Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The impact of microsaccades on vision: towards a unified theory of saccadic function

Key Points

  • Our eyes are never still. Even when we attempt to fix our gaze, small ocular motions — generally undetectable to the naked eye — shift our eye position. These eye motions include microsaccades, drift and tremor.

  • Microsaccade research has recently become one of the most active fields in visual, oculomotor and even cognitive neuroscience.

  • The past decade of research has linked microsaccades to perception and determined critical interactions between microsaccade dynamics and cognitive processes, especially in regard to the allocation of attention.

  • Behavioural and physiological evidence indicates that microsaccades and saccades are the same type of eye movement and share a common oculomotor generator. Microsaccades may serve as varied functions during fixation as saccades during exploration.

  • The microsaccadic–saccadic continuum may extend to 'saccadic intrusions' or saccades that intrude or interrupt accurate fixation, which are prevalent in various neurological disorders. Determining how microsaccades are altered in neurological disorders has the potential to inform the pathogenesis of neural disease.

Abstract

When we attempt to fix our gaze, our eyes nevertheless produce so-called 'fixational eye movements', which include microsaccades, drift and tremor. Fixational eye movements thwart neural adaptation to unchanging stimuli and thus prevent and reverse perceptual fading during fixation. Over the past 10 years, microsaccade research has become one of the most active fields in visual, oculomotor and even cognitive neuroscience. The similarities and differences between microsaccades and saccades have been a most intriguing area of study, and the results of this research are leading us towards a unified theory of saccadic and microsaccadic function.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microsaccade magnitudes.
Figure 2: Equivalent functional dynamics in microsaccades and saccades.
Figure 3: Microsaccade generation circuit.
Figure 4: Neural responses to microsaccades along the visual pathway.
Figure 5: Perceptual effects of microsaccades.

Similar content being viewed by others

References

  1. Martinez-Conde, S., Macknik, S. L. & Hubel, D. H. The role of fixational eye movements in visual perception. Nature Rev. Neurosci. 5, 229–240 (2004).

    Article  CAS  Google Scholar 

  2. Yarbus, A. L. The perception of an image fixed with respect to the retina. Biophysics 2, 683–690 (1957).

    Google Scholar 

  3. Ditchburn, R. W. & Ginsborg, B. L. Vision with a stabilized retinal image. Nature 170, 36–37 (1952).

    Article  CAS  PubMed  Google Scholar 

  4. Riggs, L. A. & Ratliff, F. The effects of counteracting the normal movements of the eye. J. Opt. Soc. Am. 42, 872–873 (1952).

    Google Scholar 

  5. Ditchburn, R. W. The function of small saccades. Vision Res. 20, 271–272 (1980).

    Article  CAS  PubMed  Google Scholar 

  6. Kowler, E. & Steinman, R. M. Small saccades serve no useful purpose: reply to a letter by R. W. Ditchburn. Vision Res. 20, 273–276 (1980).

    Article  CAS  PubMed  Google Scholar 

  7. Martinez-Conde, S. & Macknik, S. L. Windows on the mind. Sci. Am. 297, 56–63 (2007).

    Article  PubMed  Google Scholar 

  8. Martinez-Conde, S. & Macknik, S. L. Shifting focus. Sci. Am. Mind 22, 48–55 (2011).

    Article  Google Scholar 

  9. Engbert, R. & Kliegl, R. Microsaccades uncover the orientation of covert attention. Vision Res. 43, 1035–1045 (2003). This study, together with reference 15, comprised the first systematic attempts to characterize the influence of attention on microsaccadic metrics. It also provided a widely used automatic and objective algorithm for microsaccade detection.

    Article  PubMed  Google Scholar 

  10. Martinez-Conde, S., Macknik, S. L., Troncoso, X. & Dyar, T. A. Microsaccades counteract visual fading during fixation. Neuron 49, 297–305 (2006). This study provided the first direct link between microsaccade production and enhanced visibility during fixation and demonstrated that microsaccades have perceptual value.

    Article  CAS  PubMed  Google Scholar 

  11. Troncoso, X., Macknik, S. L. & Martinez-Conde, S. Microsaccades counteract perceptual filling-in. J. Vis. 8, 15 (2008).

    Article  PubMed  Google Scholar 

  12. Laubrock, J., Engbert, K. & Kliegl, R. Fixational eye movements predict the perceived direction of ambiguous apparent motion. J. Vis. 8, 13 (2008).

    Article  PubMed  Google Scholar 

  13. Otero-Millan, J., Macknik, S. L. & Martinez-Conde, S. Microsaccades and blinks trigger illusory rotation in the “rotating snakes” illusion. J. Neurosci. 32, 6043–6051 (2012). This research indicated that transient oculomotor events such as microsaccades, saccades and blinks, rather than continuous drift, act to trigger the illusory motion in certain repetitive arrangements of luminance gradients (which is known as the 'rotating snakes' illusion).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McCamy, M. B. et al. Microsaccadic efficacy and contribution to foveal and peripheral vision. J. Neurosci. 32, 9194–9204 (2012). This study found that microsaccades are the most important eye movement contributor to restoring faded vision during fixation. It also demonstrated that microsaccades counteract both foveal and peripheral visual fading.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hafed, Z. M. & Clark, J. J. Microsaccades as an overt measure of covert attention shifts. Vision Res. 42, 2533–2545 (2002). This study, together with reference 9, comprised the first systematic attempts to characterize the influence of attention on microsaccadic metrics.

    Article  PubMed  Google Scholar 

  16. Otero-Millan, J., Macknik, S. L., Serra, A., Leigh, R. J. & Martinez-Conde, S. Triggering mechanisms in microsaccade and saccade generation: a novel proposal. Ann. NY Acad. Sci. 1233, 107–116 (2011).

    Article  PubMed  Google Scholar 

  17. Otero-Millan, J. et al. Distinctive features of saccadic intrusions and microsaccades in progressive supranuclear palsy. J. Neurosci. 31, 4379–4387 (2011). This study found normal microsaccades to be rare in PSP. It also proposed that microsaccades and SWJs are generated by the same circuit and that SWJs result from a coupling mechanism that generates a second corrective saccade shortly after a large fixation saccade, both in patients with PSP and in healthy individuals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Otero-Millan, J., Troncoso, X., Macknik, S. L., Serrano-Pedraza, I. & Martinez-Conde, S. Saccades and microsaccades during visual fixation, exploration and search: foundations for a common saccadic generator. J. Vis. 8, 21 (2008). This study showed that microsaccades occur not only during prolonged fixation but also during exploration and search. A microsaccade–saccade continuum of spatiotemporal characteristics moreover supported the hypothesis of a common oculomotor generator for microsaccades and saccades.

    Article  PubMed  Google Scholar 

  19. Rolfs, M., Laubrock, J. & Kliegl, R. Shortening and prolongation of saccade latencies following microsaccades. Exp. Brain Res. 169, 369–376 (2006).

    Article  PubMed  Google Scholar 

  20. Rolfs, M., Laubrock, J. & Kliegl, R. Microsaccade-induced prolongation of saccadic latencies depends on microsaccade amplitude. J. Eye Movement Res. 1, 3 (2008).

    Google Scholar 

  21. Hafed, Z. M., Goffart, L. & Krauzlis, R. A neural mechanism for microsaccade generation in the primate superior colliculus. Science 323, 940–943 (2009). This research established a causal role of the SC in microsaccade production.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gowen, E., Abadi, R. V., Poliakoff, E., Hansen, P. C. & Miall, R. C. Modulation of saccadic intrusions by exogenous and endogenous attention. Brain Res. 1141, 154–167 (2007). This article proposed that microsaccades and saccadic intrusions may lie on a continuum.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen, A. L. et al. The disturbance of gaze in progressive supranuclear palsy: implications for pathogenesis. Front. Neurol. 1, 147 (2010).

    PubMed  PubMed Central  Google Scholar 

  24. Martinez-Conde, S. Fixational eye movements in normal and pathological vision. Prog. Brain Res. 154, 151–176 (2006).

    Article  PubMed  Google Scholar 

  25. Martinez-Conde, S., Macknik, S. L., Troncoso, X. G. & Hubel, D. H. Microsaccades: a neurophysiological analysis. Trends Neurosci. 32, 463–475 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Collewijn, H. & Kowler, E. The significance of microsaccades for vision and oculomotor control. J. Vis. 8, 20 (2008).

    Article  PubMed  Google Scholar 

  27. Rolfs, M. Microsaccades: small steps on a long way. Vision Res. 49, 2415–2441 (2009).

    Article  PubMed  Google Scholar 

  28. Mergenthaler, K. & Engbert, R. Microsaccades are different from saccades in scene perception. Exp. Brain Res. 203, 753–757 (2010).

    Article  PubMed  Google Scholar 

  29. McCamy, M. B., Macknik, S. L. & Martinez-Conde, S. in The New Visual Neurosciences (eds Werner, J. S. & Chalupa, L. M.) (MIT Press, in the press).

  30. Ko, H. K., Poletti, M. & Rucci, M. Microsaccades precisely relocate gaze in a high visual acuity task. Nature Neurosci. 13, 1549–1553 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Boyce, P. R. Monocular fixation in human eye movement. Proc. R. Soc. Lond. B 167, 293–315 (1967).

    Article  CAS  PubMed  Google Scholar 

  32. Young, L. R. & Sheena, D. Eye-movement measurement techniques. Am. Psychol. 30, 315–330 (1975).

    Article  CAS  PubMed  Google Scholar 

  33. Schulz, E. Binocular micromovements in normal persons. Graefes Arch. Clin. Exp. Ophthalmol. 222, 95–100 (1984).

    Article  CAS  PubMed  Google Scholar 

  34. Simon, F., Schulz, E., Rassow, B. & Haase, W. Binocular micromovement recording of human eyes: — methods. Graefes Arch. Clin. Exp. Ophthalmol. 221, 293–298 (1984).

    Article  CAS  PubMed  Google Scholar 

  35. McCamy, M. B. et al. Simultaneous recordings of ocular microtremor and microsaccades with a piezoelectric sensor and a video-oculography system. PressJ (in the press).

  36. Benedetto, S., Pedrotti, M. & Bridgeman, B. Microsaccades and exploratory saccdes in a naturalistic environment. J. Eye Movement Res. 4, 1–10 (2011).

    Google Scholar 

  37. Ditchburn, R. W. & Ginsborg, B. L. Involuntary eye movements during fixation. J. Physiol. 119, 1–17 (1953).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Krauskopf, J., Cornsweet, T. N. & Riggs, L. A. Analysis of eye movements during monocular and binocular fixation. J. Opt. Soc. Am. 50, 572–578 (1960).

    Article  CAS  PubMed  Google Scholar 

  39. Lord, M. P. Measurement of binocular eye movements of subjects in the sitting position. Br. J. Ophthal. 35, 21–30 (1951).

    Article  CAS  Google Scholar 

  40. Van Horn, M. R. & Cullen, K. E. Coding of microsaccades in three-dimensional space by premotor saccadic neurons. J. Neurosci. 32, 1974–1980 (2012). This study found that premotor saccadic neurons control microsaccades in three-dimensional space, during both near and far viewing, by preferentially encoding the dynamic movement of an individual eye. The results indicated that microsaccades are not strictly conjugate.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zuber, B. L., Stark, L. & Cook, G. Microsaccades and the velocity-amplitude relationship for saccadic eye movements. Science 150, 1459–1460 (1965).

    Article  CAS  PubMed  Google Scholar 

  42. Reingold, E. M. & Stampe, D. in Reading as a Perceptual Process (eds Kennedy, A., Heller, D., Pynte, J. & Radach, R.) 119–145 (Elsevier, 2000).

    Book  Google Scholar 

  43. Rolfs, M., Kliegl, R. & Engbert, K. Toward a model of microsaccade generation: the case of microsaccadic inhibition. J. Vis. 8, 5 (2008). This study provided behavioural evidence supporting the hypothesis that the SC may trigger both saccades and microsaccades.

    Article  PubMed  Google Scholar 

  44. Walker, R., Deubel, H., Schneider, W. X. & Findlay, J. M. Effect of remote distractors on saccade programming: evidence for an extended fixation zone. J. Neurophysiol. 78, 1108–1119 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Yarbus, A. L. Eye Movements and Vision (Plenum Press, 1967).

    Book  Google Scholar 

  46. Ratliff, F. & Riggs, L. A. Involuntary motions of the eye during monocular fixation. J. Exp. Psychol. 40, 687–701 (1950).

    Article  CAS  PubMed  Google Scholar 

  47. Steinman, R. M., Cunitz, R. J., Timberlake, G. T. & Herman, M. Voluntary control of microsaccades during maintained monocular fixation. Science 155, 1577–1579 (1967).

    Article  CAS  PubMed  Google Scholar 

  48. Steinman, R. M., Haddad, G. M., Skavenski, A. A. & Wyman, D. Miniature eye movement. Science 181, 810–819 (1973).

    Article  CAS  PubMed  Google Scholar 

  49. Van Gisbergen, J. A., Robinson, D. A. & Gielen, S. A quantitative analysis of generation of saccadic eye movements by burst neurons. J. Neurophysiol. 45, 417–442 (1981). This study, together with reference 50, was the first examination of the neural bases of microsaccade generation.

    Article  CAS  PubMed  Google Scholar 

  50. Van Gisbergen, J. A. M. & Robinson, D. A. in Control of Gaze by Brain Stem Neurons (eds Baker, R. & Berthoz, A.) 301–308 (Elsevier/North-Holland, 1977).

    Google Scholar 

  51. Munoz, D. P. & Wurtz, R. H. Fixation cells in monkey superior colliculus. I. Characteristics of cell discharge. J. Neurophysiol. 70, 559–575 (1993).

    Article  CAS  PubMed  Google Scholar 

  52. Brien, D. C., Corneil, J. H. & Fecteau, J. H. The behavioural and neurophysiological modulation of microsaccades in monkeys. J. Eye Movement Res. 3, 1–12 (2009).

    Google Scholar 

  53. Goffart, L., Chen, L. L. & Sparks, D. L. Deficits in saccades and fixation during muscimol inactivation of the caudal fastigial nucleus in the rhesus monkey. J. Neurophysiol. 92, 3351–3367 (2004).

    Article  PubMed  Google Scholar 

  54. Robinson, F. R., Straube, A. & Fuchs, A. F. Role of the caudal fastigial nucleus in saccade generation. II. Effects of muscimol inactivation. J. Neurophysiol. 70, 1741–1758 (1993).

    Article  CAS  PubMed  Google Scholar 

  55. Guerrasio, L., Quinet, J., Buttner, U. & Goffart, L. Fastigial oculomotor region and the control of foveation during fixation. J. Neurophysiol. 103, 1988–2001 (2010).

    Article  PubMed  Google Scholar 

  56. Cornsweet, T. N. Determination of the stimuli for involuntary drifts and saccadic eye movements. J. Opt. Soc. Am. 46, 987–993 (1956).

    Article  CAS  PubMed  Google Scholar 

  57. Engbert, R. & Kliegl, R. Microsaccades keep the eyes' balance during fixation. Psychol. Sci. 15, 431–436 (2004).

    Article  PubMed  Google Scholar 

  58. Costela, F. et al. Microsaccades correct fixation errors due to blinks. Soc. Neurosci. Abstr. 372.11 (New Orleans, 13–17 Oct 2012).

  59. Corbetta, M. et al. A common network of functional areas for attention and eye movements. Neuron 21, 761–773 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Goldberg, M. E. & Wurtz, R. H. Activity of superior colliculus in behaving monkey. II. Effect of attention on neuronal responses. J. Neurophysiol. 35, 560–574 (1972).

    Article  CAS  PubMed  Google Scholar 

  61. Turatto, M., Valsecchi, M., Tame, L. & Betta, E. Microsaccades distinguish between global and local visual processing. Neuroreport 18, 1015–1018 (2007).

    Article  PubMed  Google Scholar 

  62. Galfano, G., Betta, E. & Turatto, M. Inhibition of return in microsaccades. Exp. Brain Res. 159, 400–404 (2004). This research found that microsaccade direction can be biased away from a salient stimulus if the stimulus is irrelevant to the task.

    Article  PubMed  Google Scholar 

  63. Rolfs, M., Engbert, R. & Kliegl, R. Microsaccade orientation supports attentional enhancement opposite a peripheral cue: commentary on Tse, Sheinberg, and Logothetis. Psychol. Sci. 15, 431–436 (2004) (2003).

    Article  Google Scholar 

  64. Laubrock, J., Engbert, R. & Kliegl, R. Microsaccade dynamics during covert attention. Vision Res. 45, 721–730 (2005).

    Article  PubMed  Google Scholar 

  65. Rolfs, M., Engbert, R. & Kliegl, R. Crossmodal coupling of oculomotor control and spatial attention in vision and audition. Exp. Brain Res. 166, 427–439 (2005).

    Article  PubMed  Google Scholar 

  66. Gowen, E., Abadi, R. V. & Poliakoff, E. Paying attention to saccadic intrusions. Brain Res. Cogn. Brain Res. 25, 810–825 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Horowitz, T. S., Fine, E. M., Fencsik, D. E., Yurgenson, S. & Wolfe, J. M. Fixational eye movements are not an index of covert attention. Psychol. Sci. 18, 356–363 (2007).

    Article  PubMed  Google Scholar 

  68. Betta, E., Galfano, G. & Turatto, M. Microsaccadic response during inhibition of return in a target–target paradigm. Vision Res. 47, 428–436 (2007).

    Article  PubMed  Google Scholar 

  69. Laubrock, J., Kliegl, R., Rolfs, M. & Engbert, R. When do microsaccades follow spatial attention? Atten. Percept. Psychophys. 72, 683–694 (2010).

    Article  PubMed  Google Scholar 

  70. Valsecchi, M., Betta, E. & Turatto, M. Visual oddballs induce prolonged microsaccadic inhibition. Exp. Brain Res. 177, 196–208 (2007).

    Article  PubMed  Google Scholar 

  71. Pastukhov, A. & Braun, J. Rare but precious: microsaccades are highly informative about attentional allocation. Vision Res. 50, 1173–1184 (2010). This study found that microsaccade direction is most informative about the location of spatial attention when microsaccade production is lowest.

    Article  PubMed  Google Scholar 

  72. Kliegl, R., Rolfs, M., Laubrock, J. & Engbert, R. Microsaccadic modulation of response times in spatial attention tasks. Psychol. Res. 73, 136–146 (2009).

    Article  PubMed  Google Scholar 

  73. Tse, P. U., Sheinberg, D. S. & Logothetis, N. K. The distribution of microsaccade directions need not reveal the location of attention. Psychol. Sci. 15, 708–710 (2004).

    Article  Google Scholar 

  74. Horowitz, T. S., Fine, E. M., Fencsik, D. E., Yurgenson, S. & Wolfe, J. M. Microsaccades and attention: does a weak correlation make an index? Reply to Laubrock, Engbert, Rolfs, and Kliegl. Psychol. Sci. 18, 367–368 (2007) (2007).

    Article  Google Scholar 

  75. Laubrock, J., Engbert, R., Rolfs, M. & Kliegl, R. Microsaccades are an index of covert attention: commentary on Horowitz, Fine, Fencsik, Yurgenson, and Wolfe (2007). Psychol. Sci. 18, 364–366; discussion 367–368 (2007).

    Article  PubMed  Google Scholar 

  76. Troncoso, X., Macknik, S. L., Otero-Millan, J. & Martinez-Conde, S. Microsaccades drive illusory motion in the Enigma illusion. Proc. Natl Acad. Sci. USA. 105, 16033–16038 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cui, J., Wilke, M., Logothetis, N. K., Leopold, D. A. & Liang, H. Visibility states modulate microsaccade rate and direction. Vision Res. 49, 228–236 (2009).

    Article  PubMed  Google Scholar 

  78. Valsecchi, M. & Turatto, M. Microsaccadic responses in a bimodal oddball task. Psychol. Res. 73, 23–33 (2009).

    Article  PubMed  Google Scholar 

  79. Valsecchi, M. & Turatto, M. Microsaccadic response to visual events that are invisible to the superior colliculus. Behav. Neurosci. 121, 786–793 (2007).

    Article  PubMed  Google Scholar 

  80. Sinn, P. & Engbert, R. Saccadic facilitation by modulation of microsaccades in natural backgrounds. Atten. Percept. Psychophys. 73, 1029–1033 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Engbert, R. Computational modeling of collicular integration of perceptual responses and attention in microsaccades. J. Neurosci. 32, 8035–8039 (2012). Computational modelling found that the integration of perceptual responses and attention at the level of the SC can explain modulation of microsaccade rates and directions in various visual tasks.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Martinez-Conde, S., Macknik, S. L. & Hubel, D. H. Microsaccadic eye movements and firing of single cells in the striate cortex of macaque monkeys. Nature Neurosci. 3, 251–258 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Martinez-Conde, S., Macknik, S. L. & Hubel, D. H. The function of bursts of spikes during visual fixation in the awake primate lateral geniculate nucleus and primary visual cortex. Proc. Natl Acad. Sci. USA 99, 13920–13925 (2002). The parameters of microsaccade-triggered bursts of spikes in the lateral geniculate nucleus and area V1 varied depending on whether the stationary stimuli presented were optimal or non-optimal.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tse, P. U., Baumgartner, F. J. & Greenlee, M. W. Event-related functional MRI of cortical activity evoked by microsaccades, small visually-guided saccades, and eyeblinks in human visual cortex. Neuroimage 49, 805–816 (2010).

    Article  PubMed  Google Scholar 

  85. Meirovithz, E., Ayzenshtat, I., Werner-Reiss, U., Shamir, I. & Slovin, H. Spatiotemporal effects of microsaccades on population activity in the visual cortex of monkeys during fixation. Cereb. Cortex 22, 294–307 (2011).

    Article  PubMed  Google Scholar 

  86. Bosman, C. A., Womelsdorf, T., Desimone, R. & Fries, P. A microsaccadic rhythm modulates gamma-band synchronization and behavior. J. Neurosci. 29, 9471–9480 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dimigen, O., Valsecchi, M., Sommer, W. & Kliegl, R. Human microsaccade-related visual brain responses. J. Neurosci. 29, 12321–12331 (2009). Electroencephalography recordings found that microsaccades are a source of sizable activity in the human visual cortex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Martinez-Conde, S., Troncoso, X. G., Najafian Jazi, A., Otero-Millan, J. & Macknik, S. L. The contribution of retinal and non-retinal sources to area V1's responses to microsaccades: implications for visual stability and microsaccadic suppression. Soc. Neurosci. Abstr. 370.04 (New Orleans, 13–17 Oct 2012).

  89. Albrecht, D. G. & Hamilton, D. B. Striate cortex of monkey and cat: contrast response function. J. Neurophysiol. 48, 217–237 (1982).

    Article  CAS  PubMed  Google Scholar 

  90. Gawne, T. J., Kjaer, T. W. & Richmond, B. J. Latency: another potential code for feature binding in striate cortex. J. Neurophysiol. 76, 1356–1360 (1996).

    Article  CAS  PubMed  Google Scholar 

  91. Donner, K. & Hemila, S. Modelling the effect of microsaccades on retinal responses to stationary contrast patterns. Vision Res. 47, 1166–1177 (2007). Modelling the effect of microsaccades on primate retinal responses indicated that microsaccades may enhance sensitivity to edges and improve spatial resolution.

    Article  PubMed  Google Scholar 

  92. Hsieh, P. J. & Tse, P. U. Microsaccade rate varies with subjective visibility during motion-induced blindness. PLoS ONE 4, e5163 (2009).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  93. van Dam, L. C. & van Ee, R. Retinal image shifts, but not eye movements per se, cause alternations in awareness during binocular rivalry. J. Vis. 6, 1172–1179 (2006).

    Article  PubMed  Google Scholar 

  94. Simoncelli, E. P. & Olshausen, B. A. Natural image statistics and neural representation. Annu. Rev. Neurosci. 24, 1193–1216 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Bridgeman, B. & Palca, J. The role of microsaccades in high acuity observational tasks. Vision Res. 20, 813–817 (1980).

    Article  CAS  PubMed  Google Scholar 

  96. Winterson, B. J. & Collewijn, H. Microsaccades during finely guided visuomotor tasks. Vision Res. 16, 1387–1390 (1976).

    Article  CAS  PubMed  Google Scholar 

  97. Kuang, X., Poletti, M., Victor, J. D. & Rucci, M. Temporal encoding of spatial information during active visual fixation. Curr. Biol. 22, 510–514 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Martinez-Conde, S. & Macknik, S. L. Fixational eye movements across vertebrates: comparative dynamics, physiology, and perception. J. Vis. 8, 28 (2008).

    Article  PubMed  Google Scholar 

  99. Gilchrist, I. D., Brown, V. & Findlay, J. M. Saccades without eye movements. Nature 390, 130–131 (1997).

    Article  CAS  PubMed  Google Scholar 

  100. Gilchrist, I. D., Brown, V., Findlay, J. M. & Clarke, M. P. Using the eye-movement system to control the head. Proc. R. Soc. Lond. B 265, 1831–1836 (1998).

    Article  CAS  Google Scholar 

  101. Gawne, T. J. & Martin, J. M. Activity of primate V1 cortical neurons during blinks. J. Neurophysiol. 84, 2691–2694 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Macknik, S. L. & Martinez-Conde, S. The spatial and temporal effects of lateral inhibitory networks and their relevance to the visibility of spatiotemporal edges. Neurocomputing 58–60, 775–782 (2004).

    Article  Google Scholar 

  103. Macknik, S. L. & Livingstone, M. S. Neuronal correlates of visibility and invisibility in the primate visual system. Nature Neurosci. 1, 144–149 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Shelley, M., McLaughlin, D., Shapley, R. & Wielaard, J. States of high conductance in a large-scale model of the visual cortex. J. Comput. Neurosci. 13, 93–109 (2002).

    Article  PubMed  Google Scholar 

  105. Williams, P. E. & Shapley, R. M. A dynamic nonlinearity and spatial phase specificity in macaque V1 neurons. J. Neurosci. 27, 5706–5718 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Uchida, N., Kepecs, A. & Mainen, Z. F. Seeing at a glance, smelling in a whiff: rapid forms of perceptual decision making. Nature Rev. Neurosci. 7, 485–491 (2006).

    Article  CAS  Google Scholar 

  107. Beeler, G. W. Visual threshold changes resulting from spontaneous saccadic eye movements. Vision Res. 7, 769–775 (1967).

    Article  PubMed  Google Scholar 

  108. Zuber, B. L. & Stark, L. Saccadic suppression: elevation of visual threshold associated with saccadic eye movements. Exp. Neurol. 16, 65–79 (1966).

    Article  CAS  PubMed  Google Scholar 

  109. Ditchburn, R. W. Eye-movements in relation to retinal action. Opt. Acta (Lond.) 1, 171–176 (1955).

    Article  Google Scholar 

  110. Krauskopf, J. Lack of inhibition during involuntary saccades. Am. J. Psychol. 79, 73–81 (1966).

    Article  Google Scholar 

  111. Sperling, G. in Eye Movements and their Role in Visual and Cognitive Processes (ed. Kowler, E.) 307–351 (Elsevier, 1990).

    Google Scholar 

  112. Herrington, T. M. et al. The effect of microsaccades on the correlation between neural activity and behavior in middle temporal, ventral intraparietal, and lateral intraparietal areas. J. Neurosci. 29, 5793–5805 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hafed, Z. M. & Krauzlis, R. J. Microsaccadic suppression of visual bursts in the primate superior colliculus. J. Neurosci. 30, 9542–9547 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Nachmias, J. Determiners of the drift of the eye during monocular fixation. J. Opt. Soc. Am. 51, 761–766 (1961).

    Article  CAS  PubMed  Google Scholar 

  115. Poletti, M. & Rucci, M. Eye movements under various conditions of image fading. J. Vis. 10, 6 (2010).

    Article  PubMed  Google Scholar 

  116. Ciuffreda, K. J. & Tannen, B. Eye Movement Basics for the Clinician (Mosby-Year Book, 1995).

    Google Scholar 

  117. Serra, A., Liao, K., Martinez-Conde, S., Optican, L. M. & Leigh, R. J. Suppression of saccadic intrusions in hereditary ataxia by memantine. Neurology 70, 810–812 (2008).

    Article  CAS  PubMed  Google Scholar 

  118. Ciuffreda, K. J., Kenyon, R. V. & Stark, L. Different rates of functional recovery of eye movements during orthoptics treatment in an adult amblyope. Invest. Ophthalmol. Vis. Sci. 18, 213–219 (1979).

    CAS  PubMed  Google Scholar 

  119. Ciuffreda, K. J., Kenyon, R. V. & Stark, L. Increased drift in amblyopic eyes. Br. J. Ophthalmol. 64, 7–14 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ciuffreda, K. J., Kenyon, R. V. & Stark, L. Fixational eye movements in amblyopia and strabismus. J. Am. Optom. Assoc. 50, 1251–1258 (1979).

    CAS  PubMed  Google Scholar 

  121. Ciuffreda, K. J., Kenyon, R. V. & Stark, L. Saccadic intrusions in strabismus. Arch. Ophthalmol. 97, 1673–1679 (1979).

    Article  CAS  PubMed  Google Scholar 

  122. Shi, X. F. et al. Fixational saccadic eye movements are altered in anisometropic amblyopia. Restor. Neurol. Neurosci. 30, 445–462 (2012).

    PubMed  Google Scholar 

  123. Kozeis, N. et al. Visual function and execution of microsaccades related to reading skills, in cerebral palsied children. Int. J. Neurosci. 116, 1347–1358 (2006).

    Article  PubMed  Google Scholar 

  124. Moller, F., Laursen, M. L. & Sjolie, A. K. Binocular fixation topography in patients with diabetic macular oedema: possible implications for photocoagulation therapy (3rd revision). Graefes Arch. Clin. Exp. Ophthalmol. 243, 903–910 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Darwin, E. Zoonomia; Or the Laws of Organic Life Vol. 1 (Johnson, 1794).

    Google Scholar 

  126. Troxler, D. in Ophthalmologische Bibliothek (ed. Himly, K. & Schmidt, J. A.) 1–53 (Springer, 1804).

    Google Scholar 

  127. Coppola, D. & Purves, D. The extraordinarily rapid disappearance of entoptic images. Proc. Natl Acad. Sci. USA 93, 8001–8004 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Thorpe, S., Fize, D. & Marlot, C. Speed of processing in the human visual system. Nature 381, 520–522 (1996).

    Article  CAS  PubMed  Google Scholar 

  129. Fabre-Thorpe, M., Delorme, A., Marlot, C. & Thorpe, S. A limit to the speed of processing in ultra-rapid visual categorization of novel natural scenes. J. Cogn. Neurosci. 13, 171–180 (2001).

    Article  CAS  PubMed  Google Scholar 

  130. Mergenthaler, K. & Engbert, R. Modeling the control of fixational eye movements with neurophysiological delays. Phys. Rev. Lett. 98, 138104 (2007).

    Article  PubMed  CAS  Google Scholar 

  131. Engbert, R., Mergenthaler, K., Sinn, P. & Pikovsky, A. An integrated model of fixational eye movements and microsaccades. Proc. Natl Acad. Sci. USA 108, E765–E770 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Inagaki, K., Hirata, Y. & Usui, S. A model-based theory on the signal transformation for microsaccade generation. Neural Netw. 24, 990–997 (2011).

    Article  PubMed  Google Scholar 

  133. Brewster, D. On a singular affection of the eye in the healthy state, in consequence of which it loses the power of seeing objects within the sphere of distinct vision. Ann. Philos. 11, 151 (1818).

    Google Scholar 

  134. Wade, N. J. & Tatler, B. W. The Moving Tablet of the Eye: The Origins of Modern Eye Movement Research (Oxford Univ. Press, 2005).

    Book  Google Scholar 

  135. Kowler, E. Eye movements: the past 25 years. Vision Res. 51, 1457–1483 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Krauskopf, J. Effect of retinal image stabilization on the appearance of heterochromatic targets. J. Opt. Soc. Am. 53, 741–744 (1963).

    Article  CAS  PubMed  Google Scholar 

  137. Pessoa, L. & De Weerd, P. (eds) Filling-in: From Perceptual Completion to Cortical Reorganization (Oxford Univ. Press, 2003).

    Book  Google Scholar 

  138. Simons, D. et al. Induced visual fading of complex images. J. Vis. 6, 1093–1101 (2006).

    Article  PubMed  Google Scholar 

  139. Reppas, J. B., Usrey, W. M. & Reid, R. C. Saccadic eye movements modulate visual responses in the lateral geniculate nucleus. Neuron 35, 961–974 (2002).

    Article  CAS  PubMed  Google Scholar 

  140. Saul, A. B. Effects of fixational saccades on response timing in macaque lateral geniculate nucleus. Vis. Neurosci. 27, 171–181 (2010).

    Article  PubMed  Google Scholar 

  141. Snodderly, D. M., Kagan, I. & Gur, M. Selective activation of visual cortex neurons by fixational eye movements: implications for neural coding. Vis. Neurosci. 18, 259–277 (2001).

    Article  CAS  PubMed  Google Scholar 

  142. Kagan, I., Gur, M. & Snodderly, D. M. Saccades and drifts differentially modulate neuronal activity in V1: effects of retinal image motion, position, and extraretinal influences. J. Vis. 8, 19 (2008).

    Article  PubMed  Google Scholar 

  143. Leopold, D. A. & Logothetis, N. K. Microsaccades differentially modulate neural activity in the striate and extrastriate visual cortex. Exp. Brain Res. 123, 341–345 (1998).

    Article  CAS  PubMed  Google Scholar 

  144. Hass, C. A. & Horwitz, G. D. Effects of microsaccades on contrast detection and V1 responses in macaques. J. Vis. 11, 3 (2011).

    Article  PubMed  Google Scholar 

  145. Bair, W. & O'Keefe, L. P. The influence of fixational eye movements on the response of neurons in area MT of the macaque. Vis. Neurosci. 15, 779–786 (1998).

    Article  CAS  PubMed  Google Scholar 

  146. Kitaoka, A. Trick Eyes Graphics (Kanzen, 2005).

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Barrow Neurological Foundation (awards to S.M.-C. and S.L.M.) and the National Science Foundation (Awards 0852636 and 1153786 to S.M.-C. and Award 0726113 to S.L.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana Martinez-Conde.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Susana Martinez-Conde's homepage

Glossary

Main sequence

Peak velocities and durations of microsaccades and saccades are parametrically related to microsaccadic and saccadic amplitudes.

Square-wave jerks

(SWJs). Microsaccades that distance the eye from the fixation target, which are shortly followed by microsaccades that return the eye to the target.

Covert attention

Attention that is localized away from the centre of gaze.

Inhibition of return

A stimulus presented at a location attended recently evokes a weaker response than a stimulus presented at a previously unattended location.

Amblyopia

Visual acuity loss that is not attributable to uncorrected refractive error or known pathology. It is generally linked to strabismus and/or with the two eyes having unequal refractive power (that is, anisometropia).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinez-Conde, S., Otero-Millan, J. & Macknik, S. The impact of microsaccades on vision: towards a unified theory of saccadic function. Nat Rev Neurosci 14, 83–96 (2013). https://doi.org/10.1038/nrn3405

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3405

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing