Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Two cortical systems for memory-guided behaviour

Key Points

  • The perirhinal cortex (PRC), parahippocampal cortex (PHC) and retrosplenial cortex (RSC) are crucial for memory in humans, so it is essential to understand the functions of these areas.

  • The PHC and RSC exhibit patterns of anatomical and functional connectivity that are highly similar to one another and strikingly different from the PRC.

  • The PRC is important for familiarity-based item recognition, associating features of objects and fine-grained perceptual or semantic discriminations.

  • The PHC and RSC are important for recollection-based memories, memory for spatial and episodic context, scene perception, simulation of hypothetical events and certain aspects of spatial navigation and social cognition.

  • Integrating this evidence, we propose a new framework in which the PRC, PHC and RSC are embedded in two extended networks that support different forms of memory-guided behaviour.

  • The PRC is situated in an anterior temporal (AT) system that also includes the amygdala, ventral temporopolar cortex and lateral orbitofrontal cortex. This system may collectively support the assessment of the significance of specific entities.

  • The PHC and RSC are situated in a posterior medial (PM) system that also includes the mammillary bodies, anterior thalamic nuclei, pre- and parasubiculum, posterior cingulate, precuneus and angular gyrus. This system may support the construction of situation models in support of memory, spatial navigation and social cognition.

  • The AT and PM systems are differentially targeted by neurological disorders. For instance, semantic dementia is associated with disproportionate atrophy and dysfunction within the AT system relative to Alzheimer's disease, which disproportionately affects the PM system.

Abstract

Although the perirhinal cortex (PRC), parahippocampal cortex (PHC) and retrosplenial cortex (RSC) have an essential role in memory, the precise functions of these areas are poorly understood. Here, we review the anatomical and functional characteristics of these areas based on studies in humans, monkeys and rats. Our Review suggests that the PRC and PHC–RSC are core components of two separate large-scale cortical networks that are dissociable by neuroanatomy, susceptibility to disease and function. These networks not only support different types of memory but also appear to support different aspects of cognition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Anatomy of the perirhinal, parahippocampal and retrosplenial cortices.
Figure 2: Two neocortical systems for memory-guided behaviour.
Figure 3: Schematic depiction of the functions of the anterior temporal and posterior medial systems.

Similar content being viewed by others

References

  1. Squire, L. R. & Zola-Morgan, S. The medial temporal lobe memory system. Science 253, 1380–1386 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Brown, M. W. & Aggleton, J. P. Recognition memory: what are the roles of the perirhinal cortex and hippocampus? Nature Rev. Neurosci. 2, 51–61 (2001).

    Article  CAS  Google Scholar 

  3. Eichenbaum, H., Yonelinas, A. P. & Ranganath, C. The medial temporal lobe and recognition memory. Annu. Rev. Neurosci. 30, 123–152 (2007). This article reviews research on the roles of MTL subregions in recognition memory in rats, monkeys and humans. The authors propose that the PRC represents specific items, the PHC represents context information, and the hippocampus is crucial for associating item and context information (also see references 29, 30, 45, 83, 143 and 171).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mishkin, M., Suzuki, W. A., Gadian, D. G. & Vargha-Khadem, F. Hierarchical organization of cognitive memory. Phil. Trans. R. Soc. Lond. B 352, 1461–1467 (1997).

    Article  CAS  Google Scholar 

  5. Vann, S. D., Aggleton, J. P. & Maguire, E. A. What does the retrosplenial cortex do? Nature Rev. Neurosci. 10, 792–802 (2009). This article provides a thorough synthesis of evidence concerning the anatomy and function of the RSC, including its essential role in episodic memory and spatial cognition.

    Article  CAS  Google Scholar 

  6. Valenstein, E. et al. Retrosplenial amnesia. Brain 110, 1631–1646 (1987).

    Article  PubMed  Google Scholar 

  7. Witter, M. P. et al. Cortico-hippocampal communication by way of parallel parahippocampal-subicular pathways. Hippocampus 10, 398–410 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Aggleton, J. P. Multiple anatomical systems embedded within the primate medial temporal lobe: implications for hippocampal function. Neurosci. Biobehav. Rev. 36, 1579–1596 (2012).

    Article  PubMed  Google Scholar 

  9. Furtak, S. C., Wei, S. M., Agster, K. L. & Burwell, R. D. Functional neuroanatomy of the parahippocampal region in the rat: the perirhinal and postrhinal cortices. Hippocampus 17, 709–722 (2007).

    Article  PubMed  Google Scholar 

  10. Aggleton, J. P., Wright, N. F., Vann, S. D. & Saunders, R. C. Medial temporal lobe projections to the retrosplenial cortex of the macaque monkey. Hippocampus 22, 1883–1900 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Stefanacci, L., Suzuki, W. A. & Amaral, D. G. Organization of connections between the amygdaloid complex and the perirhinal and parahippocampal cortices in macaque monkeys. J. Comp. Neurol. 375, 552–582 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Kahn, I., Andrews-Hanna, J. R., Vincent, J. L., Snyder, A. Z. & Buckner, R. L. Distinct cortical anatomy linked to subregions of the medial temporal lobe revealed by intrinsic functional connectivity. J. Neurophysiol. 100, 129–139 (2008). This is the first study in which functional connectivity analysis of resting-state fMRI data was used to carefully characterize the connectivity of different MTL subregions in humans. The study demonstrated that the PHC and PRC show strikingly different functional connectivity profiles.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Libby, L. A., Ekstrom, A. D., Ragland, J. D. & Ranganath, C. Differential connectivity of perirhinal and parahippocampal cortices within human hippocampal subregions revealed by high-resolution functional imaging. J. Neurosci. 32, 6550–6560 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kobayashi, Y. & Amaral, D. G. Macaque monkey retrosplenial cortex: II. Cortical afferents. J. Comp. Neurol. 466, 48–79 (2003).

    Article  PubMed  Google Scholar 

  15. Kobayashi, Y. & Amaral, D. G. Macaque monkey retrosplenial cortex: III. Cortical efferents. J. Comp. Neurol. 502, 810–833 (2007).

    Article  PubMed  Google Scholar 

  16. Suzuki, W. A. & Amaral, D. G. Perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents. J. Comp. Neurol. 350, 497–533 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Lavenex, P., Suzuki, W. A. & Amaral, D. G. Perirhinal and parahippocampal cortices of the macaque monkey: intrinsic projections and interconnections. J. Comp. Neurol. 472, 371–394 (2004).

    Article  PubMed  Google Scholar 

  18. Lavenex, P., Suzuki, W. A. & Amaral, D. G. Perirhinal and parahippocampal cortices of the macaque monkey: projections to the neocortex. J. Comp. Neurol. 447, 394–420 (2002).

    Article  PubMed  Google Scholar 

  19. Kondo, H., Saleem, K. S. & Price, J. L. Differential connections of the perirhinal and parahippocampal cortex with the orbital and medial prefrontal networks in macaque monkeys. J. Comp. Neurol. 493, 479–509 (2005). This paper is an innovative synthesis of primate neuroanatomy data. The authors propose that the lateral orbitofrontal cortex is a component of an extended cortical network that also includes the PRC, whereas the medial prefrontal cortex is a component of a distributed network that also includes the PHC.

    Article  PubMed  Google Scholar 

  20. Kravitz, D. J., Saleem, K. S., Baker, C. I. & Mishkin, M. A new neural framework for visuospatial processing. Nature Rev. Neurosci. 12, 217–230 (2011).

    Article  CAS  Google Scholar 

  21. Mufson, E. J. & Pandya, D. N. Some observations on the course and composition of the cingulum bundle in the rhesus monkey. J. Comp. Neurol. 225, 31–43 (1984).

    Article  CAS  PubMed  Google Scholar 

  22. Raichle, M. E. et al. A default mode of brain function. Proc. Natl Acad. Sci. USA 98, 676–682 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R. & Buckner, R. L. Functional-anatomic fractionation of the brain's default network. Neuron 65, 550–562 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hoistad, M. & Barbas, H. Sequence of information processing for emotions through pathways linking temporal and insular cortices with the amygdala. Neuroimage 40, 1016–1033 (2008).

    Article  PubMed  Google Scholar 

  25. Baxter, M. G. & Murray, E. A. Opposite relationship of hippocampal and rhinal cortex damage to delayed nonmatching-to-sample deficits in monkeys. Hippocampus 11, 61–71 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Nemanic, S., Alvarado, M. C. & Bachevalier, J. The hippocampal/parahippocampal regions and recognition memory: insights from visual paired comparison versus object-delayed nonmatching in monkeys. J. Neurosci. 24, 2013–2026 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Aggleton, J. P., Brown, M. W. & Albasser, M. M. Contrasting brain activity patterns for item recognition memory and associative recognition memory: insights from immediate-early gene functional imaging. Neuropsychologia 23 May 2012 (doi:10.1016/j.neuropsychologia.2012.05.018).

  28. Davachi, L. & Goldman-Rakic, P. S. Primate rhinal cortex participates in both visual recognition and working memory tasks: functional mapping with 2-DG. J. Neurophysiol. 2590–2601 (2001).

  29. Ranganath, C. A unified framework for the functional organization of the medial temporal lobes and the phenomenology of episodic memory. Hippocampus 20, 1263–1290 (2010).

    Article  PubMed  Google Scholar 

  30. Montaldi, D. & Mayes, A. R. The role of recollection and familiarity in the functional differentiation of the medial temporal lobes. Hippocampus 20, 1291–1314 (2010).

    Article  PubMed  Google Scholar 

  31. Bowles, B. et al. Impaired familiarity with preserved recollection after anterior temporal-lobe resection that spares the hippocampus. Proc. Natl Acad. Sci. USA 104, 16382–16387 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Xiang, J. Z. & Brown, M. W. Differential neuronal encoding of novelty, familiarity and recency in regions of the anterior temporal lobe. Neuropharmacology 37, 657–676 (1998). Building on earlier work from Brown's laboratory, this study presents a detailed characterization of correlates of object recognition memory through a single-unit recording in area TE, the PRC and the entorhinal cortex.

    Article  CAS  PubMed  Google Scholar 

  33. Henson, R. N., Cansino, S., Herron, J. E., Robb, W. G. & Rugg, M. D. A familiarity signal in human anterior medial temporal cortex? Hippocampus 13, 259–262 (2003).

    Article  Google Scholar 

  34. Montaldi, D., Spencer, T. J., Roberts, N. & Mayes, A. R. The neural system that mediates familiarity memory. Hippocampus 16, 504–520 (2006).

    Article  PubMed  Google Scholar 

  35. Gonsalves, B. D., Kahn, I., Curran, T., Norman, K. A. & Wagner, A. D. Memory strength and repetition suppression: multimodal imaging of medial temporal cortical contributions to recognition. Neuron 47, 751–761 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Weis, S. et al. Process dissociation between contextual retrieval and item recognition. Neuroreport 15, 2729–2733 (2004).

    PubMed  Google Scholar 

  37. Ranganath, C. et al. Dissociable correlates of recollection and familiarity within the medial temporal lobes. Neuropsychologia 42, 2–13 (2003).

    Article  Google Scholar 

  38. Davachi, L., Mitchell, J. P. & Wagner, A. D. Multiple routes to memory: distinct medial temporal lobe processes build item and source memories. Proc. Natl Acad. Sci. USA 100, 2157–2162 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nakamura, K. & Kubota, K. Mnemonic firing of neurons in the monkey temporal pole during a visual recognition memory task. J. Neurophysiol. 74, 162–178 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Miyashita, Y. Neuronal correlate of visual associative long-term memory in the primate temporal cortex. Nature 335, 817–820 (1988).

    Article  CAS  PubMed  Google Scholar 

  41. Erickson, C. A. & Desimone, R. Responses of macaque perirhinal neurons during and after visual stimulus association learning. J. Neurosci. 19, 10404–10416 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fujimichi, R. et al. Unitized representation of paired objects in area 35 of the macaque perirhinal cortex. Eur. J. Neurosci. 32, 659–667 (2010).

    Article  PubMed  Google Scholar 

  43. Murray, E. A., Gaffan, D. & Mishkin, M. Neural substrates of visual stimulus-stimulus association in rhesus monkeys. J. Neurosci. 13, 4549–4561 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Haskins, A. L., Yonelinas, A. P., Quamme, J. R. & Ranganath, C. Perirhinal cortex supports encoding and familiarity-based recognition of novel associations. Neuron 59, 554–560 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Diana, R. A., Yonelinas, A. P. & Ranganath, C. Medial temporal lobe activity during source retrieval reflects information type, not memory strength. J. Cogn. Neurosci. 22, 1808–1818 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Staresina, B. P. & Davachi, L. Selective and shared contributions of the hippocampus and perirhinal cortex to episodic item and associative encoding. J. Cogn. Neurosci. 20, 1478–1489 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Liu, Z. & Richmond, B. J. Response differences in monkey TE and perirhinal cortex: stimulus association related to reward schedules. J. Neurophysiol. 83, 1677–1692 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Liu, Z., Murray, E. A. & Richmond, B. J. Learning motivational significance of visual cues for reward schedules requires rhinal cortex. Nature Neurosci. 3, 1307–1315 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Liu, Z. et al. DNA targeting of rhinal cortex D2 receptor protein reversibly blocks learning of cues that predict reward. Proc. Natl Acad. Sci. USA 101, 12336–12341 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lindquist, D. H., Jarrard, L. E. & Brown, T. H. Perirhinal cortex supports delay fear conditioning to rat ultrasonic social signals. J. Neurosci. 24, 3610–3617 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kholodar-Smith, D. B., Allen, T. A. & Brown, T. H. Fear conditioning to discontinuous auditory cues requires perirhinal cortical function. Behav. Neurosci. 122, 1178–1185 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Kholodar-Smith, D. B., Boguszewski, P. & Brown, T. H. Auditory trace fear conditioning requires perirhinal cortex. Neurobiol. Learn. Mem. 90, 537–543 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Otto, T., Cousens, G. & Herzog, C. Behavioral and neuropsychological foundations of olfactory fear conditioning. Behav. Brain Res. 110, 119–128 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Furtak, S. C., Allen, T. A. & Brown, T. H. Single-unit firing in rat perirhinal cortex caused by fear conditioning to arbitrary and ecological stimuli. J. Neurosci. 27, 12277–12291 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Boxer, A. L. et al. Cinguloparietal atrophy distinguishes Alzheimer disease from semantic dementia. Arch. Neurol. 60, 949–956 (2003).

    Article  PubMed  Google Scholar 

  56. Davies, R. R., Graham, K. S., Xuereb, J. H., Williams, G. B. & Hodges, J. R. The human perirhinal cortex and semantic memory. Eur. J. Neurosci. 20, 2441–2446 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Patterson, K., Nestor, P. J. & Rogers, T. T. Where do you know what you know? The representation of semantic knowledge in the human brain. Nature Rev. Neurosci. 8, 976–987 (2007).

    Article  CAS  Google Scholar 

  58. Moss, H. E., Rodd, J. M., Stamatakis, E. A., Bright, P. & Tyler, L. K. Anteromedial temporal cortex supports fine-grained differentiation among objects. Cereb. Cortex 15, 616–627 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Noppeney, U. et al. Temporal lobe lesions and semantic impairment: a comparison of herpes simplex virus encephalitis and semantic dementia. Brain 130, 1138–1147 (2007).

    Article  PubMed  Google Scholar 

  60. Stefanacci, L., Buffalo, E. A., Schmolck, H. & Squire, L. R. Profound amnesia after damage to the medial temporal lobe: a neuroanatomical and neuropsychological profile of patient E. P. J. Neurosci. 20, 7024–7036 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Taylor, K. I., Moss, H. E., Stamatakis, E. A. & Tyler, L. K. Binding crossmodal object features in perirhinal cortex. Proc. Natl Acad. Sci. USA 103, 8239–8244 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lambon Ralph, M. A., Ehsan, S., Baker, G. A. & Rogers, T. T. Semantic memory is impaired in patients with unilateral anterior temporal lobe resection for temporal lobe epilepsy. Brain 135, 242–258 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Nobre, A. C. & McCarthy, G. Language-related field potentials in the anterior-medial temporal lobe: II. Effects of word type and semantic priming. J. Neurosci. 15, 1090–1098 (1995). Along with its companion paper, this study provided the first detailed characterization of the AMTL N400, demonstrating that field potentials recorded directly from the PRC are sensitive to semantic processing.

    CAS  PubMed  Google Scholar 

  64. Chan, A. M. et al. First-pass selectivity for semantic categories in human anteroventral temporal lobe. J. Neurosci. 31, 18119–18129 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tyler, L. K. et al. Processing objects at different levels of specificity. J. Cogn. Neurosci. 16, 351–362 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Visser, M., Jefferies, E. & Lambon Ralph, M. A. Semantic processing in the anterior temporal lobes: a meta-analysis of the functional neuroimaging literature. J. Cogn. Neurosci. 22, 1083–1094 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Wang, W. C., Lazzara, M. M., Ranganath, C., Knight, R. T. & Yonelinas, A. P. The medial temporal lobe supports conceptual implicit memory. Neuron 68, 835–842 (2010). This study presents results showing that patients with damage to the left PRC are impaired at conceptual priming, and converging evidence showing that left perirhinal activation in healthy individuals is predictive of successful conceptual priming.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Voss, J. L., Hauner, K. K. & Paller, K. A. Establishing a relationship between activity reduction in human perirhinal cortex and priming. Hippocampus 19, 773–778 (2009).

    Article  PubMed  Google Scholar 

  69. Marinkovic, K. et al. Spatiotemporal dynamics of modality-specific and supramodal word processing. Neuron 38, 487–497 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Graham, K. S., Barense, M. D. & Lee, A. C. Going beyond LTM in the MTL: a synthesis of neuropsychological and neuroimaging findings on the role of the medial temporal lobe in memory and perception. Neuropsychologia 48, 831–853 (2010).

    Article  PubMed  Google Scholar 

  71. Bussey, T. J., Saksida, L. M. & Murray, E. A. The perceptual-mnemonic/feature conjunction model of perirhinal cortex function. Q. J. Exp. Psychol. B 58, 269–282 (2005).

    Article  PubMed  Google Scholar 

  72. Naya, Y., Yoshida, M. & Miyashita, Y. Forward processing of long-term associative memory in monkey inferotemporal cortex. J. Neurosci. 23, 2861–2871 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Buckley, M. J., Booth, M. C., Rolls, E. T. & Gaffan, D. Selective perceptual impairments after perirhinal cortex ablation. J. Neurosci. 21, 9824–9836 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bussey, T. J., Saksida, L. M. & Murray, E. A. Perirhinal cortex resolves feature ambiguity in complex visual discriminations. Eur. J. Neurosci. 15, 365–374 (2002).

    Article  PubMed  Google Scholar 

  75. Lee, A. C. et al. Perceptual deficits in amnesia: challenging the medial temporal lobe 'mnemonic' view. Neuropsychologia 43, 1–11 (2005). A groundbreaking study suggesting that human patients with damage to the PRC show subtle deficits in object perception.

    Article  PubMed  Google Scholar 

  76. Lee, A. C. et al. Differentiating the roles of the hippocampus and perirhinal cortex in processes beyond long-term declarative memory: a double dissociation in dementia. J. Neurosci. 26, 5198–5203 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Barense, M. D. et al. Functional specialization in the human medial temporal lobe. J. Neurosci. 25, 10239–10246 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shrager, Y., Gold, J. J., Hopkins, R. O. & Squire, L. R. Intact visual perception in memory-impaired patients with medial temporal lobe lesions. J. Neurosci. 26, 2235–2240 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lee, A. C., Bandelow, S., Schwarzbauer, C., Henson, R. N. & Graham, K. S. Perirhinal cortex activity during visual object discrimination: an event-related fMRI study. Neuroimage 33, 362–373 (2006).

    Article  PubMed  Google Scholar 

  80. O'Neil, E. B., Cate, A. D. & Kohler, S. Perirhinal cortex contributes to accuracy in recognition memory and perceptual discriminations. J. Neurosci. 29, 8329–8334 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Holdstock, J. S., Hocking, J., Notley, P., Devlin, J. T. & Price, C. J. Integrating visual and tactile information in the perirhinal cortex. Cereb. Cortex 19, 2993–3000 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Diana, R. A., Yonelinas, A. P. & Ranganath, C. Imaging recollection and familiarity in the medial temporal lobe: a three-component model. Trends Cogn. Sci. 11, 379–386 (2007).

    Article  PubMed  Google Scholar 

  83. Davachi, L. Item, context and relational episodic encoding in humans. Curr. Opin. Neurobiol. 16, 693–700 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Spaniol, J. et al. Event-related fMRI studies of episodic encoding and retrieval: meta-analyses using activation likelihood estimation. Neuropsychologia 47, 1765–1779 (2009).

    Article  PubMed  Google Scholar 

  85. Vilberg, K. L. & Rugg, M. D. Memory retrieval and the parietal cortex: a review of evidence from a dual-process perspective. Neuropsychologia 46, 1787–1799 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Tubridy, S. & Davachi, L. Medial temporal lobe contributions to episodic sequence encoding. Cereb. Cortex 21, 272–280 (2011).

    Article  PubMed  Google Scholar 

  87. Jenkins, L. J. & Ranganath, C. Prefrontal and medial temporal lobe activity at encoding predicts temporal context memory. J. Neurosci. 30, 15558–15565 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yonelinas, A. P., Otten, L. J., Shaw, K. N. & Rugg, M. D. Separating the brain regions involved in recollection and familiarity in recognition memory. J. Neurosci. 25, 3002–3008 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Johnson, J. D., McDuff, S. G., Rugg, M. D. & Norman, K. A. Recollection, familiarity, and cortical reinstatement: a multivoxel pattern analysis. Neuron 63, 697–708 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Daselaar, S. M., Fleck, M. S. & Cabeza, R. Triple dissociation in the medial temporal lobes: recollection, familiarity, and novelty. J. Neurophysiol. 96, 1902–1911 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Daselaar, S. M. et al. Posterior midline and ventral parietal activity is associated with retrieval success and encoding failure. Front. Hum. Neurosci. 3, 13 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Leshikar, E. D. & Duarte, A. Medial prefrontal cortex supports source memory accuracy for self-referenced items. Soc. Neurosci. 7, 126–145 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Martin, V. C., Schacter, D. L., Corballis, M. C. & Addis, D. R. A role for the hippocampus in encoding simulations of future events. Proc. Natl Acad. Sci. USA 108, 13858–13863 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Ritchey, M., LaBar, K. S. & Cabeza, R. Level of processing modulates the neural correlates of emotional memory formation. J. Cogn. Neurosci. 23, 757–771 (2011).

    Article  PubMed  Google Scholar 

  95. Buckner, R. L., Andrews-Hanna, J. R. & Schacter, D. L. The brain's default network: anatomy, function, and relevance to disease. Ann. NY Acad. Sci. 1124, 1–38 (2008).

    Article  PubMed  Google Scholar 

  96. Maguire, E. A. The retrosplenial contribution to human navigation: a review of lesion and neuroimaging findings. Scand. J. Psychol. 42, 225–238 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Svoboda, E., McKinnon, M. C. & Levine, B. The functional neuroanatomy of autobiographical memory: a meta-analysis. Neuropsychologia 44, 2189–2208 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  98. St Jacques, P. L., Conway, M. A., Lowder, M. W. & Cabeza, R. Watching my mind unfold versus yours: an fMRI study using a novel camera technology to examine neural differences in self-projection of self versus other perspectives. J. Cogn. Neurosci. 23, 1275–1284 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Spreng, R. N., Mar, R. A. & Kim, A. S. N. The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis. J. Cogn. Neurosci. 21, 489–510 (2009). This article is a meta-analysis of fMRI studies showing that the PHC, RSC, posterior hippocampus and default network are reliably recruited across autobiographical memory, virtual spatial navigation, theory of mind and episodic simulation tasks.

    Article  PubMed  Google Scholar 

  100. Szpunar, K. K., Watson, J. M. & McDermott, K. B. Neural substrates of envisioning the future. Proc. Natl Acad. Sci. USA 104, 642–647 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Szpunar, K. K., Chan, J. C. K. & McDermott, K. B. Contextual processing in episodic future thought. Cereb. Cortex 19, 1539–1548 (2009).

    Article  PubMed  Google Scholar 

  102. Addis, D. R., Pan, L., Vu, M.-A., Laiser, N. & Schacter, D. L. Constructive episodic simulation of the future and the past: distinct subsystems of a core brain network mediate imagining and remembering. Neuropsychologia 47, 2222–2238 (2009).

    Article  PubMed  Google Scholar 

  103. Hassabis, D. & Maguire, E. A. Deconstructing episodic memory with construction. Trends Cogn. Sci. 11, 299–306 (2007).

    Article  PubMed  Google Scholar 

  104. Buckner, R. L. & Carroll, D. C. Self-projection and the brain. Trends Cogn. Sci. 11, 49–57 (2007).

    Article  PubMed  Google Scholar 

  105. Norman, G. & Eacott, M. J. Dissociable effects of lesions to the perirhinal cortex and the postrhinal cortex on memory for context and objects in rats. Behav. Neurosci. 119, 557–566 (2005). This article reports a double dissociation between the effects of PRC and postrhinal cortex lesions, such that the former impair object recognition and the latter impair context recognition.

    Article  CAS  PubMed  Google Scholar 

  106. Wan, H., Aggleton, J. P. & Brown, M. W. Different contributions of the hippocampus and perirhinal cortex to recognition memory. J. Neurosci. 19, 1142–1148 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bucci, D. J., Saddoris, M. P. & Burwell, R. D. Contextual fear discrimination is impaired by damage to the postrhinal or perirhinal cortex. Behav. Neurosci. 116, 479–488 (2002).

    Article  PubMed  Google Scholar 

  108. Burwell, R. D., Saddoris, M. P., Bucci, D. J. & Wiig, K. A. Corticohippocampal contributions to spatial and contextual learning. J. Neurosci. 24, 3826–3836 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Vann, S. D. & Aggleton, J. P. Extensive cytotoxic lesions of the rat retrosplenial cortex reveal consistent deficits on tasks that tax allocentric spatial memory. Behav. Neurosci. 116, 85–94 (2002).

    Article  PubMed  Google Scholar 

  110. Keene, C. S. & Bucci, D. J. Neurotoxic lesions of retrosplenial cortex disrupt signaled and unsignaled contextual fear conditioning. Behav. Neurosci. 122, 1070–1077 (2008).

    Article  PubMed  Google Scholar 

  111. Alvarado, M. C. & Bachevalier, J. Comparison of the effects of damage to the perirhinal and parahippocampal cortex on transverse patterning and location memory in rhesus macaques. J. Neurosci. 25, 1599–1609 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bachevalier, J. & Nemanic, S. Memory for spatial location and object-place associations are differently processed by the hippocampal formation, parahippocampal areas TH/TF and perirhinal cortex. Hippocampus 18, 64–80 (2008).

    Article  PubMed  Google Scholar 

  113. Malkova, L. & Mishkin, M. One-trial memory for object-place associations after separate lesions of hippocampus and posterior parahippocampal region in the monkey. J. Neurosci. 23, 1956–1965 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bohbot, V. D., Allen, J. J. & Nadel, L. Memory deficits characterized by patterns of lesions to the hippocampus and parahippocampal cortex. Ann. NY Acad. Sci. 911, 355–368 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Uncapher, M. R., Otten, L. J. & Rugg, M. D. Episodic encoding is more than the sum of its parts: an fMRI investigation of multifeatural contextual encoding. Neuron 52, 547–556 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sommer, T., Rose, M., Weiller, C. & Buchel, C. Contributions of occipital, parietal and parahippocampal cortex to encoding of object-location associations. Neuropsychologia 43, 732–743 (2005).

    Article  PubMed  Google Scholar 

  117. Ross, R. S. & Slotnick, S. D. The hippocampus is preferentially associated with memory for spatial context. J. Cogn. Neurosci. 20, 432–446 (2008).

    Article  PubMed  Google Scholar 

  118. Cansino, S., Maquet, P., Dolan, R. J. & Rugg, M. D. Brain activity underlying encoding and retrieval of source memory. Cereb. Cortex 12, 1048–1056 (2002).

    Article  PubMed  Google Scholar 

  119. Baumann, O., Chan, E. & Mattingley, J. B. Dissociable neural circuits for encoding and retrieval of object locations during active navigation in humans. Neuroimage 49, 2816–2825 (2010).

    Article  PubMed  Google Scholar 

  120. Janzen, G. & van Turennout, M. Selective neural representation of objects relevant for navigation. Nature Neurosci. 7, 673–677 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Schinazi, V. R. & Epstein, R. A. Neural correlates of real-world route learning. Neuroimage 53, 725–735 (2010).

    Article  PubMed  Google Scholar 

  122. Ekstrom, A. D., Copara, M. S., Isham, E. A., Wang, W.-C. & Yonelinas, A. P. Dissociable networks involved in spatial and temporal order source retrieval. Neuroimage 56, 1803–1813 (2011).

    Article  PubMed  Google Scholar 

  123. Epstein, R. & Kanwisher, N. A cortical representation of the local visual environment. Nature 392, 598–601 (1998).

    Article  CAS  PubMed  Google Scholar 

  124. Epstein, R., Harris, A., Stanley, D. & Kanwisher, N. The parahippocampal place area: recognition, navigation, or encoding? Neuron 23, 115–125 (1999).

    Article  CAS  PubMed  Google Scholar 

  125. Mullally, S. L. & Maguire, E. A. A. New role for the parahippocampal cortex in representing space. J. Neurosci. 31, 7441–7449 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Bar, M. & Aminoff, E. Cortical analysis of visual context. Neuron 38, 347–358 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Takahashi, N. & Kawamura, M. Pure topographical disorientation — the anatomical basis of landmark agnosia. Cortex 38, 717–725 (2002).

    Article  PubMed  Google Scholar 

  128. Landis, T., Cummings, J. L., Benson, D. F. & Palmer, E. P. Loss of topographic familiarity. An environmental agnosia. Arch. Neurol. 43, 132–136 (1986).

    Article  CAS  PubMed  Google Scholar 

  129. Ekstrom, A. D. et al. Cellular networks underlying human spatial navigation. Nature 425, 184–188 (2003).

    Article  CAS  PubMed  Google Scholar 

  130. Burwell, R. D. & Hafeman, D. M. Positional firing properties of postrhinal cortex neurons. Neuroscience 119, 577–588 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Hassabis, D. et al. Decoding neuronal ensembles in the human hippocampus. Curr. Biol. 19, 546–554 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. O'Craven, K. M. & Kanwisher, N. Mental imagery of faces and places activates corresponding stiimulus-specific brain regions. J. Cogn. Neurosci. 12, 1013–1023 (2000).

    Article  CAS  PubMed  Google Scholar 

  133. Park, S., Intraub, H., Yi, D.-J., Widders, D. & Chun, M. M. Beyond the edges of a view: boundary extension in human scene-selective visual cortex. Neuron 54, 335–342 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. Ekstrom, A. D. et al. Human hippocampal theta activity during virtual navigation. Hippocampus 15, 881–889 (2005).

    Article  PubMed  Google Scholar 

  135. Epstein, R. Parahippocampal and retrosplenial contributions to human spatial navigation. Trends Cogn. Sci. 12, 388–396 (2008). A succinct but thorough review of evidence regarding the roles of PHC and RSC in spatial cognition.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Aguirre, G. K. & D'Esposito, M. Topographical disorientation: a synthesis and taxonomy. Brain 122, 1613–1628 (1999).

    Article  PubMed  Google Scholar 

  137. Kelley, W. M. et al. Finding the self? An event-related fMRI study. J. Cogn. Neurosci. 14, 785–794 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. D'Argembeau, A. et al. The neural basis of personal goal processing when envisioning future events. J. Cogn. Neurosci. 22, 1701–1713 (2010).

    Article  PubMed  Google Scholar 

  139. Moran, J. M., Macrae, C. N., Heatherton, T. F., Wyland, C. L. & Kelley, W. M. Neuroanatomical evidence for distinct cognitive and affective components of self. J. Cogn. Neurosci. 18, 1586–1594 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. Sajonz, B. et al. Delineating self-referential processing from episodic memory retrieval: common and dissociable networks. NeuroImage 50, 1606–1617 (2010).

    Article  PubMed  Google Scholar 

  141. Greene, J. & Haidt, J. How (and where) does moral judgment work? Trends Cogn. Sci. 6, 517–523 (2002).

    Google Scholar 

  142. Aggleton, J. P. & Pearce, J. M. Neural systems underlying episodic memory: insights from animal research. Phil. Trans. R. Soc. Lond. B 356, 1467–1482 (2001).

    Article  CAS  Google Scholar 

  143. Bird, C. M. & Burgess, N. The hippocampus and memory: insights from spatial processing. Nature Rev. Neurosci. 9, 182–194 (2008).

    Article  CAS  Google Scholar 

  144. Murray, E. A. The amygdala, reward and emotion. Trends Cogn. Sci. 11, 489–497 (2007).

    Article  PubMed  Google Scholar 

  145. Horel, J. A., Voytko, M. L. & Salsbury, K. G. Visual learning suppressed by cooling the temporal pole. Behav. Neurosci. 98, 310–324 (1984).

    Article  CAS  PubMed  Google Scholar 

  146. Farovik, A., Place, R. J., Miller, D. R. & Eichenbaum, H. Amygdala lesions selectively impair familiarity in recognition memory. Nature Neurosci. 14, 1416–1417 (2011).

    Article  CAS  PubMed  Google Scholar 

  147. Meunier, M., Bachevalier, J. & Mishkin, M. Effects of orbital frontal and anterior cingulate lesions on object and spatial memory in rhesus monkeys. Neuropsychologia 35, 999–1015 (1997).

    Article  CAS  PubMed  Google Scholar 

  148. Xiang, J. Z. & Brown, M. W. Neuronal responses related to long-term recognition memory processes in prefrontal cortex. Neuron 42, 817–829 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Olson, I. R., Plotzker, A. & Ezzyat, Y. The Enigmatic temporal pole: a review of findings on social and emotional processing. Brain 130, 1718–1731 (2007).

    Article  PubMed  Google Scholar 

  150. LaBar, K. S. & Cabeza, R. Cognitive neuroscience of emotional memory. Nature Rev. Neurosci. 7, 54–64 (2006).

    Article  CAS  Google Scholar 

  151. Kluver, H. & Bucy, P.C. “Psychic blindness” and other symptoms following bilateral temporal lobectomy in Rhesus monkeys. Am. J. Physiol. 119, 352–353 (1937).

    Google Scholar 

  152. Adolphs, R. What does the amygdala contribute to social cognition? Ann. NY Acad. Sci. 1191, 42–61 (2010).

    Article  Google Scholar 

  153. Phelps, E. A. & LeDoux, J. E. Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron 48, 175–187 (2005).

    Article  CAS  PubMed  Google Scholar 

  154. Murty, V. Ritchey, M., Adcock, R. A. & LaBar, K. S. fMRI studies of successful emotional memory encoding: a quantitative meta-analysis. Neuropsychologia 48, 3459–3469 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Rushworth, M. F. S., Noonan, M. P., Boorman, E. D., Walton, M. E. & Behrens, T. E. Frontal cortex and reward-guided learning and decision-making. Neuron 70, 1054–1069 (2011).

    Article  CAS  PubMed  Google Scholar 

  156. Tranel, D., Damasio, H. & Damasio, A. R. A neural basis for the retrieval of conceptual knowledge. Neuropsychologia 35, 1319–1327 (1997).

    Article  CAS  PubMed  Google Scholar 

  157. Mayes, A. R., Meudell, R., Mann, D. & Pickering, A. Location of lesions in Korsakoff's Syndrome: neuropsychological and neuropathological data on two patients. Cortex 24, 367–388 (1987).

    Article  Google Scholar 

  158. Aggleton, J. P. et al. Hippocampal-anterior thalamic pathways for memory: uncovering a network of direct and indirect actions. Eur. J. Neurosci. 31, 2292–2307 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Garden, D. L. et al. Anterior thalamic lesions stop synaptic plasticity in retrosplenial cortex slices: expanding the pathology of diencephalic amnesia. Brainy 132, 1847–1857 (2009).

    Article  Google Scholar 

  160. Cabeza, R., Ciaramelli, E., Olson, I. R. & Moscovitch, M. The parietal cortex and episodic memory: an attentional account. Nature Rev. Neurosci. 9, 613–625 (2008).

    Article  CAS  Google Scholar 

  161. Berryhill, M. E., Phuong, L., Picasso, L., Cabeza, R. & Olson, I. R. Parietal lobe and episodic memory: bilateral damage causes impaired free recall of autobiographical memory. J. Neurosci. 27, 14415–14423 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Simons, J. S., Peers, P. V., Mazuz, Y. S., Berryhill, M. E. & Olson, I. R. Dissociation between memory accuracy and memory confidence following bilateral parietal lesions. Cereb. Cortex 20, 479–485 (2010).

    Article  PubMed  Google Scholar 

  163. Yoder, R. M., Clark, B. J. & Taube, J. S. Origins of landmark encoding in the brain. Trends Neurosci. 34, 561–571 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Bar, M. Visual objects in context. Nature Rev. Neurosci. 5, 617–629 (2004). This article presents the view that the PHC and RSC extract information about context on the basis of global visual scene information, thereby facilitating object recognition.

    Article  CAS  Google Scholar 

  165. Zwaan, R. A. & Radvansky, G. A. Situation models in language comprehension and memory. Psychol. Bull. 123, 162–185 (1998). A well-written review and theoretical synthesis of behavioural research on situation models in memory, language and spatial cognition.

    Article  CAS  PubMed  Google Scholar 

  166. Kintsch, W. The role of knowledge in discourse comprehension: a construction-integration model. Psychol. Rev. 95, 163–182 (1988).

    Article  CAS  PubMed  Google Scholar 

  167. Tse, D. et al. Schema-dependent gene activation and memory encoding in neocortex. Science 333, 891–895 (2011).

    Article  CAS  PubMed  Google Scholar 

  168. Oliva, A. & Torralba, A. The role of context in object recognition. Trends Cogn. Sci. 11, 520–527 (2007).

    Article  PubMed  Google Scholar 

  169. Ranganath, C. & Rainer, G. Neural mechanisms for detecting and remembering novel events. Nature Rev. Neurosci. 4, 193–202 (2003).

    Article  CAS  Google Scholar 

  170. de Curtis, M. & Pare, D. The rhinal cortices: a wall of inhibition between the neocortex and the hippocampus. Prog. Neurobiol. 74, 101–110 (2004). A review of physiological research suggesting that excitatory inputs from the PRC to the hippocampal formation are subject to intense, long-range inhibition, thus limiting the extent to which the two regions can functionally interact.

    Article  PubMed  Google Scholar 

  171. Eacott, M. J. & Gaffan, E. A. The roles of perirhinal cortex, postrhinal cortex, and the fornix in memory for objects, contexts, and events in the rat. Q. J. Exp. Psychol. B 58, 202–217 (2005).

    Article  CAS  PubMed  Google Scholar 

  172. Ranganath, C. & Blumenfeld, R. S. in Learning and Memory: A Comprehensive Reference (ed. Byrne, J. H.) 261–279 (Academic Press, 2008).

    Book  Google Scholar 

  173. Suzuki, W. A. & Amaral, D. G. Where are the perirhinal and parahippocampal cortices? A historical overview of the nomenclature and boundaries applied to the primate medial temporal lobe. Neuroscience 120, 893–906 (2003).

    Article  CAS  PubMed  Google Scholar 

  174. Seeley, W. W., Crawford, R. K., Zhou, J., Miller, B. L. & Greicius, M. D. Neurodegenerative diseases target large-scale human brain networks. Neuron 62, 42–52 (2009). This study demonstrates that functional connectivity analysis of resting-state fMRI data and analysis of covariance in cortical thickness provide converging evidence regarding networks in the brain, and that these networks are differentially targeted by neurodegenerative diseases. Semantic dementia was associated with degeneration of an anterior temporal network that included the ventral temporopolar cortex, whereas Alzheimer's disease was associated with degeneration of a posterior network that included the medial and ventrolateral parietal cortex and posterior cingulate.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Nestor, P. J., Fryer, T. D. & Hodges, J. R. Declarative memory impairments in Alzheimer's disease and semantic dementia. Neuroimage 30, 1010–1020 (2006).

    Article  PubMed  Google Scholar 

  176. Staresina, B. P., Duncan, K. D. & Davachi, L. Perirhinal and parahippocampal cortices differentially contribute to later recollection of object- and scene-related event details. J. Neurosci. 31, 8739–8747 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Bernasconi, N. et al. Mesial temporal damage in temporal lobe epilepsy: a volumetric MRI study of the hippocampus, amygdala and parahippocampal region. Brain 126, 462–469 (2003).

    Article  CAS  PubMed  Google Scholar 

  178. Bonilha, L., Kobayashi, E., Rorden, C., Cendes, F. & Li, L. M. Medial temporal lobe atrophy in patients with refractory temporal lobe epilepsy. J. Neurol. Neurosurg. Psychiatry 74, 1627–1630 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Galton, C. J. et al. Differing patterns of temporal atrophy in Alzheimer's disease and semantic dementia. Neurology 57, 216–225 (2001).

    Article  CAS  PubMed  Google Scholar 

  180. Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C. & Wager. T. D. Large-scale automated synthesis of human functional neuroimaging data. Nature Methods 8, 665–670 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the many colleagues (including three anonymous reviewers) who gave helpful suggestions and comments on previous drafts and apologize to those whose work could not be cited owing to citation limits. This paper was supported by US National Institute of Mental Health grant 1R01MH083734.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charan Ranganath.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Charan Ranganath's homepage

NeuroSynth

Glossary

Hippocampal formation

A term used to collectively describe the entorhinal cortex, dentate gyrus, subfields CA1, CA2 and CA3, and the subiculum.

Immediate early gene

A gene that encodes a transcription factor that is induced within minutes of raised neuronal activity without requiring a protein signal. Immediate early gene activation is therefore used as an indirect marker of neuronal activation.

Semantic priming

A quickening in reaction time for responding to words that are preceded by a semantically related “priming stimulus”.

Autobiographical memories

Memories of personal events from an individual's life.

Retrograde amnesia

Memory loss of events that occurred before the onset of a memory disorder. Typically, following the onset of medial temporal lobe damage, patients show a reduced ability to recollect episodes from the time period before the brain damage occurred.

Delayed non-matching to place task

A spatial recognition memory task in which animals have to distinguish a non-visited arm of a maze from a previously visited arm and enter the non-visited arm in order to receive a reward.

Theta oscillations

Large, rhythmic changes in the amplitude of local field potentials that are seen in the 5–12 Hz frequency in rodents and in the 4–8 Hz range in humans. Theta oscillations are evident during active exploration of novel environments and have been functionally associated with spatial navigation and memory for temporal sequences.

Theory of mind

The ability to understand the mental states — such as beliefs, desires and intentions — of others.

Connectional fingerprints

The patterns of cortico–cortical connections exhibited by cytoarchitectonic areas.

Systems consolidation

A hypothesized process by which the brain regions that support memory of a particular experience are thought to change over time. Systems consolidation theories are typically invoked to explain differential effects of brain lesions on memories of recent and remote events.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ranganath, C., Ritchey, M. Two cortical systems for memory-guided behaviour. Nat Rev Neurosci 13, 713–726 (2012). https://doi.org/10.1038/nrn3338

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3338

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing