Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The stem cell potential of glia: lessons from reactive gliosis

Key Points

  • Glial cells are the main cellular elements mediating the reaction to brain and CNS injury.

  • Recently, the consequences of the multifaceted reaction of astroglia towards injury has been examined by attenuating this response or ablating proliferating reactive astrocytes in mouse mutants. This has revealed several beneficial effects at early stages as well as less beneficial effects at later stages after injury.

  • Reactive astrocytes reactivate many molecular hallmarks of radial glial cells. Even more strikingly, genetic fate mapping demonstrated the dedifferentiation of mature astroglial cells that resume proliferation, with a subpopulation even acquiring neurosphere-forming capacity — that is, the in vitro stem cell hallmarks of self-renewal and multipotency. Thus, some of the signals activated after brain injury may be shared with the neural stem cell niche.

  • In vivo, however, these and other glial cells reacting to injury remain within the glial lineage and fail to generate neurons — similar to most of the transplanted cells derived from adult neuroblasts or neural stem cell preparations. Thus, there are potent inhibitors of neurogenesis in the injured brain environment.

  • To dissect the beneficial effects from adverse effects of the glial response to injury, we first consider signals shared between the adult neural stem cell niches and the reaction to injury. These are mostly growth factors, such as epidermal growth factor, fibroblast growth factor and vascular endothelial growth factor, acting on the mammalian target of rapamycin (mTOR) and mitogen-activated protein kinase (MAPK) pathway as a common mediator, as well as sonic hedgehog (SHH), WNT and purinergic signalling pathways shared between the stem cell niches and the injured brain parenchyma. These would therefore be prime candidates to enhance the dedifferentiation response of reactive astrocytes.

  • Signal transducer and activator of transcription (STAT) signalling is particularly elevated after brain injury, mediating many crucial aspects of reactive astrocytosis, but also interfering with neurogenesis, especially in combination with the bone morphogenetic protein (BMP) signalling pathway.

  • Endogenous BMP levels in the neural stem cell niche of the subependymal zone conversely promote neurogenesis, thereby highlighting the context-dependence of these signals.

  • Thus, much more needs to be learnt about the complex interplay of signals within the neural stem cell niches and the brain parenchyma reacting to injury. In particular, cell type-specific transcriptome information in different injury conditions also needs to be acquired and compared to expression profiles of neural stem cells in their neurogenic environment.

  • The utility of learning from the neurogenic niches in the adult brain is demonstrated by two key examples: first, by the ability of neuroblasts from these niches to react to injury, migrate there and overcome the inhibitory signals emanating from the injury site; and second, by the ability of single neurogenic factors to instruct neurogenesis from glial cells in the injury site in vivo or in vitro.

  • A major challenge is now to extend these exciting findings to the human condition with the aim of better understanding reactive gliosis in patients' brains and potentially using this knowledge and these cells for instructing endogenous repair.

Abstract

Astrocyte-like cells, which act as stem cells in the adult brain, reside in a few restricted stem cell niches. However, following brain injury, glia outside these niches acquire or reactivate stem cell potential as part of reactive gliosis. Recent studies have begun to uncover the molecular pathways involved in this process. A comparison of molecular pathways activated after injury with those involved in the normal neural stem cell niches highlights strategies that could overcome the inhibition of neurogenesis outside the stem cell niche and instruct parenchymal glia towards a neurogenic fate. This new view on reactive glia therefore suggests a widespread endogenous source of cells with stem cell potential, which might potentially be harnessed for local repair strategies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Astrogliosis after brain injury.
Figure 2: Signals shared after brain injury and in the NSC niche.
Figure 3: Distinct signalling after brain injury and in the NSC niche.
Figure 4: Reprogramming parenchymal astrocytes into neurons.

References

  1. Malatesta, P., Hartfuss, E. & Götz, M. Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127, 5253–5263 (2000).

    CAS  PubMed  Google Scholar 

  2. Johansson, C. B. et al. Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96, 25–34 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Doetsch, F., Caille, I., Lim, D. A., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Miyata, T., Kawaguchi, A., Okano, H. & Ogawa, M. Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31, 727–741 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Noctor, S. C., Flint, A. C., Weissman, T. A., Dammerman, R. S. & Kriegstein, A. R. Neurons derived from radial glial cells establish radial units in neocortex. Nature 409, 714–720 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Seri, B., Garcia-Verdugo, J. M., McEwen, B. S. & Alvarez-Buylla, A. Astrocytes give rise to new neurons in the adult mammalian hippocampus. J. Neurosci. 21, 7153–7160 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Doetsch, F., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Regeneration of a germinal layer in the adult mammalian brain. Proc. Natl Acad. Sci. USA 96, 11619–11624 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kriegstein, A. & Alvarez-Buylla, A. The glial nature of embryonic and adult neural stem cells. Annu. Rev. Neurosci. 32, 149–184 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Adolf, B. et al. Conserved and acquired features of adult neurogenesis in the zebrafish telencephalon. Dev. Biol. 295, 278–293 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Becker, C. G. & Becker, T. Adult zebrafish as a model for successful central nervous system regeneration. Restor. Neurol. Neurosci. 26, 71–80 (2008).

    PubMed  Google Scholar 

  11. Grandel, H., Kaslin, J., Ganz, J., Wenzel, I. & Brand, M. Neural stem cells and neurogenesis in the adult zebrafish brain: origin, proliferation dynamics, migration and cell fate. Dev. Biol. 295, 263–277 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Chapouton, P. et al. Notch activity levels control the balance between quiescence and recruitment of adult neural stem cells. J. Neurosci. 30, 7961–7974 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zupanc, G. K., Hinsch, K. & Gage, F. H. Proliferation, migration, neuronal differentiation, and long-term survival of new cells in the adult zebrafish brain. J. Comp. Neurol. 488, 290–319 (2005).

    Article  PubMed  Google Scholar 

  14. Chojnacki, A. K., Mak, G. K. & Weiss, S. Identity crisis for adult periventricular neural stem cells: subventricular zone astrocytes, ependymal cells or both? Nature Rev. Neurosci. 10, 153–163 (2009).

    Article  CAS  Google Scholar 

  15. Kettenmann, H. & Ransom, B. R. Neuroglia (Oxford Univ. Press, Oxford, 2005).

    Google Scholar 

  16. Oberheim, N. A. et al. Uniquely hominid features of adult human astrocytes. J. Neurosci. 29, 3276–3287 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nishiyama, A., Komitova, M., Suzuki, R. & Zhu, X. Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity. Nature Rev. Neurosci. 10, 9–22 (2009).

    Article  CAS  Google Scholar 

  18. Gotz, M. & Huttner, W. B. The cell biology of neurogenesis. Nature Rev. Mol. Cell Biol. 6, 777–788 (2005).

    Article  CAS  Google Scholar 

  19. Liu, X., Bolteus, A. J., Balkin, D. M., Henschel, O. & Bordey, A. GFAP-expressing cells in the postnatal subventricular zone display a unique glial phenotype intermediate between radial glia and astrocytes. Glia 54, 394–410 (2006).

    Article  PubMed  Google Scholar 

  20. Parpura, V. & Haydon, P. G. Astrocytes in (Patho)Physiology of the Nervous System (eds. Parpura, V. & Haydon, P. G.) (Springer, New York, 2009).

    Google Scholar 

  21. Ninkovic, J., Mori, T. & Gotz, M. Distinct modes of neuron addition in adult mouse neurogenesis. J. Neurosci. 27, 10906–10911 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sofroniew, M. V. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 32, 638–647 (2009). This review summarizes the groundbreaking work on ablation of proliferating reactive astrocytes, which revealed the important beneficial aspects of reactive astrogliosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cahoy, J. D. et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28, 264–278 (2008). This beautiful transcriptome analysis provided a major advance in our knowledge about astrocyte-specific gene expression and extended this to gain novel functional insights, such as the discovery of pathways mediating phagocytosis by astrocytes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sofroniew, M. V. & Vinters, H. V. Astrocytes: biology and pathology. Acta Neuropathol. 119, 7–35 (2010).

    Article  PubMed  Google Scholar 

  25. Beckervordersandforth, R. et al. In vivo fate mapping and expression analysis reveals molecular hallmarks of prospectively isolated adult neural stem cells. Cell Stem Cell 7, 744–758 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Kempermann, G., Jessberger, S., Steiner, B. & Kronenberg, G. Milestones of neuronal development in the adult hippocampus. Trends Neurosci. 27, 447–452 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Seri, B., Garcia-Verdugo, J. M., Collado-Morente, L., McEwen, B. S. & Alvarez-Buylla, A. Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus. J. Comp. Neurol. 478, 359–378 (2004).

    Article  PubMed  Google Scholar 

  28. Buffo, A. et al. Origin and progeny of reactive gliosis: a source of multipotent cells in the injured brain. Proc. Natl Acad. Sci. USA 105, 3581–3586 (2008). This was the first fate mapping analysis of adult glial cells in vivo with the surprising result that some mature astrocytes resume proliferation and even acquire neurosphere-forming potential.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Curtis, M. A. et al. Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science 315, 1243–1249 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, D. D. & Bordey, A. The astrocyte odyssey. Prog. Neurobiol. 86, 342–367 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Psachoulia, K., Jamen, F., Young, K. M. & Richardson, W. D. Cell cycle dynamics of NG2 cells in the postnatal and ageing brain. Neuron Glia Biol. 5, 57–67 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Simon, C., Götz, M. & Dimou, L. Slow cycling and self-renewing progenitors in the adult cerebral cortex and their reaction to physiological stimuli and acute injury. Glia (in the press).

  33. Dimou, L., Simon, C., Kirchhoff, F., Takebayashi, H. & Götz, M. Progeny of Olig2-expressing progenitors in the gray and white matter of the adult mouse cerebral cortex. J. Neurosci. 28, 10434–10442 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rivers, L. E. et al. PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nature Neurosci. 11, 1392–1401 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Guo, F., Ma, J., McCauley, E., Bannerman, P. & Pleasure, D. Early postnatal proteolipid promoter-expressing progenitors produce multilineage cells in vivo. J. Neurosci. 29, 7256–7270 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Belachew, S. et al. Postnatal NG2 proteoglycan-expressing progenitor cells are intrinsically multipotent and generate functional neurons. J. Cell Biol. 161, 169–186 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kang, S. H., Fukaya, M., Yang, J. K., Rothstein, J. D. & Bergles, D. E. NG2+ CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration. Neuron 68, 668–681 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kondo, T. & Raff, M. Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 289, 1754–1757 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Shihabuddin, L. S., Horner, P. J., Ray, J. & Gage, F. H. Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus. J. Neurosci. 20, 8727–8735 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hanisch, U. K. & Kettenmann, H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nature Neurosci. 10, 1387–1394 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Ridet, J. L., Malhotra, S. K., Privat, A. & Gage, F. H. Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci. 20, 570–577 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Pekny, M. & Nilsson, M. Astrocyte activation and reactive gliosis. Glia 50, 427–434 (2005).

    Article  PubMed  Google Scholar 

  43. Buffo, A., Rolando, C. & Ceruti, S. Astrocytes in the damaged brain: molecular and cellular insights into their reactive response and healing potential. Biochem. Pharmacol. 79, 77–89 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Lang, B. et al. Astrocytes in injured adult rat spinal cord may acquire the potential of neural stem cells. Neuroscience 128, 775–783 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Robel, S. et al. Conditional deletion of beta1-integrin in astroglia causes partial reactive gliosis. Glia 57, 1630–1647 (2009). This study describes the key role of the contact of astrocyte endfeet with the basement membrane by deleting integrin-mediated signalling at early postnatal stages, which results in a reactive gliosis phenotype, and highlights the important function of this pathway in regulating astrocytes quiescence.

    Article  PubMed  Google Scholar 

  46. Sirko, S. et al. Focal laser-lesions activate an endogenous population of neural stem/progenitor cells in the adult visual cortex. Brain 132, 2252–2264 (2009).

    Article  PubMed  Google Scholar 

  47. Zawadzka, M. et al. CNS-resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination. Cell Stem Cell 6, 578–590 (2010). This was the first unequivocal demonstration that, after injury, CNS glial progenitors can give rise to a peripheral glial cell type, Schwann cells, revising the dogma that Schwann cells derive only from neural crest.

    Article  CAS  PubMed  Google Scholar 

  48. Hampton, D. W., Rhodes, K. E., Zhao, C., Franklin, R. J. & Fawcett, J. W. The responses of oligodendrocyte precursor cells, astrocytes and microglia to a cortical stab injury, in the brain. Neuroscience 127, 813–820 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Lovatt, D. et al. The transcriptome and metabolic gene signature of protoplasmic astrocytes in the adult murine cortex. J. Neurosci. 27, 12255–12266 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sellers, D. L., Maris, D. O. & Horner, P. J. Postinjury niches induce temporal shifts in progenitor fates to direct lesion repair after spinal cord injury. J. Neurosci. 29, 6722–6733 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tatsumi, K. et al. Genetic fate mapping of Olig2 progenitors in the injured adult cerebral cortex reveals preferential differentiation into astrocytes. J. Neurosci. Res. 86, 3494–3502 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Barnabe-Heider, F. et al. Origin of new glial cells in intact and injured adult spinal cord. Cell Stem Cell 7, 470–482 (2010). This study provided the first unequivocal evidence for the multipotent nature of ependymal cells in the injured spinal cord.

    Article  CAS  PubMed  Google Scholar 

  53. Carlen, M. et al. Forebrain ependymal cells are Notch-dependent and generate neuroblasts and astrocytes after stroke. Nature Neurosci. 12, 259–267 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Brown, A. M. & Ransom, B. R. Astrocyte glycogen and brain energy metabolism. Glia 55, 1263–1271 (2007).

    Article  PubMed  Google Scholar 

  55. Takano, T., Oberheim, N., Cotrina, M. L. & Nedergaard, M. Astrocytes and ischemic injury. Stroke 40, S8–12 (2009).

  56. Herrmann, J. E. et al. STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury. J. Neurosci. 28, 7231–7243 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Okada, S. et al. Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury. Nature Med. 12, 829–834 (2006). This work provided the first evidence for the key role of STAT signalling in reactive astrocytes in vivo .

    Article  CAS  PubMed  Google Scholar 

  58. Voskuhl, R. R. et al. Reactive astrocytes form scar-like perivascular barriers to leukocytes during adaptive immune inflammation of the CNS. J. Neurosci. 29, 11511–11522 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wyss-Coray, T. et al. Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nature Med. 9, 453–457 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Widestrand, A. et al. Increased neurogenesis and astrogenesis from neural progenitor cells grafted in the hippocampus of GFAP−/−Vim−/− mice. Stem Cells 25, 2619–2627 (2007). This study showed the impact of reactive astrogliosis in the host environment on transplanted stem cells, highlighting a further aspect of the important role of intermediate filaments in reactive gliosis.

    Article  CAS  PubMed  Google Scholar 

  61. Pekny, M. & Pekna, M. Astrocyte intermediate filaments in CNS pathologies and regeneration. J. Pathol. 204, 428–437 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Seifert, G., Carmignoto, G. & Steinhauser, C. Astrocyte dysfunction in epilepsy. Brain Res. Rev. 63, 212–221 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Silver, J. & Miller, J. H. Regeneration beyond the glial scar. Nature Rev. Neurosci. 5, 146–156 (2004).

    Article  CAS  Google Scholar 

  64. Verkman, A. S., Binder, D. K., Bloch, O., Auguste, K. & Papadopoulos, M. C. Three distinct roles of aquaporin-4 in brain function revealed by knockout mice. Biochim. Biophys. Acta 1758, 1085–1093 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Wolburg-Buchholz, K. et al. Loss of astrocyte polarity marks blood–brain barrier impairment during experimental autoimmune encephalomyelitis. Acta Neuropathol. 118, 219–233 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Moore, S. A. et al. Deletion of brain dystroglycan recapitulates aspects of congenital muscular dystrophy. Nature 418, 422–425 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Itoh, T., Satou, T., Hashimoto, S. & Ito, H. Isolation of neural stem cells from damaged rat cerebral cortex after traumatic brain injury. Neuroreport 16, 1687–1691 (2005).

    Article  PubMed  Google Scholar 

  68. Reuss, B., Dono, R. & Unsicker, K. Functions of fibroblast growth factor (FGF)-2 and FGF-5 in astroglial differentiation and blood-brain barrier permeability: evidence from mouse mutants. J. Neurosci. 23, 6404–6412 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yoshimura, S. et al. FGF-2 regulates neurogenesis and degeneration in the dentate gyrus after traumatic brain injury in mice. J. Clin. Invest. 112, 1202–1210 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liu, B. & Neufeld, A. H. Activation of epidermal growth factor receptors in astrocytes: from development to neural injury. J. Neurosci. Res. 85, 3523–3529 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Rabchevsky, A. G. et al. A role for transforming growth factor alpha as an inducer of astrogliosis. J. Neurosci. 18, 10541–10552 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. White, R. E., Yin, F. Q. & Jakeman, L. B. TGF-alpha increases astrocyte invasion and promotes axonal growth into the lesion following spinal cord injury in mice. Exp. Neurol. (2008).

  73. Weickert, C. S. & Blum, M. Striatal TGF-alpha: postnatal developmental expression and evidence for a role in the proliferation of subependymal cells. Brain Res. Dev. Brain Res. 86, 203–216 (1995).

    Article  CAS  PubMed  Google Scholar 

  74. Sibilia, M., Steinbach, J. P., Stingl, L., Aguzzi, A. & Wagner, E. F. A strain-independent postnatal neurodegeneration in mice lacking the EGF receptor. EMBO J. 17, 719–731 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Smith, G. M. & Strunz, C. Growth factor and cytokine regulation of chondroitin sulfate proteoglycans by astrocytes. Glia 52, 209–218 (2005).

    Article  PubMed  Google Scholar 

  76. Schmid-Brunclik, N., Burgi-Taboada, C., Antoniou, X., Gassmann, M. & Ogunshola, O. O. Astrocyte responses to injury: VEGF simultaneously modulates cell death and proliferation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, R864–R873 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Krum, J. M., Mani, N. & Rosenstein, J. M. Roles of the endogenous VEGF receptors flt-1 and flk-1 in astroglial and vascular remodeling after brain injury. Exp. Neurol. 212, 108–117 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Greenberg, D. A. & Jin, K. From angiogenesis to neuropathology. Nature 438, 954–959 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Codeluppi, S. et al. The Rheb–mTOR pathway is upregulated in reactive astrocytes of the injured spinal cord. J. Neurosci. 29, 1093–1104 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Humar, R., Kiefer, F. N., Berns, H., Resink, T. J. & Battegay, E. J. Hypoxia enhances vascular cell proliferation and angiogenesis in vitro via rapamycin (mTOR)-dependent signalling. FASEB J. 16, 771–780 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Johnson, M. D., O'Connell, M. J., Pilcher, W. & Reeder, J. E. Fibroblast growth factor receptor-3 expression in meningiomas with stimulation of proliferation by the phosphoinositide 3 kinase–Akt pathway. J. Neurosurg. 112, 934–939 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Fraser, M. M. et al. Pten loss causes hypertrophy and increased proliferation of astrocytes in vivo. Cancer Res. 64, 7773–7779 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Gadea, A., Schinelli, S. & Gallo, V. Endothelin-1 regulates astrocyte proliferation and reactive gliosis via a JNK/c-Jun signalling pathway. J. Neurosci. 28, 2394–2408 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ito, M. et al. Type I interferon inhibits astrocytic gliosis and promotes functional recovery after spinal cord injury by deactivation of the MEK/ERK pathway. J. Neurotrauma 26, 41–53 (2009).

    Article  PubMed  Google Scholar 

  85. Wang, H. H., Hsieh, H. L., Wu, C. Y. & Yang, C. M. Oxidized low-density lipoprotein-induced matrix metalloproteinase-9 expression via PKC-delta/p42/p44 MAPK/Elk-1 cascade in brain astrocytes. Neurotox Res. 17, 50–65 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Bonneh-Barkay, D. & Wiley, C. A. Brain extracellular matrix in neurodegeneration. Brain Pathol. 19, 573–585 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Swindle, C. S. et al. Epidermal growth factor (EGF)-like repeats of human tenascin-C as ligands for EGF receptor. J. Cell Biol. 154, 459–468 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sirko, S. et al. Chondroitin sulfates are required for fibroblast growth factor-2-dependent proliferation and maintenance in neural stem cells and for epidermal growth factor-dependent migration of their progeny. Stem Cells 28, 775–787 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Garcion, E., Halilagic, A., Faissner, A. & ffrench-Constant, C. Generation of an environmental niche for neural stem cell development by the extracellular matrix molecule tenascin C. Development 131, 3423–3432 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Gates, M. A. et al. Cell and molecular analysis of the developing and adult mouse subventricular zone of the cerebral hemispheres. J. Comp. Neurol. 361, 249–266 (1995).

    Article  CAS  PubMed  Google Scholar 

  91. von Holst, A., Sirko, S. & Faissner, A. The unique 473HD-Chondroitinsulfate epitope is expressed by radial glia and involved in neural precursor cell proliferation. J. Neurosci. 26, 4082–4094 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Doetsch, F., Petreanu, L., Caille, I., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36, 1021–1034 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Frinchi, M. et al. Fibroblast growth factor-2 and its receptor expression in proliferating precursor cells of the subventricular zone in the adult rat brain. Neurosci. Lett. 447, 20–25 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Gregg, C. & Weiss, S. Generation of functional radial glial cells by embryonic and adult forebrain neural stem cells. J. Neurosci. 23, 11587–11601 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tao, Y., Black, I. B. & DiCicco-Bloom, E. In vivo neurogenesis is inhibited by neutralizing antibodies to basic fibroblast growth factor. J. Neurobiol. 33, 289–296 (1997).

    Article  CAS  PubMed  Google Scholar 

  96. Kuhn, H. G., Winkler, J., Kempermann, G., Thal, L. J. & Gage, F. H. Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J. Neurosci. 17, 5820–5829 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wagner, J. P., Black, I. B. & DiCicco-Bloom, E. Stimulation of neonatal and adult brain neurogenesis by subcutaneous injection of basic fibroblast growth factor. J. Neurosci. 19, 6006–6016 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Craig, C. G. et al. In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J. Neurosci. 16, 2649–2658 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Jin, K. et al. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc. Natl Acad. Sci. USA 99, 11946–11950 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Schanzer, A. et al. Direct stimulation of adult neural stem cells in vitro and neurogenesis in vivo by vascular endothelial growth factor. Brain Pathol. 14, 237–248 (2004).

    Article  PubMed  Google Scholar 

  101. Palmer, T. D., Willhoite, A. R. & Gage, F. H. Vascular niche for adult hippocampal neurogenesis. J. Comp. Neurol. 425, 479–494 (2000). A pioneering study demonstrating for the first time the close vicinity of adult neural progenitors and the vasculature, which has since been demonstrated in various other neurogenic niches in the adult and developing brain, and seems to apply after injury.

    Article  CAS  PubMed  Google Scholar 

  102. Nakano-Doi, A. et al. Bone marrow mononuclear cells promote proliferation of endogenous neural stem cells through vascular niches after cerebral infarction. Stem Cells 28, 1292–1302 (2010).

    CAS  PubMed  Google Scholar 

  103. Ohab, J. J., Fleming, S., Blesch, A. & Carmichael, S. T. A neurovascular niche for neurogenesis after stroke. J. Neurosci. 26, 13007–13016 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Machold, R. et al. Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron 39, 937–950 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Lai, K., Kaspar, B. K., Gage, F. H. & Schaffer, D. V. Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nature Neurosci. 6, 21–27 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Amankulor, N. M. et al. Sonic hedgehog pathway activation is induced by acute brain injury and regulated by injury-related inflammation. J. Neurosci. 29, 10299–10308 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Garcia, A. D., Petrova, R., Eng, L. & Joyner, A. L. Sonic hedgehog regulates discrete populations of astrocytes in the adult mouse forebrain. J. Neurosci. 30, 13597–13608 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Jiao, J. & Chen, D. F. Induction of neurogenesis in nonconventional neurogenic regions of the adult central nervous system by niche astrocyte-produced signals. Stem Cells 26, 1221–1230 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gabay, L., Lowell, S., Rubin, L. L. & Anderson, D. J. Deregulation of dorsoventral patterning by FGF confers trilineage differentiation capacity on CNS stem cells in vitro. Neuron 40, 485–499 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Hack, M. A., Sugimori, M., Lundberg, C., Nakafuku, M. & Götz, M. Regionalization and fate specification in neurospheres: the role of Olig2 and Pax6. Mol. Cell Neurosci. 25, 664–678 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Hack, M. A. et al. Neuronal fate determinants of adult olfactory bulb neurogenesis. Nature Neurosci. 8, 865–872 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Freese, J. L., Pino, D. & Pleasure, S. J. Wnt signalling in development and disease. Neurobiol. Dis. 38, 148–153 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Lie, D. C. et al. Wnt signalling regulates adult hippocampal neurogenesis. Nature 437, 1370–1375 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Qu, Q. et al. Orphan nuclear receptor TLX activates Wnt/beta-catenin signalling to stimulate neural stem cell proliferation and self-renewal. Nature Cell Biol. 12, 31–40; suppl. pp 1–9 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. White, B. D. et al. Beta-catenin signalling increases in proliferating NG2+ progenitors and astrocytes during post-traumatic gliogenesis in the adult brain. Stem Cells 28, 297–307 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Braun, N. et al. Expression of the ecto-ATPase NTPDase2 in the germinal zones of the developing and adult rat brain. Eur. J. Neurosci. 17, 1355–1364 (2003).

    Article  PubMed  Google Scholar 

  117. Kermer, V. et al. Knockdown of tissue nonspecific alkaline phosphatase impairs neural stem cell proliferation and differentiation. Neurosci. Lett. (2010).

  118. Grimm, I., Messemer, N., Stanke, M., Gachet, C. & Zimmermann, H. Coordinate pathways for nucleotide and EGF signalling in cultured adult neural progenitor cells. J. Cell Sci. 122, 2524–2533 (2009).

    Article  CAS  PubMed  Google Scholar 

  119. Mishra, S. K. et al. Extracellular nucleotide signalling in adult neural stem cells: synergism with growth factor-mediated cellular proliferation. Development 133, 675–684 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Di Virgilio, F., Ceruti, S., Bramanti, P. & Abbracchio, M. P. Purinergic signalling in inflammation of the central nervous system. Trends Neurosci. 32, 79–87 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Yang, H. et al. Evidence for heterogeneity of astrocyte de-differentiation in vitro: astrocytes transform into intermediate precursor cells following induction of ACM from scratch-insulted astrocytes. Cell. Mol. Neurobiol. 30, 483–491 (2010).

    Article  PubMed  Google Scholar 

  122. Faijerson, J. et al. Reactive astrogliosis induces astrocytic differentiation of adult neural stem/progenitor cells in vitro. J. Neurosci. Res. 84, 1415–1424 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Wanner, I. B. et al. A new in vitro model of the glial scar inhibits axon growth. Glia 56, 1691–1709 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Hampton, D. W. et al. A potential role for bone morphogenetic protein signalling in glial cell fate determination following adult central nervous system injury in vivo. Eur. J. Neurosci. 26, 3024–3035 (2007).

    Article  PubMed  Google Scholar 

  125. Fuller, M. L. et al. Bone morphogenetic proteins promote gliosis in demyelinating spinal cord lesions. Ann. Neurol. 62, 288–300 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Colak, D. et al. Adult neurogenesis requires Smad4-mediated bone morphogenic protein signalling in stem cells. J. Neurosci. 28, 434–446 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Gajera, C. R. et al. LRP2 in ependymal cells regulates BMP signalling in the adult neurogenic niche. J. Cell Sci. 123, 1922–1930 (2010).

    Article  CAS  PubMed  Google Scholar 

  128. Lim, D. A. et al. Noggin antagonizes BMP signalling to create a niche for adult neurogenesis. Neuron 28, 713–726 (2000).

    Article  CAS  PubMed  Google Scholar 

  129. Buffo, A. et al. Expression pattern of the transcription factor Olig2 in response to brain injuries: implications for neuronal repair. Proc. Natl Acad. Sci. USA 102, 18183–18188 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Menn, B. et al. Origin of oligodendrocytes in the subventricular zone of the adult brain. J. Neurosci. 26, 7907–7918 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Jablonska, B. et al. Chordin-induced lineage plasticity of adult SVZ neuroblasts after demyelination. Nature Neurosci. 13, 541–550 (2010). This work unravelled the signalling pathway mediating recruitment of new oligodendrocyte progenitors from the neural stem cell niche after demyelination in the corpus callosum.

    Article  CAS  PubMed  Google Scholar 

  132. Mira, H. et al. Signalling through BMPR-IA regulates quiescence and long-term activity of neural stem cells in the adult hippocampus. Cell Stem Cell 7, 78–89 (2010).

    Article  CAS  PubMed  Google Scholar 

  133. Xiao, Q., Du, Y., Wu, W. & Yip, H. K. Bone morphogenetic proteins mediate cellular response and, together with Noggin, regulate astrocyte differentiation after spinal cord injury. Exp. Neurol. 221, 353–366 (2010).

    Article  CAS  PubMed  Google Scholar 

  134. Bauer, S. & Patterson, P. H. Leukemia inhibitory factor promotes neural stem cell self-renewal in the adult brain. J. Neurosci. 26, 12089–12099 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Fukuda, S. & Taga, T. Cell fate determination regulated by a transcriptional signal network in the developing mouse brain. Anat. Sci. Int. 80, 12–18 (2005).

    Article  CAS  PubMed  Google Scholar 

  136. Kessaris, N., Pringle, N. & Richardson, W. D. Specification of CNS glia from neural stem cells in the embryonic neuroepithelium. Phil. Trans. R. Soc. Lond. B 363, 71–85 (2008).

    Article  CAS  Google Scholar 

  137. Hall, A. K. & Miller, R. H. Emerging roles for bone morphogenetic proteins in central nervous system glial biology. J. Neurosci. Res. 76, 1–8 (2004).

    Article  CAS  PubMed  Google Scholar 

  138. Deverman, B. E. & Patterson, P. H. Cytokines and CNS development. Neuron 64, 61–78 (2009).

    Article  CAS  PubMed  Google Scholar 

  139. He, F. et al. A positive autoregulatory loop of Jak–STAT signalling controls the onset of astrogliogenesis. Nature Neurosci. 8, 616–625 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. Levy, D. E. & Darnell, J. E. Jr. Stats: transcriptional control and biological impact. Nature Rev. Mol. Cell Biol. 3, 651–662 (2002).

    Article  CAS  Google Scholar 

  141. Bonni, A. et al. Regulation of gliogenesis in the central nervous system by the JAK–STAT signalling pathway. Science 278, 477–483 (1997).

    Article  CAS  PubMed  Google Scholar 

  142. Barnabe-Heider, F. et al. Evidence that embryonic neurons regulate the onset of cortical gliogenesis via cardiotrophin-1. Neuron 48, 253–265 (2005).

    Article  CAS  PubMed  Google Scholar 

  143. Schachtrup, C. et al. Fibrinogen triggers astrocyte scar formation by promoting the availability of active TGF-beta after vascular damage. J. Neurosci. 30, 5843–5854 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Wang, Y., Moges, H., Bharucha, Y. & Symes, A. Smad3 null mice display more rapid wound closure and reduced scar formation after a stab wound to the cerebral cortex. Exp. Neurol. 203, 168–184 (2007).

    Article  CAS  PubMed  Google Scholar 

  145. Kahn, M. A., Ellison, J. A., Speight, G. J. & de Vellis, J. CNTF regulation of astrogliosis and the activation of microglia in the developing rat central nervous system. Brain Res. 685, 55–67 (1995).

    Article  CAS  PubMed  Google Scholar 

  146. Levison, S. W., Jiang, F. J., Stoltzfus, O. K. & Ducceschi, M. H. IL-6-type cytokines enhance epidermal growth factor-stimulated astrocyte proliferation. Glia 32, 328–337 (2000).

    Article  CAS  PubMed  Google Scholar 

  147. Neary, J. T. & Kang, Y. Signalling from P2 nucleotide receptors to protein kinase cascades induced by CNS injury: implications for reactive gliosis and neurodegeneration. Mol. Neurobiol. 31, 95–103 (2005).

    Article  CAS  PubMed  Google Scholar 

  148. Washburn, K. B. & Neary, J. T. P2 purinergic receptors signal to STAT3 in astrocytes: difference in STAT3 responses to P2Y and P2X receptor activation. Neuroscience 142, 411–423 (2006).

    Article  CAS  PubMed  Google Scholar 

  149. Seidenfaden, R., Desoeuvre, A., Bosio, A., Virard, I. & Cremer, H. Glial conversion of SVZ-derived committed neuronal precursors after ectopic grafting into the adult brain. Mol. Cell Neurosci. 32, 187–198 (2006).

    Article  CAS  PubMed  Google Scholar 

  150. Heins, N. et al. Glial cells generate neurons: the role of the transcription factor Pax6. Nature Neurosci. 5, 308–315 (2002).

    Article  CAS  PubMed  Google Scholar 

  151. Karl, M. O. et al. Stimulation of neural regeneration in the mouse retina. Proc. Natl Acad. Sci. USA 105, 19508–19513 (2008). A key study demonstrating the possibility of endogenous repair from glial cells, in this case Müller glia, after excitotoxic injury by activation via growth factors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Berninger, B. et al. Functional properties of neurons derived from in vitro reprogrammed postnatal astroglia. J. Neurosci. 27, 8654–8664 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ohori, Y. et al. Growth factor treatment and genetic manipulation stimulate neurogenesis and oligodendrogenesis by endogenous neural progenitors in the injured adult spinal cord. J. Neurosci. 26, 11948–11960 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Blum, R. et al. Neuronal network formation from reprogrammed early postnatal rat cortical glial cells. Cereb. Cortex (2010).

  155. Heinrich, C. et al. Directing astroglia from the cerebral cortex into subtype specific functional neurons. PLoS Biol. 8, e1000373 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Guillemot, F. Cell fate specification in the mammalian telencephalon. Prog. Neurobiol. 83, 37–52 (2007).

    Article  CAS  PubMed  Google Scholar 

  157. Baraban, S. C. et al. Reduction of seizures by transplantation of cortical GABAergic interneuron precursors into Kv1.1 mutant mice. Proc. Natl Acad. Sci. USA 106, 15472–15477 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Hirabayashi, Y. et al. Polycomb limits the neurogenic competence of neural precursor cells to promote astrogenic fate transition. Neuron 63, 600–613 (2009).

    Article  CAS  PubMed  Google Scholar 

  159. Schuurmans, C. et al. Sequential phases of cortical specification involve Neurogenin-dependent and -independent pathways. EMBO J. 23, 2892–2902 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Brill, M. S. et al. Adult generation of glutamatergic olfactory bulb interneurons. Nature Neurosci. 12, 1524–1533 (2009).

    Article  CAS  PubMed  Google Scholar 

  161. Bedogni, F. et al. Tbr1 regulates regional and laminar identity of postmitotic neurons in developing neocortex. Proc. Natl Acad. Sci. USA 107, 13129–13134 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Lamba, D. A., Hayes, S., Karl, M. O. & Reh, T. Baf60c is a component of the neural progenitor-specific BAF complex in developing retina. Dev. Dyn. 237, 3016–3023 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Zhou, Q. & Melton, D. A. Extreme makeover: converting one cell into another. Cell Stem Cell 3, 382–388 (2008).

    Article  CAS  PubMed  Google Scholar 

  164. Braak, H. & Del Tredici, K. Assessing fetal nerve cell grafts in Parkinson's disease. Nature Med. (2008).

  165. Lane, E. L., Bjorklund, A., Dunnett, S. B. & Winkler, C. Neural grafting in Parkinson's disease unraveling the mechanisms underlying graft-induced dyskinesia. Prog. Brain Res. 184, 295–309 (2010).

    Article  PubMed  Google Scholar 

  166. Chang, A. et al. Neurogenesis in the chronic lesions of multiple sclerosis. Brain 131, 2366–2375 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Curtis, M. A. et al. Increased cell proliferation and neurogenesis in the adult human Huntington's disease brain. Proc. Natl Acad. Sci. USA 100, 9023–9027 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Ekonomou, A. et al. Increased neural progenitors in vascular dementia. Neurobiol. Aging (2010).

  169. Minger, S. L. et al. Endogenous neurogenesis in the human brain following cerebral infarction. Regen. Med. 2, 69–74 (2007).

    Article  PubMed  Google Scholar 

  170. Curtis, M. A., Faull, R. L. & Eriksson, P. S. The effect of neurodegenerative diseases on the subventricular zone. Nature Rev. Neurosci. 8, 712–723 (2007).

    Article  CAS  Google Scholar 

  171. Sgubin, D., Aztiria, E., Perin, A., Longatti, P. & Leanza, G. Activation of endogenous neural stem cells in the adult human brain following subarachnoid hemorrhage. J. Neurosci. Res. 85, 1647–1655 (2007).

    Article  CAS  PubMed  Google Scholar 

  172. Nakayama, D. et al. Injury-induced neural stem/progenitor cells in post-stroke human cerebral cortex. Eur. J. Neurosci. 31, 90–98 (2010).

    Article  PubMed  Google Scholar 

  173. Geha, S. et al. NG2+/Olig2+ cells are the major cycle-related cell population of the adult human normal brain. Brain Pathol. 20, 399–411 (2010).

    Article  PubMed  Google Scholar 

  174. Nunes, M. C. et al. Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nature Med. 9, 439–447 (2003).

    Article  CAS  PubMed  Google Scholar 

  175. Carmignoto, G. & Gomez-Gonzalo, M. The contribution of astrocyte signalling to neurovascular coupling. Brain Res. Rev. 63, 138–148 (2010).

    Article  CAS  PubMed  Google Scholar 

  176. Simard, M. & Nedergaard, M. The neurobiology of glia in the context of water and ion homeostasis. Neuroscience 129, 877–896 (2004).

    Article  CAS  PubMed  Google Scholar 

  177. Halassa, M. M., Fellin, T. & Haydon, P. G. Tripartite synapses: roles for astrocytic purines in the control of synaptic physiology and behavior. Neuropharmacology 57, 343–346 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Li, L. et al. Protective role of reactive astrocytes in brain ischemia. J. Cereb. Blood Flow Metab. 28, 468–481 (2008).

    Article  CAS  PubMed  Google Scholar 

  179. Lindvall, O. & Kokaia, Z. Stem cells for the treatment of neurological disorders. Nature 441, 1094–1096 (2006).

    Article  CAS  PubMed  Google Scholar 

  180. Massouh, M. & Saghatelyan, A. De-routing neuronal precursors in the adult brain to sites of injury: role of the vasculature. Neuropharmacology 58, 877–883 (2010).

    Article  CAS  PubMed  Google Scholar 

  181. Jin, K., Wang, X., Xie, L., Mao, X. O. & Greenberg, D. A. Transgenic ablation of doublecortin-expressing cells suppresses adult neurogenesis and worsens stroke outcome in mice. Proc. Natl Acad. Sci. USA 107, 7993–7998 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Chen, J., Magavi, S. S. & Macklis, J. D. Neurogenesis of corticospinal motor neurons extending spinal projections in adult mice. Proc. Natl Acad. Sci. USA 101, 16357–16362 (2004). This is so far the only evidence for endogenous generation of new, long-distance projection neurons forming connections from the cerebral cortex to the spinal cord and surviving for more than a year.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Magavi, S. S., Leavitt, B. R. & Macklis, J. D. Induction of neurogenesis in the neocortex of adult mice. Nature 405, 951–955 (2000).

    Article  CAS  PubMed  Google Scholar 

  184. Yamashita, T. et al. Subventricular zone-derived neuroblasts migrate and differentiate into mature neurons in the post-stroke adult striatum. J. Neurosci. 26, 6627–6636 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Nakatomi, H. et al. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 110, 429–441 (2002). This work is still the gold standard for endogenous repair with an entire region of the hippocampus regenerated from endogenous progenitors and restoring function.

    Article  CAS  PubMed  Google Scholar 

  186. Lledo, P. M., Merkle, F. T. & Alvarez-Buylla, A. Origin and function of olfactory bulb interneuron diversity. Trends Neurosci. 31, 392–400 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Brill, M. S. et al. A dlx2- and pax6-dependent transcriptional code for periglomerular neuron specification in the adult olfactory bulb. J. Neurosci. 28, 6439–6452 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Cassiani-Ingoni, R. et al. Cytoplasmic translocation of Olig2 in adult glial progenitors marks the generation of reactive astrocytes following autoimmune inflammation. Exp. Neurol. 201, 349–358 (2006).

    Article  CAS  PubMed  Google Scholar 

  189. Ghashghaei, H. T. et al. Reinduction of ErbB2 in astrocytes promotes radial glial progenitor identity in adult cerebral cortex. Genes Dev. 21, 3258–3271 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to investigators whose work could not be cited owing to space limitations. We are grateful to members of the Götz laboratory for fruitful discussions and are particularly indebted to L. Dimou, A. Grande, C. Heinrich, J. Ninkovic and S. Sirko for their helpful comments on the manuscript. Work in the laboratory is funded by the EU, the Deutsche Forschungsgemeinschaft (including SFB 596, 870 and SPP 1356), the German Federal Ministry of Education and Research (BMBF), the Helmholtz Association (CoReNe; Helma), the Fidelity Foundation and ForNeuroCell of the Bavarian State Ministery of Science, Research and Arts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Götz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Magdalena Götz's homepage

LMU Department of Physiological Genomics

Glossary

Ependymoglia or tanycytes

Radial glia-like cells lining the ventricular surface found in most bony fish and many amphibians that lack differentiated astrocytes and ependymal cells.

Macroglial cells

Glia of neuroectodermal origin, including astrocytes, NG2 cells, oligodendrocytes and ependymal cells.

Oligodendrocyte progenitor cell

A progenitor of the oligodendroglial lineage giving rise to mature oligodendrocytes and NG2 glia.

Tripartite synapse

A concept of synapse physiology appreciating the role of astrocytes in synaptic transmission. It is composed of the pre- and postsynaptic neuronal terminal, as well as astrocytic processes enwrapping these structures.

Glial fibrillary acidic protein

(Often abbreviated to GFAP.) An intermediate filament, which is expressed in astroglia — depending on the subtype and developmental stage — and is strongly upregulated during astrogliosis.

Neurosphere

A clonal aggregate derived from a single cell. It can be propagated for several passages giving rise to further neurospheres, indicative of stem cell self-renewal, and can be differentiated into the main neural lineages, such as neurons, astroglia and oligodendroglia, indicative of multipotency.

Microglia

Glia of mesodermal origin, and the resident macrophages of the CNS.

GLAST::CREERT2

A genetic fate mapping construct for targeting of the tamoxifen-inducible form of the CRE recombinase (CREERT2) to the locus of the astrocyte-specific glutamate transporter GLAST.

Hypertrophy

Reaction of glia to injury characterized by swelling of the cell body and the main processes.

Basement membrane

A specialized sheet-like structure of the extracellular matrix around blood vessels, capillaries and underneath the meninges. Astrocytes, meningeal cells and/or endothelial cells are involved in the generation of the basement membrane within the brain parenchyma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robel, S., Berninger, B. & Götz, M. The stem cell potential of glia: lessons from reactive gliosis. Nat Rev Neurosci 12, 88–104 (2011). https://doi.org/10.1038/nrn2978

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2978

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing