trauma reduces hearing loss and prevents cortical map reorganization. J. Neurosci. 25, 699–705 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cody, A. R. & Robertson, D. Variability of noise-induced damage in the guinea pig cochlea: electrophysiological and morphological correlates after strictly controlled exposures. Hear Res. 9, 55–70 (1983).

    Article  CAS  PubMed  Google Scholar 

  89. Maison, S. F. & Liberman, M. C. Predicting vulnerability to acoustic injury with a noninvasive assay of olivocochlear reflex strength. J. Neurosci. 20, 4701–4707 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Maison, S. F., Usubuchi, H. & Liberman, M. C. Efferent feedback minimizes cochlear neuropathy from moderate noise exposure. J. Neurosci. 33, 5542–5552 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang, Y. & Liberman, M. C. Restraint stress and protection from acoustic injury in mice. Hear. Res. 165, 96–102 (2002).

    Article  PubMed  Google Scholar 

  92. Yoshida, N., Kristiansen, A. & Liberman, M. C. Heat stress and protection from permanent acoustic injury in mice. J. Neurosci. 19, 10116–10124 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Tahera, Y., Meltser, I., Johansson, P., Salman, H. & Canlon, B. Sound conditioning protects hearing by activating the hypothalamic-pituitary-adrenal axis. Neurobiol. Dis. 25, 189–197 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Öhström, E. & Björkman, M. Effects of noise-disturbed sleep—a laboratory study on habituation and subjective noise sensitivity. J. Sound Vib. 122, 277–290 (1988).

    Article  Google Scholar 

  95. Evans, G. W., Bullinger, M. & Hygge, S. Chronic noise exposure and physiological response: a prospective study of children living under environmental stress. Psychol. Sci. 9, 75–77 (1998).

    Article  Google Scholar 

  96. Waye, K. P. et al. Low frequency noise enhances cortisol among noise sensitive subjects during work performance. Life Sci. 70, 745–758 (2002).

    Article  PubMed  Google Scholar 

  97. Melamed, S. & Bruhis, S. The effects of chronic industrial noise exposure on urinary cortisol, fatigue and irritability: a controlled field experiment. J. Occup. Environ. Med. 38, 252–256 (1996).

    Article  CAS  PubMed  Google Scholar 

  98. Gates, G. A. & Mills, J. H. Presbycusis. Lancet 366, 1111–1120 (2005).

    Article  PubMed  Google Scholar 

  99. Tarnowski, B. I., Schmiedt, R. A., Hellstrom, L. I., Lee, F. S. & Adams, J. C. Age-related changes in cochleas of mongolian gerbils. Hear Res. 54, 123–134 (1991).

    Article  CAS  PubMed  Google Scholar 

  100. Gratton, M. A., Bateman, K., Cannuscio, J. F. & Saunders, J. C. Outer- and middle-ear contributions to presbycusis in the Brown Norway rat. Audiol. Neurootol. 13, 37–52 (2008).

    Article  PubMed  Google Scholar 

  101. Willott, J. F. Aging and the Auditory System: Anatomy, Physiology, and Psychophysics (Singular, 1991).

    Google Scholar 

  102. Frisina, D. R. & Frisina, R. D. Speech recognition in noise and presbycusis: relations to possible neural mechanisms. Hear Res. 106, 95–104 (1997).

    Article  CAS  PubMed  Google Scholar 

  103. Rosen, S., Bergman, M., Plester, D., El-Mofty, A. & Satti, M. H. Presbycusis study of a relatively noise-free population in the Sudan. Ann. Otol. Rhinol. Laryngol. 71, 727–743 (1962).

    Article  CAS  PubMed  Google Scholar 

  104. Cohen, A., Anticaglia, J. & Jones, H. Sociocusis - hearing loss from non-occupational noise exposure. Sound Vibration 4, 12–20 (1970).

    Google Scholar 

  105. Turnock, M. T. Effects of age on hearing in rats. J. Acoust. Soc. Am. 58, S90 (1975).

    Article  Google Scholar 

  106. Borg, E. Auditory thresholds in rats of different age and strain. A behavioral and electrophysiological study. Hear. Res. 8, 101–115 (1982).

    Article  CAS  PubMed  Google Scholar 

  107. Langemann, U., Hamann, I. & Friebe, A. A behavioral test of presbycusis in the bird auditory system. Hear. Res. 137, 68–76 (1999).

    Article  CAS  PubMed  Google Scholar 

  108. Hamann, I. et al. Behavioral and evoked-potential thresholds in young and old Mongolian gerbils (Meriones unguiculatus). Hear Res. 171, 82–95 (2002).

    Article  PubMed  Google Scholar 

  109. Zeng, F. G. & Djalilian, H. in The Oxford Handbook of Auditory Science (eds Moore, D. R., Fuchs, P. A., Plack, C., Rees, A. & Palmer, A. R.) 325–348 (Oxford Univ. Press, 2010).

    Google Scholar 

  110. Rosenhall, U., Pedersen, K. & Svanborg, A. Presbycusis and noise-induced hearing loss. Ear Hear. 11, 257–263 (1990).

    Article  CAS  PubMed  Google Scholar 

  111. Parbery-Clark, A., Strait, D. L., Anderson, S., Hittner, E. & Kraus, N. Musical experience and the aging auditory system: implications for cognitive abilities and hearing speech in noise. PLoS ONE 6, e18082 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zendel, B. R. & Alain, C. Musicians experience less age-related decline in central auditory processing. Psychol. Aging 27, 410–417 (2012).

    Article  PubMed  Google Scholar 

  113. Bharadwaj, H. M., Verhulst, S., Shaheen, L., Liberman, M. C. & Shinn-Cunningham, B. G. Cochlear neuropathy and the coding of supra-threshold sound. Front. Syst. Neurosci. 8, 26 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Wehr, M. & Zador, A. M. Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature 426, 442–446 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Monier, C., Fournier, J. & Frégnac, Y. In vitro and in vivo measures of evoked excitatory and inhibitory conductance dynamics in sensory cortices. J. Neurosci. Methods 169, 323–365 (2008).

    Article  CAS  PubMed  Google Scholar 

  116. Le Roux, N., Amar, M., Baux, G. & Fossier, P. Homeostatic control of the excitation–inhibition balance in cortical layer 5 pyramidal neurons. Eur. J. Neurosci. 24, 3507–3518 (2006).

    Article  PubMed  Google Scholar 

  117. Ulanovsky, N., Las, L., Farkas, D. & Nelken, I. Multiple time scales of adaptation in auditory cortex neurons. J. Neurosci. 24, 10440–10453 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hansen, K. B., Yuan, H. & Traynelis, S. F. Structural aspects of AMPA receptor activation, desensitization and deactivation. Curr. Opin. Neurobiol. 17, 281–288 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Pin, J.-P. & Acher, F. The metabotropic glutamate receptors: structure, activation mechanism and pharmacology. Curr. Drug Targets CNS Neurol. Disord. 1, 297–317 (2002).

    Article  CAS  PubMed  Google Scholar 

  120. Wehr, M. & Zador, A. M. Synaptic mechanisms of forward suppression in rat auditory cortex. Neuron 47, 437–445 (2005).

    Article  CAS  PubMed  Google Scholar 

  121. Norena, A. J., Tomita, M. & Eggermont, J. J. Neural changes in cat auditory cortex after a transient pure-tone trauma. J. Neurophysiol. 90, 2387–2401 (2003).

    Article  PubMed  Google Scholar 

  122. Tatavarty, V., Sun, Q. & Turrigiano, G. G. How to scale down postsynaptic strength. J. Neurosci. 33, 13179–13189 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Cudmore, R. H., Fronzaroli-Molinieres, L., Giraud, P. & Debanne, D. Spike-time precision and network synchrony are controlled by the homeostatic regulation of the D-type potassium current. J. Neurosci. 30, 12885–12895 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Eldred, K. M., Gannon, W. F. & von Gierke, H. A laboratory method for the study of acoustic trauma. Laryngoscope 58, 465–477 (1957).

    Google Scholar 

  125. Eggermont, J. Noise and the Brain: Experience Dependent Developmental and Adult Plasticity (Academic, 2013).

    Google Scholar 

  126. Norena, A. J. & Chery-Croze, S. Enriched acoustic environment rescales auditory sensitivity. Neuroreport 18, 1251–1255 (2007).

    Article  PubMed  Google Scholar 

  127. Vanneste, S. et al. Does enriched acoustic environment in humans abolish chronic tinnitus clinically and electrophysiologically? A double blind placebo controlled study. Hear. Res. 296, 141–148 (2013).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank N. Mellen for his careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Gourévitch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (box)

Environmental, occupational and recreational sound characteristics (PDF 279 kb)

Supplementary information S2 (figure)

Time course of functional changes following passive exposure to moderate random sounds (PDF 198 kb)

PowerPoint slides

Glossary

Central auditory system

The part of the CNS that processes auditory stimuli from the cochlear nucleus to the auditory cortex.

dB(A)

An alternative to dB sound pressure level (SPL) so that 0 dB(A) is the minimal audible sound intensity at each frequency in people with normal hearing. dB(A) and dB SPL are very close (+−5 dB) between 0.5 and 6 kHz.

dB sound pressure level

(dB SPL). A physical measure of sound pressure for a given frequency, relative to a reference sound pressure of 20 microPascals in air (0dB SPL). Loudness is the perceptual correlate of this physical measure. dB SPL is mostly used in industry and non-human-related measures.

Equivalent sound level

(Leq). A measure of the total sound energy averaged over the duration of the observation period. Formally, this is 20log10 of the ratio of a root-mean-square (RMS) dB(A)-weighted sound pressure during the stated time interval to the reference sound pressure, divided by the exposure duration. This gives a single value of sound level for any desired duration based on the amount of sound energy contained in the time-varying sound. Note that the use of Leq is often discouraged for very long durations (from months to years).

Hearing thresholds

For a given frequency, the lowest intensities at which a pure tone may be heard.

Homeostasis

Originally a concept defined by C. Bernard (1865) and developed by W. B. Cannon (1932), homeostasis for a biological system is its ability to maintain internal stability while adjusting to changing environmental conditions by self-regulation processes. Examples of such processes for living organisms include body temperature and blood composition (glucose, iron and lipids).

Hyperacusis

An oversensitivity to certain frequency ranges.

Permanent threshold shift

(PTS). Noise-induced permanent loss of hearing sensitivity associated with irreversible cochlear hair cell damage.

Presbycusis

Progressive age-related sensorineural hearing loss that is bilateral and symmetrical. Higher frequencies are generally more affected even if genetically determined sensitivity differences need to be factored in.

Tinnitus

A perception of phantom sounds.

Tonotopy

The spatial arrangement of where sounds of different frequency are processed. This organization principle holds from the cochlea to the auditory cortex. Note that a non-tonotopic pathway parallel to the tonotopic one exists in the auditory pathways.

Temporary threshold shift

(TTS). Temporary hearing loss following noise exposure, which lasts a few minutes to a few days.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gourévitch, B., Edeline, JM., Occelli, F. et al. Is the din really harmless? Long-term effects of non-traumatic noise on the adult auditory system. Nat Rev Neurosci 15, 483–491 (2014). https://doi.org/10.1038/nrn3744

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3744

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing