Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Repertoire of microglial and macrophage responses after spinal cord injury

Key Points

  • Macrophages derived from the peripheral circulation and from resident microglia are among the main effectors of the inflammatory response after spinal cord injury.

  • Activated macrophages/microglia in the injured spinal cord contribute to secondary tissue damage through generation of reactive oxygen species, the production of pro-inflammatory cytokines and other factors. Macrophages under certain conditions also seem to have beneficial properties in the injured CNS.

  • Current understanding of macrophage polarization may provide better insights into why activated macrophages/microglia in the injured CNS have detrimental as well as beneficial properties.

  • Studies in the field of infectious disease, tumour biology and other non-neural systems indicate that macrophages can be polarized to a 'classically' activated M1 cell that is pro-inflammatory and cytotoxic, or to an 'alternatively' activated M2 cell that is anti-inflammatory and has reparative properties.

  • The microenvironment of the injured spinal cord favours polarization of M1 macrophages, with only a weak and transient M2 polarization.

  • Understanding how to put the brake on M1 polarization and promote M2 polarization in the injured spinal cord may lead to the development of novel therapeutic approaches for treating spinal cord injury.

Abstract

Macrophages from the peripheral circulation and those derived from resident microglia are among the main effector cells of the inflammatory response that follows spinal cord trauma. There has been considerable debate in the field as to whether the inflammatory response is good or bad for tissue protection and repair. Recent studies on macrophage polarization in non-neural tissues have shed much light on their changing functional states. In the context of this literature, we discuss the activation of macrophages and microglia following spinal cord injury, and their effects on repair. Harnessing their anti-inflammatory properties could pave the way for new therapeutic strategies for spinal cord trauma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Macrophages and microglia in the CNS.
Figure 2: M1 and M2 polarization.

Similar content being viewed by others

References

  1. Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010). This study provides evidence that microglia in the adult brain are derived from primitive myeloid progenitors in the yolk sac very early in embryonic development

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yong, V. W. & Rivest, S. Taking advantage of the systemic immune system to cure brain diseases. Neuron 64, 55–60 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Dai, X. M. et al. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood 99, 111–120 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Geissmann, F., Jung, S. & Littman, D. R. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19, 71–82 (2003). The authors identified two subsets of blood monocytes in mice. A CX3CR1low, GR1+ population recruited to inflammatory sites and a CX3CR1high, GR1 recruited to non-inflamed tissue.

    Article  CAS  PubMed  Google Scholar 

  5. Fogg, D. K. et al. A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 311, 83–87 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Naik, S. H. et al. Intrasplenic steady-state dendritic cell precursors that are distinct from monocytes. Nature Immunol. 7, 663–671 (2006).

    Article  CAS  Google Scholar 

  7. Serbina, N. V., Salazar-Mather, T. P., Biron, C. A., Kuziel, W. A. & Pamer, E. G. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 19, 59–70 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Auffray, C. et al. CX3CR1+ CD115+ CD135+ common macrophage/DC precursors and the role of CX3CR1 in their response to inflammation. J. Exp. Med. 206, 595–606 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ginhoux, F. et al. Langerhans cells arise from monocytes in vivo. Nature Immunol. 7, 265–273 (2006).

    Article  CAS  Google Scholar 

  10. Landsman, L. & Jung, S. Lung macrophages serve as obligatory intermediate between blood monocytes and alveolar macrophages. J. Immunol. 179, 3488–3494 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Landsman, L., Varol, C. & Jung, S. Distinct differentiation potential of blood monocyte subsets in the lung. J. Immunol. 178, 2000–2007 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Varol, C. et al. Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J. Exp. Med. 204, 171–180 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Greter, M. et al. Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nature Med. 11, 328–334 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. King, I. L., Dickendesher, T. L. & Segal, B. M. Circulating Ly-6C+ myeloid precursors migrate to the CNS and play a pathogenic role during autoimmune demyelinating disease. Blood 113, 3190–3197 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pineau, I., Sun, L., Bastien, D. & Lacroix, S. Astrocytes initiate inflammation in the injured mouse spinal cord by promoting the entry of neutrophils and inflammatory monocytes in an IL-1 receptor/MyD88-dependent fashion. Brain Behav. Immun. 24, 540–553 (2010). This study provides the first evidence of influx of inflammatory and resident monocytes into the injured spinal cord, and describes their differences in IL-1R and MYD88 signalling.

    Article  CAS  PubMed  Google Scholar 

  16. Sroga, J. M., Jones, T. B., Kigerl, K. A., McGaughy, V. M. & Popovich, P. G. Rats and mice exhibit distinct inflammatory reactions after spinal cord injury. J. Comp. Neurol. 462, 223–240 (2003).

    Article  PubMed  Google Scholar 

  17. Donnelly, D. J. & Popovich, P. G. Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp. Neurol. 209, 378–388 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Fleming, J. C. et al. The cellular inflammatory response in human spinal cords after injury. Brain 129, 3249–3269 (2006).

    Article  PubMed  Google Scholar 

  19. Schwab, J. M. & Serhan, C. N. Lipoxins and new lipid mediators in the resolution of inflammation. Curr. Opin. Pharmacol. 6, 414–420 (2006). This paper reviews the role of lipoxins and other lipid mediators in the resolution of inflammation.

    Article  CAS  PubMed  Google Scholar 

  20. Schwab, J. M., Chiang, N., Arita, M. & Serhan, C. N. Resolvin E1 and protectin D1 activate inflammation-resolution programmes. Nature 447, 869–874 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Prüss, H. et al. Non-resolving aspects of acute inflammation after spinal cord injury (SCI): indices and resolution plateau. Brain Pathol. 24 Apr 2011 (doi:10.1111/j.1750-3639.2011.00488.x).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Huang, W. L. et al. A combination of intravenous and dietary docosahexaenoic acid significantly improves outcome after spinal cord injury. Brain 130, 3004–3019 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. King, V. R. et al. Omega-3 fatty acids improve recovery, whereas omega-6 fatty acids worsen outcome, after spinal cord injury in the adult rat. J. Neurosci. 26, 4672–4680 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ward, R. E., Huang, W., Curran, O. E., Priestley, J. V. & Michael-Titus, A. T. Docosahexaenoic acid prevents white matter damage after spinal cord injury. J. Neurotrauma 27, 1769–1780 (2010).

    Article  PubMed  Google Scholar 

  25. Lim, S. N. et al. The acute administration of eicosapentaenoic acid is neuroprotective after spinal cord compression injury in rats. Prostaglandins Leukot. Essent. Fatty Acids 83, 193–201 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. López-Vales, R. et al. Fenretinide promotes functional recovery and tissue protection after spinal cord contusion injury in mice. J. Neurosci. 30, 3220–3226 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang, B. et al. Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res. 66, 1123–1131 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Rodrigues, J. C. et al. Normal human monocytes exposed to glioma cells acquire myeloid-derived suppressor cell-like properties. Neuro Oncol. 12, 351–365 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Sunderkotter, C. et al. Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J. Immunol. 172, 4410–4417 (2004).

    Article  PubMed  Google Scholar 

  30. Auffray, C. et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317, 666–670 (2007). Intravital confocal microscopy imaging study showing that 'resident' monocytes crawl along the resting endothelial cells. This patrolling behaviour is dependent on the integrin LFA1 and CX3CR1.

    Article  CAS  PubMed  Google Scholar 

  31. Auffray, C., Sieweke, M. H. & Geissmann, F. Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu. Rev. Immunol. 27, 669–692 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Nahrendorf, M. et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med. 204, 3037–3047 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Geissmann, F. et al. Blood monocytes: distinct subsets, how they relate to dendritic cells, and their possible roles in the regulation of T-cell responses. Immunol. Cell Biol. 86, 398–408 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Kobayashi, M. et al. M2b monocytes predominated in peripheral blood of severely burned patients. J. Immunol. 185, 7174–7179 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. London, A. et al. Neuroprotection and progenitor cell renewal in the injured adult murine retina requires healing monocyte-derived macrophages. J. Exp. Med. 208, 23–39 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shechter, R. et al. Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med. 6, e1000113 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Davalos, D. et al. ATP mediates rapid microglial response to local brain injury in vivo. Nature Neurosci. 8, 752–758 (2005). Time-lapse two-photon imaging of green fluorescent protein-labelled microglia demonstrates the rapid motility of microglial processes towards sites of injury in mouse brain. This motility is mediated by ATP, purinergic receptors and connexins.

    Article  CAS  PubMed  Google Scholar 

  38. Hines, D. J., Hines, R. M., Mulligan, S. J. & Macvicar, B. A. Microglia processes block the spread of damage in the brain and require functional chloride channels. Glia 57, 1610–1618 (2009).

    Article  PubMed  Google Scholar 

  39. Haynes, S. E. et al. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nature Neurosci. 9, 1512–1519 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Wu, L. J., Vadakkan, K. I. & Zhuo, M. ATP-induced chemotaxis of microglial processes requires P2Y receptor-activated initiation of outward potassium currents. Glia 55, 810–821 (2007).

    Article  PubMed  Google Scholar 

  41. Ohsawa, K. et al. P2Y12 receptor-mediated integrin-β1 activation regulates microglial process extension induced by ATP. Glia 58, 790–801 (2010).

    PubMed  Google Scholar 

  42. Franke, H. et al. P2 receptor-mediated stimulation of the PI3-K/Akt-pathway in vivo. Glia 57, 1031–1045 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Irino, Y., Nakamura, Y., Inoue, K., Kohsaka, S. & Ohsawa, K. Akt activation is involved in P2Y12 receptor-mediated chemotaxis of microglia. J. Neurosci. Res. 86, 1511–1519 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Liang, K. J. et al. Regulation of dynamic behavior of retinal microglia by CX3CR1 signaling. Invest. Ophthalmol. Vis. Sci. 50, 4444–4451 (2009).

    Article  PubMed  Google Scholar 

  45. Dibaj, P. et al. NO mediates microglial response to acute spinal cord injury under ATP control in vivo. Glia 58, 1133–1144 (2010).

    Article  PubMed  Google Scholar 

  46. Ransohoff, R. M. & Perry, V. H. Microglial physiology: unique stimuli, specialized responses. Annu. Rev. Immunol. 27, 119–145 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Perry, V. H., Cunningham, C. & Holmes, C. Systemic infections and inflammation affect chronic neurodegeneration. Nature Rev. Immunol. 7, 161–167 (2007). This paper discusses evidence that microglia can undergo a phenotype switch without changing their morphology.

    Article  CAS  Google Scholar 

  48. Zhang, J. et al. Expression of CCR2 in both resident and bone marrow-derived microglia plays a critical role in neuropathic pain. J. Neurosci. 27, 12396–12406 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Deng, Y. Y., Lu, J., Ling, E. A. & Kaur, C. Monocyte chemoattractant protein-1 (MCP-1) produced via NF-κB signaling pathway mediates migration of amoeboid microglia in the periventricular white matter in hypoxic neonatal rats. Glia 57, 604–621 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Schwab, J. M. et al. AIF-1 expression defines a proliferating and alert microglial/macrophage phenotype following spinal cord injury in rats. J. Neuroimmunol. 119, 214–222 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Ip, C. W. et al. Origin of CD11b+ macrophage-like cells in the CNS of PLP-overexpressing mice: low influx of haematogenous macrophages and unchanged blood-brain-barrier in the optic nerve. Mol. Cell Neurosci. 38, 489–494 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Ip, C. W. et al. Immune cells contribute to myelin degeneration and axonopathic changes in mice overexpressing proteolipid protein in oligodendrocytes. J. Neurosci. 26, 8206–8216 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ip, C. W., Kroner, A., Crocker, P. R., Nave, K. A. & Martini, R. Sialoadhesin deficiency ameliorates myelin degeneration and axonopathic changes in the CNS of PLP overexpressing mice. Neurobiol. Dis. 25, 105–111 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Schonrock, L. M., Kuhlmann, T., Adler, S., Bitsch, A. & Bruck, W. Identification of glial cell proliferation in early multiple sclerosis lesions. Neuropathol. Appl. Neurobiol. 24, 320–330 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Imamoto, K. & Leblond, C. P. Presence of labeled monocytes, macrophages and microglia in a stab wound of the brain following an injection of bone marrow cells labeled with 3H-uridine into rats. J. Comp. Neurol. 174, 255–279 (1977).

    Article  CAS  PubMed  Google Scholar 

  56. Popovich, P. G. & Hickey, W. F. Bone marrow chimeric rats reveal the unique distribution of resident and recruited macrophages in the contused rat spinal cord. J. Neuropathol. Exp. Neurol. 60, 676–685 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Popovich, P. G. et al. Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury. Exp. Neurol. 158, 351–365 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Bendszus, M. & Stoll, G. Caught in the act: in vivo mapping of macrophage infiltration in nerve injury by magnetic resonance imaging. J. Neurosci. 23, 10892–10896 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Horky, L. L., Galimi, F., Gage, F. H. & Horner, P. J. Fate of endogenous stem/progenitor cells following spinal cord injury. J. Comp. Neurol. 498, 525–538 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Imai, M. et al. Delayed accumulation of activated macrophages and inhibition of remyelination after spinal cord injury in an adult rodent model. J. Neurosurg. Spine 8, 58–66 (2008).

    Article  PubMed  Google Scholar 

  61. Pineau, I. & Lacroix, S. Proinflammatory cytokine synthesis in the injured mouse spinal cord: multiphasic expression pattern and identification of the cell types involved. J. Comp. Neurol. 500, 267–285 (2007). A study that used in situ hybridization combined with immunofluorescence to identify the cell types that express various pro-inflammatory cytokines in the injured spinal cord after contusion injury.

    Article  CAS  PubMed  Google Scholar 

  62. Yang, L. et al. Early expression and cellular localization of proinflammatory cytokines interleukin-1β, interleukin-6, and tumor necrosis factor-α in human traumatic spinal cord injury. Spine 29, 966–971 (2004).

    Article  PubMed  Google Scholar 

  63. Nesic, O. et al. IL-1 receptor antagonist prevents apoptosis and caspase-3 activation after spinal cord injury. J. Neurotrauma 18, 947–956 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Yang, L. et al. Severity-dependent expression of pro-inflammatory cytokines in traumatic spinal cord injury in the rat. J. Clin. Neurosci. 12, 276–284 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Ferguson, A. R. et al. Cell death after spinal cord injury is exacerbated by rapid TNF α-induced trafficking of GluR2-lacking AMPARs to the plasma membrane. J. Neurosci. 28, 11391–11400 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Probert, L. et al. TNFR1 signalling is critical for the development of demyelination and the limitation of T-cell responses during immune-mediated CNS disease. Brain 123 (Pt 10), 2005–2019 (2000).

    Article  PubMed  Google Scholar 

  67. Genovese, T. et al. TNF-α blockage in a mouse model of SCI: evidence for improved outcome. Shock 29, 32–41 (2008).

    CAS  PubMed  Google Scholar 

  68. Letellier, E. et al. CD95-ligand on peripheral myeloid cells activates Syk kinase to trigger their recruitment to the inflammatory site. Immunity 32, 240–252 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. López-Vales, R. et al. FK 506 reduces tissue damage and prevents functional deficit after spinal cord injury in the rat. J. Neurosci. Res. 81, 827–836 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Stirling, D. P. et al. Minocycline treatment reduces delayed oligodendrocyte death, attenuates axonal dieback, and improves functional outcome after spinal cord injury. J. Neurosci. 24, 2182–2190 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Iannotti, C. A. et al. A combination immunomodulatory treatment promotes neuroprotection and locomotor recovery after contusion SCI. Exp. Neurol. 23 Mar 2010 (doi:10.1016/j.expneurol.2010.03.010).

    Article  CAS  PubMed  Google Scholar 

  72. Thuraisingam, T. et al. Distinct role of MAPKAPK-2 in the regulation of TNF gene expression by Toll-like receptor 7 and 9 ligands. Mol. Immunol. 44, 3482–3491 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Kaushal, V., Koeberle, P. D., Wang, Y. & Schlichter, L. C. The Ca2+-activated K+ channel KCNN4/KCa3.1 contributes to microglia activation and nitric oxide-dependent neurodegeneration. J. Neurosci. 27, 234–244 (2007). This study provides evidence that KCNN4 (also known as KCa3.1) contributes to microglia activation, upregulates production of nitric oxide and peroxynitrite, and promotes neurotoxicity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kaushal, V. & Schlichter, L. C. Mechanisms of microglia-mediated neurotoxicity in a new model of the stroke penumbra. J. Neurosci. 28, 2221–2230 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chatzipanteli, K. et al. Temporal and segmental distribution of constitutive and inducible nitric oxide synthases after traumatic spinal cord injury: effect of aminoguanidine treatment. J. Neurotrauma 19, 639–651 (2002).

    Article  PubMed  Google Scholar 

  76. López-Vales, R., Garcia-Alias, G., Fores, J., Navarro, X. & Verdu, E. Increased expression of cyclo-oxygenase 2 and vascular endothelial growth factor in lesioned spinal cord by transplanted olfactory ensheathing cells. J. Neurotrauma 21, 1031–1043 (2004).

    Article  PubMed  Google Scholar 

  77. Pearse, D. D., Chatzipanteli, K., Marcillo, A. E., Bunge, M. B. & Dietrich, W. D. Comparison of iNOS inhibition by antisense and pharmacological inhibitors after spinal cord injury. J. Neuropathol. Exp. Neurol. 62, 1096–1107 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Cardona, A. E. et al. Control of microglial neurotoxicity by the fractalkine receptor. Nature Neurosci. 9, 917–924 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Denes, A., Ferenczi, S., Halasz, J., Kornyei, Z. & Kovacs, K. J. Role of CX3CR1 (fractalkine receptor) in brain damage and inflammation induced by focal cerebral ischemia in mouse. J. Cereb. Blood Flow Metab. 28, 1707–1721 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Soriano, S. G. et al. Mice deficient in fractalkine are less susceptible to cerebral ischemia-reperfusion injury. J. Neuroimmunol. 125, 59–65 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Lee, S. et al. CX3CR1 deficiency alters microglial activation and reduces β-amyloid deposition in two Alzheimer's disease mouse models. Am. J. Pathol. 177, 2549–2562 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Arnett, H. A. et al. TNF α promotes proliferation of oligodendrocyte progenitors and remyelination. Nature Neurosci. 4, 1116–1122 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Takahashi, K., Rochford, C. D. & Neumann, H. Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J. Exp. Med. 201, 647–657 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Fry, E. J., Ho, C. & David, S. A role for Nogo receptor in macrophage clearance from injured peripheral nerve. Neuron 53, 649–662 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Satoh, J., Onoue, H., Arima, K. & Yamamura, T. Nogo-A and nogo receptor expression in demyelinating lesions of multiple sclerosis. J. Neuropathol. Exp. Neurol. 64, 129–138 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. David, S., Fry, E. J. & Lopez-Vales, R. Novel roles for Nogo receptor in inflammation and disease. Trends Neurosci. 31, 221–226 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Lu, Y. Z., Lin, C. H., Cheng, F. C. & Hsueh, C. M. Molecular mechanisms responsible for microglia-derived protection of Sprague-Dawley rat brain cells during in vitro ischemia. Neurosci. Lett. 373, 159–164 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Wiessner, C. et al. Expression of transforming growth factor-β 1 and interleukin-1 β mRNA in rat brain following transient forebrain ischemia. Acta Neuropathol. 86, 439–446 (1993).

    Article  CAS  PubMed  Google Scholar 

  89. Mitrasinovic, O. M. et al. Microglia overexpressing the macrophage colony-stimulating factor receptor are neuroprotective in a microglial-hippocampal organotypic coculture system. J. Neurosci. 25, 4442–4451 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lambert, C. et al. Dendritic cell differentiation signals induce anti-inflammatory properties in human adult microglia. J. Immunol. 181, 8288–8297 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Bouhy, D. et al. Delayed GM-CSF treatment stimulates axonal regeneration and functional recovery in paraplegic rats via an increased BDNF expression by endogenous macrophages. FASEB J. 20, 1239–1241 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Ha, Y. et al. Role of granulocyte-macrophage colony-stimulating factor in preventing apoptosis and improving functional outcome in experimental spinal cord contusion injury. J. Neurosurg. Spine 2, 55–61 (2005).

    Article  PubMed  Google Scholar 

  93. Rapalino, O. et al. Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nature Med. 4, 814–821 (1998). The first evidence showing that macrophages stimulated in vitro by pieces of peripheral nerve prior to transplantation into the injured spinal cord promote tissue repair and recovery of locomotor function.

    Article  CAS  PubMed  Google Scholar 

  94. Schwartz, M. et al. Potential repair of rat spinal cord injuries using stimulated homologous macrophages. Neurosurgery 44, 1041–1045; discussion 1045–1046 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Lazarov-Spiegler, O. et al. Transplantation of activated macrophages overcomes central nervous system regrowth failure. FASEB J. 10, 1296–1302 (1996).

    Article  CAS  PubMed  Google Scholar 

  96. Lazarov-Spiegler, O., Solomon, A. S. & Schwartz, M. Peripheral nerve-stimulated macrophages simulate a peripheral nerve-like regenerative response in rat transected optic nerve. Glia 24, 329–337 (1998).

    Article  CAS  PubMed  Google Scholar 

  97. Leon, S., Yin, Y., Nguyen, J., Irwin, N. & Benowitz, L. I. Lens injury stimulates axon regeneration in the mature rat optic nerve. J. Neurosci. 20, 4615–4626 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yin, Y. et al. Macrophage-derived factors stimulate optic nerve regeneration. J. Neurosci. 23, 2284–2293 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yin, Y. et al. Oncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells. Nature Neurosci. 9, 843–852 (2006). The identification of a macrophage-derived factor that promotes long distance axon regeneration in the optic nerve.

    Article  CAS  PubMed  Google Scholar 

  100. Paludan, S. R. Interleukin-4 and interferon-γ: the quintessence of a mutual antagonistic relationship. Scand. J. Immunol. 48, 459–468 (1998).

    Article  CAS  PubMed  Google Scholar 

  101. Standiford, T. J. et al. IL-4 inhibits the expression of IL-8 from stimulated human monocytes. J. Immunol. 145, 1435–1439 (1990).

    CAS  PubMed  Google Scholar 

  102. Tanaka, T., Hu-Li, J., Seder, R. A., Fazekas de St Groth, B. & Paul, W. E. Interleukin 4 suppresses interleukin 2 and interferon γ production by naive T cells stimulated by accessory cell-dependent receptor engagement. Proc. Natl Acad. Sci. USA 90, 5914–5918 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wynn, T. A. IL-13 effector functions. Annu. Rev. Immunol. 21, 425–456 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Wynn, T. A. Fibrotic disease and the T(H)1/T(H)2 paradigm. Nature Rev. Immunol. 4, 583–594 (2004).

    Article  CAS  Google Scholar 

  105. Gordon, S. & Taylor, P. R. Monocyte and macrophage heterogeneity. Nature Rev. Immunol. 5, 953–964 (2005).

    Article  CAS  Google Scholar 

  106. Martinez, F. O., Helming, L. & Gordon, S. Alternative activation of macrophages: an immunologic functional perspective. Annu. Rev. Immunol. 27, 451–483 (2009). An in-depth broad review on macrophage polarization.

    Article  CAS  PubMed  Google Scholar 

  107. Biswas, S. K. & Mantovani, A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nature Immunol. 11, 889–896 (2010).

    Article  CAS  Google Scholar 

  108. Mantovani, A. & Locati, M. Orchestration of macrophage polarization. Blood 114, 3135–3136 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Sica, A. et al. Macrophage polarization in tumour progression. Semin. Cancer Biol. 18, 349–355 (2008). A review of tumour-associated macrophages. These M2 macrophages have detrimental effects in that they promote tumour growth and spread, angiogenesis and immunosuppression.

    Article  CAS  PubMed  Google Scholar 

  110. Longbrake, E. E., Lai, W., Ankeny, D. P. & Popovich, P. G. Characterization and modeling of monocyte-derived macrophages after spinal cord injury. J. Neurochem. 102, 1083–1094 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Kigerl, K. A. et al. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J. Neurosci. 29, 13435–13444 (2009). The first report of macrophage polarization in spinal cord injury. This shows that the environment of the injured spinal cord favours M1 polarization.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ghasemlou, N. et al. Beneficial effects of secretory leukocyte protease inhibitor after spinal cord injury. Brain 133, 126–138 (2010).

    Article  PubMed  Google Scholar 

  113. Ghasemlou, N. et al. Mitogen-activated protein kinase-activated protein kinase 2 (MK2) contributes to secondary damage after spinal cord injury. J. Neurosci. 30, 13750–13759 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kerr, B. J., Girolami, E. I., Ghasemlou, N., Jeong, S. Y. & David, S. The protective effects of 15-deoxy-δ-(12, 14)-prostaglandin J2 in spinal cord injury. Glia 56, 436–448 (2008).

    Article  PubMed  Google Scholar 

  115. López-Vales, R. et al. Fenretinide promotes functional recovery and tissue protection after spinal cord contusion injury in mice. J. Neurosci. 30, 3220–3226 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Redensek, A. et al. Expression and detrimental role of hematopoietic prostaglandin D synthase in spinal cord contusion injury. Glia 59, 603–614 (2011).

    Article  PubMed  Google Scholar 

  117. Nishio, Y. et al. Deletion of macrophage migration inhibitory factor attenuates neuronal death and promotes functional recovery after compression-induced spinal cord injury in mice. Acta Neuropathol. 117, 321–328 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Bao, F. et al. Increased oxidative activity in human blood neutrophils and monocytes after spinal cord injury. Exp. Neurol. 215, 308–316 (2009).

    Article  CAS  PubMed  Google Scholar 

  119. Bao, F., Chen, Y., Dekaban, G. A. & Weaver, L. C. Early anti-inflammatory treatment reduces lipid peroxidation and protein nitration after spinal cord injury in rats. J. Neurochem. 88, 1335–1344 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. Rathore, K. I. et al. Ceruloplasmin protects injured spinal cord from iron-mediated oxidative damage. J. Neurosci. 28, 12736–12747 (2008). This paper provides data on the molecular control of iron homeostasis in the injured spinal cord. It also shows that iron-loaded macrophages in the injured spinal cord probably release toxic iron several weeks after spinal cord injury.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Mikita, J. et al. Altered M1/M2 activation patterns of monocytes in severe relapsing experimental rat model of multiple sclerosis. Amelioration of clinical status by M2 activated monocyte administration. Mult. Scler. 17, 2–15 (2011).

    Article  CAS  PubMed  Google Scholar 

  122. Berard, J. L., Kerr, B. J., Johnson, H. M. & David, S. Differential expression of SOCS1 in macrophages in relapsing-remitting and chronic EAE and its role in disease severity. Glia 58, 1816–1826 (2010).

    Article  PubMed  Google Scholar 

  123. Martinez, F. O., Gordon, S., Locati, M. & Mantovani, A. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J. Immunol. 177, 7303–7311 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Bradbury, E. J. et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416, 636–640 (2002).

    Article  CAS  PubMed  Google Scholar 

  125. Busch, S. A. & Silver, J. The role of extracellular matrix in CNS regeneration. Curr. Opin. Neurobiol. 17, 120–127 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Galtrey, C. M. & Fawcett, J. W. The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system. Brain Res. Rev. 54, 1–18 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Moon, L. D., Asher, R. A., Rhodes, K. E. & Fawcett, J. W. Regeneration of CNS axons back to their target following treatment of adult rat brain with chondroitinase ABC. Nature Neurosci. 4, 465–466 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. Busch, S. A., Horn, K. P., Silver, D. J. & Silver, J. Overcoming macrophage-mediated axonal dieback following CNS injury. J. Neurosci. 29, 9967–9976 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Horn, K. P., Busch, S. A., Hawthorne, A. L., van Rooijen, N. & Silver, J. Another barrier to regeneration in the CNS: activated macrophages induce extensive retraction of dystrophic axons through direct physical interactions. J. Neurosci. 28, 9330–9341 (2008). This study shows that macrophages in the injured spinal cord induce retraction of dystrophic, damaged axons. It also provides in vitro evidence that M1 polarized macrophages induce retraction of dystrophic neurites.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hata, K. et al. RGMa inhibition promotes axonal growth and recovery after spinal cord injury. J. Cell Biol. 173, 47–58 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Schwab, J. M. et al. Spinal cord injury-induced lesional expression of the repulsive guidance molecule (RGM). Eur. J. Neurosci. 21, 1569–1576 (2005).

    Article  PubMed  Google Scholar 

  132. Boven, L. A. et al. Myelin-laden macrophages are anti-inflammatory, consistent with foam cells in multiple sclerosis. Brain 129, 517–526 (2006). This paper shows that LPS-stimulated macrophages reduced their expression of pro-inflammatory cytokines (IL-12 and TNFα) upon myelin phagocytosis.

    Article  PubMed  Google Scholar 

  133. van Rossum, D., Hilbert, S., Strassenburg, S., Hanisch, U. K. & Bruck, W. Myelin-phagocytosing macrophages in isolated sciatic and optic nerves reveal a unique reactive phenotype. Glia 56, 271–283 (2008).

    Article  PubMed  Google Scholar 

  134. Ponomarev, E. D., Maresz, K., Tan, Y. & Dittel, B. N. CNS-derived interleukin-4 is essential for the regulation of autoimmune inflammation and induces a state of alternative activation in microglial cells. J. Neurosci. 27, 10714–10721 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Pechkovsky, D. V. et al. Alternatively activated alveolar macrophages in pulmonary fibrosis-mediator production and intracellular signal transduction. Clin. Immunol. 137, 89–101 (2010).

    Article  CAS  PubMed  Google Scholar 

  136. Misson, P., van den Brule, S., Barbarin, V., Lison, D. & Huaux, F. Markers of macrophage differentiation in experimental silicosis. J. Leukoc. Biol. 76, 926–932 (2004).

    Article  CAS  PubMed  Google Scholar 

  137. Ikezumi, Y. et al. Identification of alternatively activated macrophages in new-onset paediatric and adult immunoglobulin A nephropathy: potential role in mesangial matrix expansion. Histopathology 58, 198–210 (2011).

    Article  PubMed  Google Scholar 

  138. Bellón, T. et al. Alternative activation of macrophages in human peritoneum: implications for peritoneal fibrosis. Nephrol. Dial. Transplant 15 Feb 2011 (doi:10.1093/ndt/gfq771).

    Article  CAS  Google Scholar 

  139. Mantovani, A., Sozzani, S., Locati, M., Allavena, P. & Sica, A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23, 549–555 (2002).

    Article  CAS  PubMed  Google Scholar 

  140. Gratchev, A. et al. Activation of a TGF-β-specific multistep gene expression program in mature macrophages requires glucocorticoid-mediated surface expression of TGF-β receptor II. J. Immunol. 180, 6553–6565 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Ganz, T. Hepcidin--a peptide hormone at the interface of innate immunity and iron metabolism. Curr. Top. Microbiol. Immunol. 306, 183–198 (2006).

    CAS  PubMed  Google Scholar 

  142. Nemeth, E. et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306, 2090–2093 (2004).

    Article  CAS  PubMed  Google Scholar 

  143. Sindrilaru, A. et al. An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J. Clin. Invest. 121, 985–997 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Bellora, F. et al. The interaction of human natural killer cells with either unpolarized or polarized macrophages results in different functional outcomes. Proc. Natl Acad. Sci. USA 107, 21659–21664 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Sironi, M. et al. Differential regulation of chemokine production by Fcγ receptor engagement in human monocytes: association of CCL1 with a distinct form of M2 monocyte activation (M2b, Type 2). J. Leukoc. Biol. 80, 342–349 (2006).

    Article  CAS  PubMed  Google Scholar 

  146. Ziegler-Heitbrock, H. W. Heterogeneity of human blood monocytes: the CD14+ CD16+ subpopulation. Immunol. Today 17, 424–428 (1996).

    Article  CAS  PubMed  Google Scholar 

  147. Mildner, A. et al. Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nature Neurosci. 10, 1544–1553 (2007).

    Article  CAS  PubMed  Google Scholar 

  148. Mantovani, A. et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25, 677–686 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Martinez, F. O., Sica, A., Mantovani, A. & Locati, M. Macrophage activation and polarization. Front. Biosci. 13, 453–461 (2008).

    Article  CAS  PubMed  Google Scholar 

  150. Stein, M., Keshav, S., Harris, N. & Gordon, S. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J. Exp. Med. 176, 287–292 (1992).

    Article  CAS  PubMed  Google Scholar 

  151. Gratchev, A. et al. Alternatively activated macrophages differentially express fibronectin and its splice variants and the extracellular matrix protein βIG-H3. Scand. J. Immunol. 53, 386–392 (2001).

    Article  CAS  PubMed  Google Scholar 

  152. Hesse, M. et al. Differential regulation of nitric oxide synthase-2 and arginase-1 by type 1/type 2 cytokines in vivo: granulomatous pathology is shaped by the pattern of L-arginine metabolism. J. Immunol. 167, 6533–6544 (2001).

    Article  CAS  PubMed  Google Scholar 

  153. Gordon, S. Alternative activation of macrophages. Nature Rev. Immunol. 3, 23–35 (2003).

    Article  CAS  Google Scholar 

  154. Raes, G. et al. Arginase-1 and Ym1 are markers for murine, but not human, alternatively activated myeloid cells. J. Immunol. 174, 6561; author reply 6561–6562 (2005).

    Article  CAS  PubMed  Google Scholar 

  155. Scotton, C. J. et al. Transcriptional profiling reveals complex regulation of the monocyte IL-1 β system by IL-13. J. Immunol. 174, 834–845 (2005).

    Article  CAS  PubMed  Google Scholar 

  156. Villalta, S. A., Nguyen, H. X., Deng, B., Gotoh, T. & Tidball, J. G. Shifts in macrophage phenotypes and macrophage competition for arginine metabolism affect the severity of muscle pathology in muscular dystrophy. Hum. Mol. Genet. 18, 482–496 (2009).

    Article  CAS  PubMed  Google Scholar 

  157. Goerdt, S. & Orfanos, C. E. Other functions, other genes: alternative activation of antigen-presenting cells. Immunity 10, 137–142 (1999).

    Article  CAS  PubMed  Google Scholar 

  158. Anderson, C. F. & Mosser, D. M. Cutting edge: biasing immune responses by directing antigen to macrophage Fc γ receptors. J. Immunol. 168, 3697–3701 (2002).

    Article  CAS  PubMed  Google Scholar 

  159. Anderson, C. F. & Mosser, D. M. A novel phenotype for an activated macrophage: the type 2 activated macrophage. J. Leukoc. Biol. 72, 101–106 (2002).

    CAS  PubMed  Google Scholar 

  160. Mosser, D. M. The many faces of macrophage activation. J. Leukoc. Biol. 73, 209–212 (2003).

    Article  CAS  PubMed  Google Scholar 

  161. Filardy, A. A. et al. Proinflammatory clearance of apoptotic neutrophils induces an IL-12lowIL-10high regulatory phenotype in macrophages. J. Immunol. 185, 2044–2050 (2010).

    Article  CAS  PubMed  Google Scholar 

  162. Gea-Sorli, S., Guillamat, R., Serrano-Mollar, A. & Closa, D. Activation of lung macrophage subpopulations in experimental acute pancreatitis. J. Pathol. 223, 417–424 (2011).

    Article  CAS  PubMed  Google Scholar 

  163. Bogdan, C., Paik, J., Vodovotz, Y. & Nathan, C. Contrasting mechanisms for suppression of macrophage cytokine release by transforming growth factor-β and interleukin-10. J. Biol. Chem. 267, 23301–23308 (1992).

    CAS  PubMed  Google Scholar 

  164. Valledor, A. F. & Ricote, M. Nuclear receptor signaling in macrophages. Biochem. Pharmacol. 67, 201–212 (2004).

    Article  CAS  PubMed  Google Scholar 

  165. Ehrchen, J. et al. Glucocorticoids induce differentiation of a specifically activated, anti-inflammatory subtype of human monocytes. Blood 109, 1265–1274 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the laboratory of S.D. has been funded by the Canadian Institutes of Health Research, the Multiple Sclerosis Society of Canada and the Wings for Life Spinal Cord Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel David.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Samuel David's homepage

Glossary

Polarized

Macrophages undergo a differentiation process driven by cytokines and other factors within the tissue microenvironment, and adopt pro- or anti-inflammatory phenotypes.

Zymosan-initiated peritonitis model

A model of inflammation produced by injecting zymosan, a protein–carbohydrate complex purified from yeast cell wall, into the peritoneal cavity.

Patrolling behaviour

Active movement of macrophages in the lumen of blood vessels, which may occur against the direction of blood flow.

Rolling behaviour

The first step in the process that leads to migration of immune cells from blood vessels into the surrounding tissue. Rolling involves low-strength adhesion of the cells to the inner surface of endothelial cells. This reduces the velocity at which they travel within the blood vessel.

Glial–fibrotic scar

A breach — however small — in the glial limitans that lines the outer edge of the spinal cord results in the proliferation and influx of meningeal fibroblasts and astrocytes. This glial–fibrotic interface forms an exaggerated version of the glia limitans at the injury site.

Secondary damage

Damage to neurons, axons, oligodendrocytes, myelin and astrocytes subsequent to the initial trauma. Secondary damage is induced by a variety of factors including ischaemia, pro-inflammatory cytokines, glutamate and free radicals.

Rights and permissions

Reprints and permissions

About this article

Cite this article

David, S., Kroner, A. Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci 12, 388–399 (2011). https://doi.org/10.1038/nrn3053

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3053

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing