Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Proteostasis in complex dendrites

Abstract

Like all cells, neurons are made of proteins that have characteristic synthesis and degradation profiles. Unlike other cells, however, neurons have a unique multipolar architecture that makes 10,000 synaptic contacts with other neurons. Both the stability and modifiability of the neuronal proteome are crucial for its information-processing, storage and plastic properties. The cell biological mechanisms that synthesize, modify, deliver and degrade dendritic and synaptic proteins are not well understood but appear to reflect unique solutions adapted to the particular morphology of neurons.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Size and compartmentalization of the neuronal membrane.
Figure 2: Outstanding questions regarding protein synthesis and exchange in complex dendrites.
Figure 3: Dendritic morphology and the regulation of cellular machinery.
Figure 4: Synaptic competition and resource allocation in dendrites.

Similar content being viewed by others

References

  1. Ishizuka, N., Cowan, W. M. & Amaral, D. G. A quantitative analysis of the dendritic organization of pyramidal cells in the rat hippocampus. J. Comp. Neurol. 362, 17–45 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Ascoli, G. A., Donohue, D. E. & Halavi, M. NeuroMorpho.Org: a central resource for neuronal morphologies. J. Neurosci. 27, 9247–9251 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Moran, U., Phillips, R. & Milo, R. SnapShot: key numbers in biology. Cell 141, 1262–1262.e1 (2010).

    Article  Google Scholar 

  4. Cajigas, I. J., Will, T. & Schuman, E. M. Protein homeostasis and synaptic plasticity. EMBO J. 29, 2746–2752 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Triller, A. & Choquet, D. Surface trafficking of receptors between synaptic and extrasynaptic membranes: and yet they do move! Trends Neurosci. 28, 133–139 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Nusser, Z. Differential subcellular distribution of ion channels and the diversity of neuronal function. Curr. Opin. Neurobiol. 22, 366–371 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Govindarajan, A., Israely, I., Huang, S. Y. & Tonegawa, S. The dendritic branch is the preferred integrative unit for protein synthesis-dependent LTP. Neuron 69, 132–146 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bassell, G. J. & Warren, S. T. Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function. Neuron 60, 201–214 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vo, N. K., Cambronne, X. A. & Goodman, R. H. MicroRNA pathways in neural development and plasticity. Curr. Opin. Neurobiol. 20, 457–465 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Lin, A. C. & Holt, C. E. Local translation and directional steering in axons. EMBO J. 26, 3729–3736 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Mabb, A. M. & Ehlers, M. D. Ubiquitination in postsynaptic function and plasticity. Annu. Rev. Cell Dev. Biol. 26, 179–210 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Golgi, C. Sulla Struttura Delle Fibre Nervose Midollate Periferiche e Centrali, Ricerche del C. Golgi, Lette al R. Istituto Lombardo Nell' Adunanza del Dicembre 18 Dicembre 1879 (Milano, 1880) (in Italian).

  13. Ramón y Cajal, S. Histologie du Système Nerveux de l'Homme & des Vertébrés (A. Maloine, 1909) (in French).

  14. Kuo, C. T., Zhu, S., Younger, S., Jan, L. Y. & Jan, Y. N. Identification of E2/E3 ubiquitinating enzymes and caspase activity regulating Drosophila sensory neuron dendrite pruning. Neuron 51, 283–290 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Kim, A. H. et al. A centrosomal Cdc20–APC pathway controls dendrite morphogenesis in postmitotic neurons. Cell 136, 322–336 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Huang, Z., Zang, K. & Reichardt, L. F. The origin recognition core complex regulates dendrite and spine development in postmitotic neurons. J. Cell Biol. 170, 527–535 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Baas, P. W., Deitch, J. S., Black, M. M. & Banker, G. A. Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite. Proc. Natl Acad. Sci. USA 85, 8335–8339 (1988).

    Article  CAS  PubMed  Google Scholar 

  18. Stiess, M. et al. Axon extension occurs independently of centrosomal microtubule nucleation. Science 327, 704–707 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Lin, S., Liu, M., Mozgova, O. I., Yu, W. & Baas, P. W. Mitotic motors coregulate microtubule patterns in axons and dendrites. J. Neurosci. 32, 14033–14049 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Herculano-Houzel, S. Scaling of brain metabolism with a fixed energy budget per neuron: implications for neuronal activity, plasticity and evolution. PLoS ONE 6, e17514 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Ostroff, L. E., Fiala, J. C., Allwardt, B. & Harris, K. M. Polyribosomes redistribute from dendritic shafts into spines with enlarged synapses during LTP in developing rat hippocampal slices. Neuron 35, 535–545 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Bourne, J. N., Sorra, K. E., Hurlburt, J. & Harris, K. M. Polyribosomes are increased in spines of CA1 dendrites 2 h after the induction of LTP in mature rat hippocampal slices. Hippocampus 17, 1–4 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Griffiths, G. et al. The dynamic nature of the Golgi complex. J. Cell Biol. 108, 277–297 (1989).

    Article  CAS  PubMed  Google Scholar 

  24. Horton, A. C. & Ehlers, M. D. Dual modes of endoplasmic reticulum-to-Golgi transport in dendrites revealed by live-cell imaging. J. Neurosci. 23, 6188–6199 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Cui-Wang, T. et al. Local zones of endoplasmic reticulum complexity confine cargo in neuronal dendrites. Cell 148, 309–321 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Horton, A. C. et al. Polarized secretory trafficking directs cargo for asymmetric dendrite growth and morphogenesis. Neuron 48, 757–771 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Ye, B. et al. Growing dendrites and axons differ in their reliance on the secretory pathway. Cell 130, 717–729 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Sheng, M. & Hoogenraad, C. C. The postsynaptic architecture of excitatory synapses: a more quantitative view. Annu. Rev. Biochem. 76, 823–847 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Pielot, R. et al. SynProt: a database for proteins of detergent-resistant synaptic protein preparations. Front. Synaptic Neurosci. 4, 1 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Cheng, D. et al. Relative and absolute quantification of postsynaptic density proteome isolated from rat forebrain and cerebellum. Mol. Cell. Proteomics 5, 1158–1170 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Chen, X. et al. Mass of the postsynaptic density and enumeration of three key molecules. Proc. Natl Acad. Sci. USA 102, 11551–11556 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Grutzendler, J., Kasthuri, N. & Gan, W. B. Long-term dendritic spine stability in the adult cortex. Nature 420, 812–816 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Trachtenberg, J. T. et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420, 788–794 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Holcman, D. & Triller, A. Modeling synaptic dynamics driven by receptor lateral diffusion. Biophys. J. 91, 2405–2415 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Czondor, K. et al. Unified quantitative model of AMPA receptor trafficking at synapses. Proc. Natl Acad. Sci. USA 109, 3522–3527 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Poon, M. M., Choi, S. H., Jamieson, C. A., Geschwind, D. H. & Martin, K. C. Identification of process-localized mRNAs from cultured rodent hippocampal neurons. J. Neurosci. 26, 13390–13399 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhong, J., Zhang, T. & Bloch, L. M. Dendritic mRNAs encode diversified functionalities in hippocampal pyramidal neurons. BMC Neurosci. 7, 17 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Cajigas, I. J. et al. The local transcriptome in the synaptic neuropil revealed by deep sequencing and high-resolution imaging. Neuron 74, 453–466 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kamme, F. et al. Single-cell microarray analysis in hippocampus CA1: demonstration and validation of cellular heterogeneity. J. Neurosci. 23, 3607–3615 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fiala, J. C. & Harris, K. M. Dendrite Structure. Dendrites (Oxford Univ. Press, 1999).

    Google Scholar 

  42. Shepard, P. J. et al. Complex and dynamic landscape of RNA polyadenylation revealed by PAS-Seq. RNA 17, 761–772 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Derti, A. et al. A quantitative atlas of polyadenylation in five mammals. Genome Res. 22, 1173–1183 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kanehisa, M., Goto, S., Sato, Y., Furumichi, M. & Tanabe, M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40, D109–D114 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Hanus, C. & Ehlers, M. D. Secretory outposts for the local processing of membrane cargo in neuronal dendrites. Traffic 9, 1437–1445 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Palade, G. Intracellular aspects of the process of protein synthesis. Science 189, 867 (1975).

    Article  CAS  PubMed  Google Scholar 

  47. Sutton, M. A. et al. Miniature neurotransmission stabilizes synaptic function via tonic suppression of local dendritic protein synthesis. Cell 125, 785–799 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Mameli, M., Balland, B., Luján, R. & Lüscher, C. Rapid synthesis and synaptic insertion of GluR2 for mGluR-LTD in the ventral tegmental area. Science 317, 530–533 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Fortin, D. A. et al. Brain-derived neurotrophic factor activation of CaM-kinase kinase via transient receptor potential canonical channels induces the translation and synaptic incorporation of GluA1-containing calcium-permeable AMPA receptors. J. Neurosci. 32, 8127–8137 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jeyifous, O. et al. SAP97 and CASK mediate sorting of NMDA receptors through a previously unknown secretory pathway. Nature Neurosci. 12, 1011–1019 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Moremen, K. W., Tiemeyer, M. & Nairn, A. V. Vertebrate protein glycosylation: diversity, synthesis and function. Nature Rev. Mol. Cell Biol. 13, 448–462 (2012).

    Article  CAS  Google Scholar 

  52. Greger, I. H., Khatri, L. & Ziff, E. B. RNA editing at Arg607 controls AMPA receptor exit from the endoplasmic reticulum. Neuron 34, 759–772 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Collingridge, G. L., Isaac, J. T. & Wang, Y. T. Receptor trafficking and synaptic plasticity. Nature Rev. Neurosci. 5, 952–962 (2004).

    Article  CAS  Google Scholar 

  54. Newpher, T. M. & Ehlers, M. D. Glutamate receptor dynamics in dendritic microdomains. Neuron 58, 472–497 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Derr, N. D. et al. Tug-of-war in motor protein ensembles revealed with a programmable DNA origami scaffold. Science 338, 662–665 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Guillaud, L., Wong, R. & Hirokawa, N. Disruption of KIF17–Mint1 interaction by CaMKII-dependent phosphorylation: a molecular model of kinesin-cargo release. Nature Cell Biol. 10, 19–29 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Lisman, J., Yasuda, R. & Raghavachari, S. Mechanisms of CaMKII action in long-term potentiation. Nature Rev. Neurosci. 13, 169–182 (2012).

    Article  CAS  Google Scholar 

  58. Santamaria, F., Wils, S., De Schutter, E. & Augustine, G. J. Anomalous diffusion in Purkinje cell dendrites caused by spines. Neuron 52, 635–648 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bressloff, P. C. & Earnshaw, B. A. Diffusion-trapping model of receptor trafficking in dendrites. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75, 041915 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Petrini, E. M. et al. Endocytic trafficking and recycling maintain a pool of mobile surface AMPA receptors required for synaptic potentiation. Neuron 63, 92–105 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Adesnik, H., Nicoll, R. A. & England, P. M. Photoinactivation of native AMPA receptors reveals their real-time trafficking. Neuron 48, 977–985 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Tovar, K. R. & Westbrook, G. L. Mobile NMDA receptors at hippocampal synapses. Neuron 34, 255–264 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Thomas, P., Mortensen, M., Hosie, A. M. & Smart, T. G. Dynamic mobility of functional GABAA receptors at inhibitory synapses. Nature Neurosci. 8, 889–897 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Kasugai, Y. et al. Quantitative localisation of synaptic and extrasynaptic GABAA receptor subunits on hippocampal pyramidal cells by freeze-fracture replica immunolabelling. Eur. J. Neurosci. 32, 1868–1888 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Luthi, A. et al. Hippocampal LTD expression involves a pool of AMPARs regulated by the NSF–GluR2 interaction. Neuron 24, 389–399 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Hayashi, Y. et al. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287, 2262–2267 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Lu, W. et al. Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Neuron 29, 243–254 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Malinow, R. & Malenka, R. C. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25, 103–126 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Lai, H. C. & Jan, L. Y. The distribution and targeting of neuronal voltage-gated ion channels. Nature Rev. Neurosci. 7, 548–562 (2006).

    Article  CAS  Google Scholar 

  70. Harris, K. M. & Stevens, J. K. Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics. J. Neurosci. 9, 2982–2997 (1989).

    Article  CAS  PubMed  Google Scholar 

  71. Masugi-Tokita, M. & Shigemoto, R. High-resolution quantitative visualization of glutamate and GABA receptors at central synapses. Curr. Opin. Neurobiol. 17, 387–393 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Bourne, J. N. & Harris, K. M. Coordination of size and number of excitatory and inhibitory synapses results in a balanced structural plasticity along mature hippocampal CA1 dendrites during LTP. Hippocampus 21, 354–373 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gray, N. W., Weimer, R. M., Bureau, I. & Svoboda, K. Rapid redistribution of synaptic PSD-95 in the neocortex in vivo. PLoS Biol. 4, e370 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. El-Husseini, A. E., Schnell, E., Chetkovich, D. M., Nicoll, R. A. & Bredt, D. S. PSD-95 involvement in maturation of excitatory synapses. Science 290, 1364–1368 (2000).

    CAS  PubMed  Google Scholar 

  75. Keith, D. & El-Husseini, A. Excitation control: balancing PSD-95 function at the synapse. Front. Mol. Neurosci. 1, 4 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ehlers, M. D. Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nature Neurosci. 6, 231–242 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. El-Husseini Ael, D. et al. Synaptic strength regulated by palmitate cycling on PSD-95. Cell 108, 849–863 (2002).

    Article  Google Scholar 

  78. Waung, M. W., Pfeiffer, B. E., Nosyreva, E. D., Ronesi, J. A. & Huber, K. M. Rapid translation of Arc/Arg3.1 selectively mediates mGluR-dependent LTD through persistent increases in AMPAR endocytosis rate. Neuron 59, 84–97 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ehlers, M. D. Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting. Neuron 28, 511–525 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Lin, J. W. et al. Distinct molecular mechanisms and divergent endocytotic pathways of AMPA receptor internalization. Nature Neurosci. 3, 1282–1290 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Bingol, B. & Schuman, E. M. Activity-dependent dynamics and sequestration of proteasomes in dendritic spines. Nature 441, 1144–1148 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Patrick, G. N., Bingol, B., Weld, H. A. & Schuman, E. M. Ubiquitin-mediated proteasome activity is required for agonist-induced endocytosis of GluRs. Curr. Biol. 13, 2073–2081 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Price, J. C., Guan, S., Burlingame, A., Prusiner, S. B. & Ghaemmaghami, S. Analysis of proteome dynamics in the mouse brain. Proc. Natl Acad. Sci. USA 107, 14508–14513 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Cohen, L. D. et al. Metabolic turnover of synaptic proteins: kinetics, interdependencies and implications for synaptic maintenance. PLoS ONE 8, e63191 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Frey, U. & Morris, R. G. Synaptic tagging and long-term potentiation. Nature 385, 533–536 (1997).

    Article  CAS  PubMed  Google Scholar 

  86. Cleary, M. D., Meiering, C. D., Jan, E., Guymon, R. & Boothroyd, J. C. Biosynthetic labeling of RNA with uracil phosphoribosyltransferase allows cell-specific microarray analysis of mRNA synthesis and decay. Nature Biotech. 23, 232–237 (2005).

    Article  CAS  Google Scholar 

  87. Ngo, J. T. et al. Cell-selective metabolic labeling of proteins. Nature Chem. Biol. 5, 715–717 (2009).

    Article  CAS  Google Scholar 

  88. Ramón y Cajal, S. Les Nouvelles Idées sur la Structure du Système Nerveux Chez l'Homme et Chez les Vertébrés (C. Reinwald, 1894) (in French).

  89. Claiborne, B. J., Amaral, D. G. & Cowan, W. M. Quantitative, three-dimensional analysis of granule cell dendrites in the rat dentate gyrus. J. Comp. Neurol. 302, 206–219 (1990).

    Article  CAS  PubMed  Google Scholar 

  90. Andersen, P. The Hippocampus Book (Oxford Univ. Press, 2007).

    Google Scholar 

  91. Sharma, K., Fong, D. K. & Craig, A. M. Postsynaptic protein mobility in dendritic spines: long-term regulation by synaptic NMDA receptor activation. Mol. Cell. Neurosci. 31, 702–712 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Kerr, J. M. & Blanpied, T. A. Subsynaptic AMPA receptor distribution is acutely regulated by actin-driven reorganization of the postsynaptic density. J. Neurosci. 32, 658–673 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Ashby, M. C., Maier, S. R., Nishimune, A. & Henley, J. M. Lateral diffusion drives constitutive exchange of AMPA receptors at dendritic spines and is regulated by spine morphology. J. Neurosci. 26, 7046–7055 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Bats, C., Groc, L. & Choquet, D. The interaction between Stargazin and PSD-95 regulates AMPA receptor surface trafficking. Neuron 53, 719–734 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Serge, A., Fourgeaud, L., Hemar, A. & Choquet, D. Receptor activation and homer differentially control the lateral mobility of metabotropic glutamate receptor 5 in the neuronal membrane. J. Neurosci. 22, 3910–3920 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Jacob, T. C. et al. Gephyrin regulates the cell surface dynamics of synaptic GABAA receptors. J. Neurosci. 25, 10469–10478 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Renner, M., Schweizer, C., Bannai, H., Triller, A. & Levi, S. Diffusion barriers constrain receptors at synapses. PLoS ONE 7, e43032 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Okabe, S., Urushido, T., Konno, D., Okado, H. & Sobue, K. Rapid redistribution of the postsynaptic density protein PSD-Zip45 (Homer 1c) and its differential regulation by NMDA receptors and calcium channels. J. Neurosci. 21, 9561–9571 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Nakagawa, T., Engler, J. A. & Sheng, M. The dynamic turnover and functional roles of α-actinin in dendritic spines. Neuropharmacology 47, 734–745 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Kuriu, T., Inoue, A., Bito, H., Sobue, K. & Okabe, S. Differential control of postsynaptic density scaffolds via actin-dependent and -independent mechanisms. J. Neurosci. 26, 7693–7706 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zheng, C. Y., Petralia, R. S., Wang, Y. X., Kachar, B. & Wenthold, R. J. SAP102 is a highly mobile MAGUK in spines. J. Neurosci. 30, 4757–4766 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Nakagawa, T. et al. Quaternary structure, protein dynamics, and synaptic function of SAP97 controlled by L27 domain interactions. Neuron 44, 453–467 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Tai, C. Y., Mysore, S. P., Chiu, C. & Schuman, E. M. Activity-regulated N-cadherin endocytosis. Neuron 54, 771–785 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Star, E. N., Kwiatkowski, D. J. & Murthy, V. N. Rapid turnover of actin in dendritic spines and its regulation by activity. Nature Neurosci. 5, 239–246 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Charrier, C. et al. A crosstalk between β1 and β3 integrins controls glycine receptor and gephyrin trafficking at synapses. Nature Neurosci. 13, 1388–1395 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Pratt, J. M. et al. Dynamics of protein turnover, a missing dimension in proteomics. Mol. Cell Proteom. 1, 579–591 (2002).

    Article  CAS  Google Scholar 

  107. Ghaemmaghami, S. et al. Global analysis of protein expression in yeast. Nature 425, 737–741 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Doherty, M. K., Hammond, D. E., Clague, M. J., Gaskell, S. J. & Beynon, R. J. Turnover of the human proteome: determination of protein intracellular stability by dynamic SILAC. J. Proteome Res. 8, 104–112 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Eden, E. et al. Proteome half-life dynamics in living human cells. Science 331, 764–768 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Cambridge, S. B. et al. Systems-wide proteomic analysis in mammalian cells reveals conserved, functional protein turnover. J. Proteome Res. 10, 5275–5284 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Claydon, A. J., Thom, M. D., Hurst, J. L. & Beynon, R. J. Protein turnover: measurement of proteome dynamics by whole animal metabolic labelling with stable isotope labelled amino acids. Proteomics 12, 1194–1206 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are particularly grateful to L. Kochen for the data shown in figure 2 and G. Tushev for his help with data analysis. We thank I. Cajigas, S. tom Dieck and G. Tushev for their critical reading of the manuscript. We apologize to those whose work we could not cite because of space limitations. Work in the laboratory of E.M.S. is supported by the Max Planck Society, the European Research Council, DFG CRC 902 and 1080, and the DFG Cluster of Excellence for Macromolecular Complexes. C.H. is supported by a Marie Curie career integration grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erin M. Schuman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

KEGG

PowerPoint slides

Glossary

Local turnover

The continuous replacement of proteins within a given cellular structure.

Neuropile

Synaptically dense regions of the CNS, containing mostly dendrites, axons and glial cells and a small number of neuron cell bodies.

Secretory pathway

An array of membrane bound structures comprising the endoplasmic reticulum (ER), the ER–Golgi intermediate compartment, the Golgi apparatus, the trans-Golgi network and vesiculotubular carriers that synthesizes and processes secreted and membrane proteins of the cell surface.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanus, C., Schuman, E. Proteostasis in complex dendrites. Nat Rev Neurosci 14, 638–648 (2013). https://doi.org/10.1038/nrn3546

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3546

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing