Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The diverse functional roles and regulation of neuronal gap junctions in the retina

Key Points

  • Electrical transmission through gap junctions forms a rapid form of inter-neuronal communication in the CNS.

  • Gap junctions are expressed by each of the five major neuron types in the retina and thus are positioned to play key parts in visual processing.

  • Retinal gap junctions are dynamically regulated by light acting through neuromodulators such as dopamine and nitric oxide.

  • Gap junctional coupling between cone photoreceptors decreases their intrinsic noise and thereby increase the sensitivity and fidelity of their signals.

  • Coupling between rod and cone photoreceptors creates a secondary pathway for rod signals to reach the ganglion cells. This secondary pathway extends the operation of the retina under dim light conditions.

  • Gap junctional coupling between rod photoreceptors is thought to average signals for transmission to ganglion cells that operate under certain dim light conditions such as dusk and dawn.

  • Horizontal cells are widely coupled through gap junctions to form an extensive electrical syncytium. Horizontal cell coupling is thought to form the initial mechanism for contrast detection in the visual system.

  • Gap junctions of the AII amacrine cells preserve the fidelity of the most sensitive retinal signals in the inner retina so that they can be transmitted to higher brain centres.

  • Electrical coupling between retinal ganglion cells synchronizes their light-evoked signals. This concerted activity is believed to compress information for more efficient transmission and thereby enable more information to be passed through the optic nerve.

  • Coupling of neighbouring direction-selective ganglion cells produces synchronous activity. However, the movement of intercellular current through the gap junctions is modulated based on the direction of stimulus movement. This modulation provides a mechanism by which coupled cells can encode specific information about an image.

Abstract

Electrical synaptic transmission through gap junctions underlies direct and rapid neuronal communication in the CNS. The diversity of functional roles that electrical synapses have is perhaps best exemplified in the vertebrate retina, in which gap junctions are formed by each of the five major neuron types. These junctions are dynamically regulated by ambient illumination and by circadian rhythms acting through light-activated neuromodulators such as dopamine and nitric oxide, which in turn activate intracellular signalling pathways in the retina.The networks formed by electrically coupled neurons are plastic and reconfigurable, and those in the retina are positioned to play key and diverse parts in the transmission and processing of visual information at every retinal level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and molecular organization of gap junctions.
Figure 2: Neuromodulators affect gap junction conductances through intracellular pathways.
Figure 3: Gap junctions expressed by retinal neurons.
Figure 4: The three rod pathways in the mammalian retina.
Figure 5: Electrical coupling between AII amacrine cells is regulated by background light conditions.
Figure 6: Ganglion cell gap junctions underlie two patterns of concerted spike activity.
Figure 7: Synchronous activity of coupled ON direction-selective ganglion cells encodes the direction of moving light stimuli.

Similar content being viewed by others

References

  1. Furshpan, E. J. & Potter, D. D. Mechanism of nerve-impulse transmission at a crayfish synapse. Nature 180, 342–343 (1957).

    Article  CAS  PubMed  Google Scholar 

  2. Watanabe, A. The interaction of electrical activity among neurons of lobster cardiac ganglion. Jpn J. Physiol. 433, 283–305 (1958).

    Google Scholar 

  3. Goodenough, D. A. & Revel, J. P. A fine structural analysis of intercellular junctions in the mouse liver. J. Cell Biol. 45, 272–290 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bennett, M. V. L. in Cellular Biology of Neurons, Handbook of Physiology, The Nervous System (ed. Kandel, E. R.) 357–416 (Williams & Wilkins, Baltimore, 1977).

    Google Scholar 

  5. Söhl, G., Maxeiner, S. & Willecke, K. Expression and functions of neuronal gap junctions. Nature Rev. Neurosci. 6, 191–200 (2005).

    Article  CAS  Google Scholar 

  6. Meier, C. & Dermietzel, R. Electrical synapses-gap junctions in the brain. Results Probl. Cell Differ. 43, 99–128 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Söhl, G. & Willecke, K. An update on connexin genes and their nomenclature in mouse and man. Cell Commun. Adhes. 10, 173–180 (2003).

    Article  PubMed  Google Scholar 

  8. Bloomfield, S. A., Xin, D. & Osborne, T. Light-induced modulation of coupling between AII amacrine cells in the rabbit retina. Vis. Neurosci. 14, 565–576 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Weiler, R., Pottek, M., He, S. & Vaney, D. I. Modulation of coupling between retinal horizontal cells by retinoic acid and endogenous dopamine. Brain Res. Brain Res. Rev. 32, 121–129 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Xin, D. & Bloomfield, S. A. Dark- and light-induced changes in coupling between horizontal cells in mammalian retina. J. Comp. Neurol. 405, 75–87 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Xin, D. & Bloomfield, S. A. Effects of nitric oxide on horizontal cells in the rabbit retina. Vis. Neurosci. 17, 799–811 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Ribelayga, C., Cao, Y. & Mangel, S. C. The circadian clock in the retina controls rod-cone coupling. Neuron 59, 790–801 (2008). This study showed that a circadian clock in the retina controls the extracellular dopamine concentration and thereby the conductance of rod–cone gap junctions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Willecke, K. et al. Structural and functional diversity of connexin genes in the mouse and human genome. Biol. Chem. 383, 725–737 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Lampe, P. D. & Lau, A. F. Regulation of gap junctions by phosphorylation of connexins. Arch. Biochem. Biophys. 384, 205–215 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Lampe, P. D. & Lau, A. F. The effects of connexin phosphorylation on gap junctional communication. Int. J. Biochem. Cell Biol. 36, 1171–1186 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Witkovsky, P. & Dearry, A. Functional roles of dopamine in the vertebrate retina. Prog. Retin. Res. 11, 247–292 (1991).

    Article  CAS  Google Scholar 

  17. Koistinaho, J., Swanson, R. A., de Vente, J. & Sagar, S. M. NADPH-diaphorase (nitric oxide synthase)-reactive amacrine cells of rabbit retina: putative target cells and stimulation by light. Neuroscience 57, 587–597 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Lasater, E. M. Retinal horizontal cell gap junctional conductance is modulated by dopamine through a cyclic AMP-dependent protein kinase. Proc. Natl Acad. Sci. USA 84, 7319–7323 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. DeVries, S. H. & Schwartz, E. A. Modulation of an electrical synapse between solitary pairs of catfish horizontal cells by dopamine and second messengers. J. Physiol. 414, 351–375 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Patel, L. S., Mitchell, C. K., Dubinsky, W. P. & O'Brien, J. O. Regulation of gap junction coupling through the neuronal connexin Cx35 by nitric oxide and cGMP. Cell Commun. Adhes. 13, 41–54 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kothmann, W. W., Massey, S. C. & O'Brien, J. Dopamine D1-receptor-mediated modulation of connexin36 phosphorylation in AII amacrine cells. Invest. Ophthal. Vis. Sci. 49, 1515 (2008).

    Google Scholar 

  22. Lasater, E. M. & Dowling, J. E. Dopamine decreases conductance of the electrical junctions between cultured retinal horizontal cells. Proc. Natl Acad. Sci. USA 82, 3025–3029 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mills, S. L. & Massey, S. C. Differential properties of two gap junctional pathways made by AII amacrine cells. Nature 377, 734–737 (1995). This report showed that the gap junctions between AII cells are regulated by dopamine, whereas the gap junctions between AII amacrine cells and ON cone bipolar cells are regulated by nitric oxide.

    Article  CAS  PubMed  Google Scholar 

  24. Umino, O., Lee, Y. & Dowling, J. E. Effects of light stimuli on the release of dopamine from interplexiform cells in the white perch retina. Vis. Neurosci. 7, 451–458 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Baldridge, W. H., Weiler, R. & Dowling, J. E. Dark-suppression and light-sensitization of horizontal cell responses in the hybrid bass retina. Vis. Neurosci. 12, 611–620 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Bloomfield, S. A. & Völgyi, B. Function and plasticity of homologous coupling between AII amacrine cells. Vision Res. 44, 3297–3306 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Rose, B., Simpson, I. & Loewenstein, W. R. Calcium ion produces graded changes in permeability of membrane channels in cell junction. Nature 267, 625–627 (1977).

    Article  CAS  PubMed  Google Scholar 

  28. Peracchia, C. Calcium effects on gap junction structure and cell coupling. Nature 271, 669–671 (1978).

    Article  CAS  PubMed  Google Scholar 

  29. Peracchia, C., Wang, X., Li, L. & Peracchia, L. L. Inhibition of calmodulin expression prevents low-pH-induced gap junction uncoupling in Xenopus oocytes. Pflugers Arch. 431, 379–387 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Peracchia, C., Sotkis, A., Wang, X. G., Peracchia, L. L. & Persechini, A. Calmodulin directly gates chemical channels. J. Biol. Chem. 275, 26220–26224 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Török, K., Stauffer, K. & Evans, W. H. Connexin 32 of gap junctions contains two cytoplasmic calmodulin-binding domains. Biochem. J. 326, 479–483 (1997).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lurtz, M. M. & Louis, C. F. Intracellular calcium regulation of connexin43. Am. J. Physiol. Cell Physiol. 293, 1806–1813 (2007).

    Article  CAS  Google Scholar 

  33. Spray, D. C., Harris, A. L. & Bennett, M. V. Gap junctional conductance is a simple and sensitive function of intracellular pH. Science 211, 712–715 (1981).

    Article  CAS  PubMed  Google Scholar 

  34. Church, J. & Baimbridge, K. G. Exposure to high-pH medium increases the conductance and extent of dye coupling between rat hippocampal CA1 pyramidal neurons in vitro. J. Neurosci. 11, 3289–3295 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. González, D. et al. Regulation of neuronal connexin-36 channels by pH. Proc. Natl Acad. Sci. USA 105, 17169–17174 (2008).

    Article  Google Scholar 

  36. Chesler, M. Regulation and modulation of pH in the brain. Physiol. Rev. 83, 1183–1221 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Spray, D. C., Harris, A. L. & Bennett, M. V. Voltage dependence of junctional conductance in early amphibian embryos. Science 204, 432–434 (1979).

    Article  CAS  PubMed  Google Scholar 

  38. Srinivas, M. et al. Voltage dependence of macroscopic and unitary currents of gap junction channels formed by mouse connexin50 expressed in rat neuroblastoma cells. J. Physiol. 517, 673–689 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Moreno, A. P., de Carvalho, A. C., Verselis, V., Eghbali, B. & Spray, D. C. Voltage-dependent gap junction channels are formed by connexin32, the major gap junction protein of rat liver. Biophys. J. 59, 920–925 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Moreno, A. P., Rook, M. B., Fishman, G. I. & Spray, D. C. Gap junction channels: distinct voltage-sensitive and -insensitive conductance states. Biophys. J. 67, 113–119 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Spray, D. C., Chanson, M., Moreno, A. P., Dermietzel, R. & Meda, P. Distinctive gap junction channel types connect WB cells, a clonal cell line derived from rat liver. Am. J. Physiol. 260, 513–527 (1991).

    Article  Google Scholar 

  42. Baylor, D. A., Fuortes, M. G. & O'Bryan, P. M. Receptive fields of cones in the retina of the turtle. J. Physiol. 214, 265–294 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cohen, A. I. Some electron microscopic observations on inter-receptor contacts in the human and macaque retinae. J. Anat. 99, 595–610 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Raviola, E. & Gilula, N. B. Gap junctions between photoreceptor cells in the vertebrate retina. Proc. Natl Acad. Sci. USA 70, 1677–1681 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kolb, H. The organization of the outer plexiform layer in the retina of the cat: electron microscopic observations. J. Neurocytol. 6, 131–153 (1977).

    Article  CAS  PubMed  Google Scholar 

  46. Tsukamoto, Y., Masarachia, P., Schein, S. J. & Sterling, P. Gap junctions between the pedicles of macaque foveal cones. Vision Res. 32, 1809–1815 (1992).

    Article  CAS  PubMed  Google Scholar 

  47. Tsukamoto, Y., Morigiwa, K., Ueda, M. & Sterling, P. Microcircuits for the night vision in mouse retina. J. Neurosci. 21, 8616–8623 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lee, E. J. et al. The immunocytochemical localization of connexin 36 at rod and cone gap junctions in the guinea pig retina. Eur. J. Neurosci. 18, 2925–2934 (2003).

    Article  PubMed  Google Scholar 

  49. Feigenspan, A. et al. Expression of connexin36 in cone pedicles and OFF-cone bipolar cells of the mouse retina. J. Neurosci. 24, 3325–3334 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li, W. & DeVries, S. H. Separate blue and green cone networks in the mammalian retina. Nature Neurosci. 7, 751–756 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. DeVries, S. H., Qi, X., Smith, R., Makous, W. & Sterling, P. Electrical coupling between mammalian cones. Curr. Biol. 12, 1900–1907 (2002). This study showed that coupling between cone photoreceptors results in minor blurring of the image, which is overshadowed by an increased signal-to-noise ratio of cone responses.

    Article  CAS  PubMed  Google Scholar 

  52. Hornstein, E. P., Verweij, J., Li, P. H. & Schnapf, J. L. Gap-junctional coupling and absolute sensitivity of photoreceptors in macaque retina. J. Neurosci. 25, 11201–11209 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dartnell, H. J. A. in The Eye Vol. 2 (ed. Davson, H.) 323–533 (Academic Press, New York, 1962).

    Google Scholar 

  54. Hornstein, E. P., Verweij, J. & Schnapf, J. L. Electrical coupling between red and green cones in primate retina. Nature Neurosci. 7, 745–750 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Hsu, A., Smith, R. G., Buchsbaum, G. & Sterling, P. Cost of cone coupling to trichomacy in primate fovea. J. Opt. Soc. Am. A. Opt. Image Sci. Vis. 17, 635–640 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Boycott, B. B. & Kolb, H. The connections between bipolar cells and photoreceptors in the retina of the domestic cat. J. Comp. Neurol. 148, 91–114 (1973).

    Article  CAS  PubMed  Google Scholar 

  57. Ghosh, K. K., Bujan, S., Haverkamp, S., Feigenspan, A. & Wässle, H. Types of bipolar cells in the mouse retina. J. Comp. Neurol. 469, 70–82 (2004).

    Article  PubMed  Google Scholar 

  58. Boycott, B. B. & Wässle, H. Morphological classification of bipolar cells of the primate retina. Eur. J. Neurosci. 3, 1069–1088 (1991).

    Article  PubMed  Google Scholar 

  59. Euler, T. & Wässle, H. Immunocytochemical identification of cone bipolar cells in the rat retina. J. Comp. Neurol. 361, 461–478 (1995).

    Article  CAS  PubMed  Google Scholar 

  60. Bloomfield, S. A. & Dacheux, R. F. Rod vision: pathways and processing in the mammalian retina. Prog. Retin. Eye Res. 20, 351–384 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Raviola, E. & Gilula, N. B. Intramembrane organization of specialized contacts in the outer plexiform layer of the retina. A freeze-fracture study in monkeys and rabbits. J. Cell Biol. 65, 192–222 (1975).

    Article  CAS  PubMed  Google Scholar 

  62. Nelson, R. Cat cones have rod input: a comparison of the response properties of cones and horizontal cell bodies in the retina of the cat. J. Comp. Neurol. 172, 109–135 (1977). This study was the first to show that rod signals can be detected in cones, presumably as a result of their interconnecting gap junctions.

    Article  CAS  PubMed  Google Scholar 

  63. Schneeweis, D. M. & Schnapf, J. L. Photovoltage of rods and cones in the macaque retina. Science 268, 1053–1056 (1995).

    Article  CAS  PubMed  Google Scholar 

  64. DeVries, S. H. & Baylor, D. A. An alternative pathway for signal flow from rod photoreceptors to ganglion cells in mammalian retina. Proc. Natl Acad. Sci. USA 92, 10658–10662 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Völgyi, B., Deans, M. R., Paul, D. L. & Bloomfield, S. A. Convergence and segregation of the multiple rod pathways in mammalian retina. J. Neurosci. 24, 11182–11192 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Blakemore, C. B. & Rushton, W. A. The rod increment threshold during dark adaptation in normal and rod monochromat. J. Physiol. 181, 629–640 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Conner, J. D. The temporal properties of rod vision. J. Physiol. 332, 139–155 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hess, R. F. & Nordby, K. Spatial and temporal properties of human rod vision in the achromat. J. Physiol. 371, 387–406 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sharpe, L. T. & Stockman, A. Rod pathways: the importance of seeing nothing. Trends Neurosci. 22, 497–504 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Deans, M. R., Volgyi, B., Goodenough, D. A., Bloomfield, S. A. & Paul, D. L. Connexin36 is essential for transmission of rod-mediated visual signals in the mammalian retina. Neuron 36, 703–712 (2002). This article showed that CX36-containing gap junctions form obligatory elements in the transmission of rod signals in the retina.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dunn, F. A., Doan, T., Sampath, A. P. & Rieke, F. Controlling the gain of rod-mediated signals in the mammalian retina. J. Neurosci. 26, 3959–3970 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Smith, R. G., Freed, M. A. & Sterling, P. Microcircuitry of the dark-adapted cat retina: functional architecture of the rod-cone network. J. Neurosci. 6, 3505–3517 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Soucy, E., Wang, Y., Nirenberg, S., Nathans, J. & Meister, M. A novel signaling pathway from rod photoreceptors to ganglion cells in mammalian retina. Neuron 21, 481–493 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Boycott, B. B. & Dowling, J. E. Organization of the primate retina: light microscopy. Philos. Trans. R. Soc. Lond. B Biol. Sci. 255, 109–184 (1969).

    Article  Google Scholar 

  75. Hack, I., Peichl, L. & Brandstätter, J. H. An alternative pathway for rod signals in the rodent retina: rod photoreceptors, cone bipolar cells, and the localization of glutamate receptors. Proc. Natl Acad. Sci. USA 96, 14130–14135 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fyk-Kolodziej, B., Qin, P. & Pourcho, R. G. Identification of a cone bipolar cell in cat retina which has input from both rod and cone photoreceptors. J. Comp. Neurol. 464, 104–113 (2003).

    Article  PubMed  Google Scholar 

  77. Li, W., Keung, J. W. & Massey, S. C. Direct synaptic connections between rods and OFF cone bipolar cells in the rabbit retina. J. Comp. Neurol. 474, 1–12 (2004).

    Article  PubMed  Google Scholar 

  78. Kolb, H. The connections between horizontal cells and photoreceptors in the retina of the cat: electron microscopy of Golgi preparations. J. Comp. Neurol. 155, 1–14 (1974).

    Article  CAS  PubMed  Google Scholar 

  79. Yamada, E. & Ishikawa, T. The fine structure of the horizontal cells in some vertebrate retinae. Cold Spring Harb. Symp. Quant. Biol. 30, 383–392 (1965).

    Article  CAS  PubMed  Google Scholar 

  80. Vaney, D. Many diverse types of retinal neurons show tracer coupling when injected with biocytin and neurobiotin. Neurosci. Lett. 125, 187–190 (1991). This study was the first to demonstrate that biotinylated tracers permeate gap junctions and can be used to visualize electrical synapses.

    Article  CAS  PubMed  Google Scholar 

  81. Bloomfield, S. A., Xin, D. & Persky, S. E. A comparison of receptive field and tracer coupling size of horizontal cells in the rabbit retina. Vis. Neurosci. 12, 985–999 (1995).

    Article  CAS  PubMed  Google Scholar 

  82. Dacheux, R. F. & Raviola, E. Horizontal cells in the retina of the rabbit. J. Neurosci. 2, 1486–1493 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dacey, D. M. Primate retina: cell types, circuits and color opponency. Prog. Retin. Eye Res. 18, 737–763 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Naka, K. I. & Rushton, W. A. The generation and spread of S-potentials in fish (Cyprinidae). J. Physiol. 192, 437–461 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bloomfield, S. A. & Miller, R. F. A physiological and morphological study of the horizontal cell types in the rabbit retina. J. Comp. Neurol. 208, 288–303 (1982).

    Article  CAS  PubMed  Google Scholar 

  86. Hombach, S. et al. Functional expression of connexin57 in horizontal cells of the mouse retina. Eur. J. Neurosci. 19, 2633–2640 (2004).

    Article  PubMed  Google Scholar 

  87. Shelley, J. et al. Horizontal cell receptive fields are reduced in connexin57-deficient mice. Eur. J. Neurosci. 23, 3176–3186 (2006). This report showed that disruption of horizontal cell gap junctions in the connexin57-deficient mouse retina results in a dramatic reduction in their receptive field sizes.

    Article  PubMed  Google Scholar 

  88. Werblin, F. S. & Dowling, J. E. Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. J. Neurophysiol. 32, 339–355 (1969).

    Article  CAS  PubMed  Google Scholar 

  89. Kaneko, A. Physiological and morphological identification of horizontal, bipolar and amacrine cells in goldfish retina. J. Physiol. 207, 623–633 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Naka, K. I. & Nye, P. W. Role of horizontal cells in organization of the catfish retinal receptive field. J. Neurophysiol. 34, 785–801 (1971).

    Article  CAS  PubMed  Google Scholar 

  91. Naka, K. I. & Witkovsky, P. Dogfish ganglion cell discharge resulting from extrinsic polarization of the horizontal cells. J. Physiol. 223, 449–460 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Marchiafava, P. L. Horizontal cells influence membrane potential of bipolar cells in the retina of the turtle. Nature 275, 141–142 (1978).

    Article  CAS  PubMed  Google Scholar 

  93. Mangel, S. C. & Miller, R. F. Horizontal cells contribute to the receptive field surround of ganglion cells in the rabbit retina. Brain Res. 414, 182–186 (1987).

    Article  CAS  PubMed  Google Scholar 

  94. Kamermans, M. et al. Hemichannel-mediated inhibition in the outer retina. Science 292, 1178–1180 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Dedek, K. et al. Ganglion cell adaptability: does coupling of horizontal cells play a role? PLoS ONE 5, e1714 (2008).

    Article  CAS  Google Scholar 

  96. Hedden, W. L. & Dowling, J. E. The interplexiform cell system. II. Effects of dopamine on goldfish retinal neurones. Proc. R. Soc. Lond. B Biol. Sci. 201, 27–55 (1978).

    Article  CAS  PubMed  Google Scholar 

  97. Piccolino, M., Neyton, J. & Gerschenfeld, H. M. Decrease of gap junction permeability induced by dopamine and cyclic adenosine 3′:5′-monophosphate in horizontal cells of turtle retina. J. Neurosci. 4, 2477–2488 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Baldridge, W. H., Ball, A. K. & Miller, R. G. Dopaminergic regulation of horizontal cell gap junction particle density in goldfish retina. J. Comp. Neurol. 265, 428–436 (1987).

    Article  CAS  PubMed  Google Scholar 

  99. McMahon, D. G., Knapp, A. G. & Dowling, J. E. Horizontal cell gap junctions: single-channel conductance and modulation by dopamine. Proc. Natl Acad. Sci. USA 86, 7639–7643 (1989). This report showed that dopamine can directly modulate the conductance of gap junctions connecting neighbouring horizontal cells.

    Article  CAS  PubMed  Google Scholar 

  100. Kurz-Isler, G., Voigt, T. & Wolburg, H. Modulation of connexon densities in gap junctions of horizontal cell perikarya and axon terminals in fish retina: effects of light/dark cycles, interruption of the optic nerve and application of dopamine. Cell Tissue Res. 268, 267–275 (1992).

    Article  CAS  PubMed  Google Scholar 

  101. McMahon, D. G. & Brown, D. R. Modulation of gap-junction channel gating at zebrafish retinal electrical synapses. J. Neurophysiol. 72, 2257–2268 (1994).

    Article  CAS  PubMed  Google Scholar 

  102. DeVries, S. H. & Schwartz, E. A. Hemi-gap-junction channels in solitary horizontal cells of the catfish retina. J. Physiol. 445, 201–230 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lu, C. & McMahon, D. G. Modulation of hybrid bass retinal gap junctional channel gating by nitric oxide. J. Physiol. 499, 689–699 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Pottek, M., Schultz, K. & Weiler, R. Effects of nitric oxide on the horizontal cell network and dopamine release in the carp retina. Vision Res. 37, 1091–1102 (1997).

    Article  CAS  PubMed  Google Scholar 

  105. Hampson, E. C., Weiler, R. & Vaney, D. I. pH-gated dopaminergic modulation of horizontal cell gap junctions in mammalian retina. Proc. Biol. Sci. 255, 67–72 (1994).

    Article  CAS  PubMed  Google Scholar 

  106. Mills, S. L. & Massey, S. E. L-Arginine uncouples A-type horizontal cells in rabbit retina. Invest. Ophthalmol. Vis. Sci. (Suppl.) 34, 1382 (1993).

    Google Scholar 

  107. Godley, B. F. & Wurtman, R. J. Release of endogenous dopamine from the superfused rabbit retina in vitro: effect of light stimulation. Brain Res. 452, 393–395 (1988).

    Article  CAS  PubMed  Google Scholar 

  108. Kirsch, M. & Wagner, H. J. Release pattern of endogenous dopamine in teleost retinae during light adaptation and pharmacological stimulation. Vision Res. 29, 147–154 (1989).

    Article  CAS  PubMed  Google Scholar 

  109. Zemel, E., Eyal, O., Lei, B. & Perlman, I. NADPH diaphorase activity in mammalian retinas is modulated by the state of visual adaptation. Vis. Neurosci. 13, 865–871 (1996).

    Article  Google Scholar 

  110. Neal, M., Cunningham, J. & Matthews, K. Selective release of nitric oxide from retinal amacrine and bipolar cells. Invest. Ophthalmol. Vis. Sci. 39, 850–853 (1998).

    CAS  PubMed  Google Scholar 

  111. Mangel, S. C. & Dowling, J. E. Responsiveness and receptive field size of carp horizontal cells are reduced by prolonged darkness and dopamine. Science 229, 1107–1109 (1985).

    Article  CAS  PubMed  Google Scholar 

  112. Mangel, S. C. & Dowling, J. E. The interplexiform-horizontal cell system of the fish retina: effects of dopamine, light stimulation and time in the dark. Proc. R. Soc. Lond. B Biol. Sci. 231, 91–121 (1987).

    Article  CAS  PubMed  Google Scholar 

  113. Tornqvist, K., Yang, X. L. & Dowling, J. E. Modulation of cone horizontal cell activity in the teleost fish retina. III. Effects of prolonged darkness and dopamine on electrical coupling between horizontal cells. J. Neurosci. 8, 2279–2288 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Rodieck, R. W. & Stone, J. Analysis of receptive fields of cat retinal ganglion cells. J. Neurophysiol. 28, 832–849 (1965).

    Google Scholar 

  115. Peichl, L. & Wässle, H. The structural correlate of the receptive field centre of α cells in the cat retina. J. Physiol. 341, 309–324 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Muller, J. F. & Dacheux, R. F. Alpha ganglion cells of the rabbit retina lose antagonistic surround responses under dark adaptation. Vis. Neurosci. 14, 395–401 (1997).

    Article  CAS  PubMed  Google Scholar 

  117. Balboa, R. M. & Grzywacz, N. M. The role of early retinal inhibition: more than maximizing luminance information. Vis. Neurosci. 17, 77–89 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Balboa, R. M. & Grzywacz, N. M. The minimal local-asperity hypothesis of early retinal lateral inhibition. Neural Comput. 12, 1485–1517 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Famiglietti, E. V. Jr & Kolb, H. A bistratified amacrine cell and synaptic circuitry in the inner plexiform layer of the retina. Brain Res. 84, 293–300 (1975).

    Article  PubMed  Google Scholar 

  120. Strettoi, E., Dacheux, R. F. & Raviola, E. Synaptic connections of rod bipolar cells in the inner plexiform layer of the rabbit retina. J. Comp. Neurol. 295, 449–466 (1990).

    Article  CAS  PubMed  Google Scholar 

  121. Feigenspan, A., Teubner, B., Willecke, K. & Weiler, R. Expression of neuronal connexin36 in AII amacrine cells of the mammalian retina. J. Neurosci. 21, 230–239 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Mills, S. L., O'Brien, J. J., Li, W., O'Brien, J. & Massey, S. C. Rod pathways in the mammalian retina use connexin36. J. Comp. Neurol. 436, 336–350 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Lin, B., Jakobs, T. C. & Masland, R. H. Different functional types of bipolar cells use different gap-junctional proteins. J. Neurosci. 25, 6696–6701 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Han, Y. & Massey, S. C. Electrical synapses in retinal ON cone bipolar cells: subtype-specific expression of connexins. Proc. Natl Acad. Sci. USA 102, 13313–13318 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Dedek, K. et al. Localization of the heterotypic gap junctions composed of connexin45 and connexin36 in the rod pathway of the mouse retina. Eur. J. Neurosci. 24, 1675–1686 (2006).

    Article  PubMed  Google Scholar 

  126. Li, X. et al. Connexin45-containing neuronal gap junctions in rodent retina also contain connexin36 in both apposing hemiplaques, forming bihomotypic gap junctions, with scaffolding contributed by zona occludens-1. J. Neurosci. 28, 9769–9789 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Mills, S. L. & Massey, S. C. A series of biotinylated tracers distinguishes three types of gap junction in retina. J. Neurosci. 20, 8629–8636 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Veruki, M. L. & Hartveit, E. Electrical synapses mediate signal transmission in the rod pathway of the mammalian retina. J. Neurosci. 22, 10558–10566 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Güldenagel, M. et al. Visual transmission deficits in mice with targeted disruption of the gap junction gene connexin36. J. Neurosci. 21, 6036–6044 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Xin, D. & Bloomfield, S. A. Comparison of the responses of AII amacrine cells in the dark- and light-adapted rabbit retina. Vis. Neurosci. 16, 653–665 (1999).

    Article  CAS  PubMed  Google Scholar 

  131. Smith, R. G. & Vardi, N. Simulation of the AII amacrine cell of mammalian retina: functional consequences of electrical coupling and regenerative membrane properties. Vis. Neurosci. 12, 851–860 (1995).

    Article  CAS  PubMed  Google Scholar 

  132. Voigt, T. & Wässle, H. Dopaminergic innervation of AII amacrine cells in mammalian retina. J. Neurosci. 7, 4115–4128 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Hampson, E. C., Vaney, D. I. & Weiler, R. Dopaminergic modulation of gap junction permeability between amacrine cells in mammalian retina. J. Neurosci. 12, 4911–4922 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Urschel, S. et al. Protein kinase A-mediated phosphorylation of connexin36 in mouse retina results in decreased gap junctional communication between AII amacrine cells. J. Biol. Chem. 281, 33163–33171 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Vaney, D. I. Territorial organization of direction-selective ganglion cells in rabbit retina. J. Neurosci. 14, 6301–6316 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Xin, D. & Bloomfield, S. A. Tracer coupling pattern of amacrine cells in the rabbit retina. J. Comp. Neurol. 383, 512–528 (1997).

    Article  CAS  PubMed  Google Scholar 

  137. Völgyi, B., Chheda, S. & Bloomfield, S. A. Tracer coupling patterns of the ganglion cell subtypes in the mouse retina. J. Comp. Neurol. 512, 664–687 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Bloomfield, S. A. & Xin, D. A comparison of receptive-field and tracer-coupling size of amacrine and ganglion cells in the rabbit retina. Vis. Neurosci. 14, 1153–1165 (1997).

    Article  CAS  PubMed  Google Scholar 

  139. Mastronarde, D. N. Correlated firing of cat retinal ganglion cells. I. Spontaneously active inputs to X- and Y-cells. J. Neurophysiol. 49, 303–324 (1983).

    Article  CAS  PubMed  Google Scholar 

  140. Mastronarde, D. N. Correlated firing of cat retinal ganglion cells. II. Responses of X- and Y-cells to single quantal events. J. Neurophysiol. 49, 325–349 (1983).

    Article  CAS  PubMed  Google Scholar 

  141. Mastronarde, D. N. Interactions between ganglion cells in cat retina. J. Neurophysiol. 49, 350–365 (1983). This study was the first to report concerted activity between neighbouring ganglion cells, suggesting direct electrical coupling years before gap junctions between ganglion cells were demonstrated.

    Article  CAS  PubMed  Google Scholar 

  142. Arnett, D. & Spraker, T. E. Cross-correlation analysis of the maintained discharge of rabbit retinal ganglion cells. J. Physiol. 317, 29–47 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Brivanlou, I. H., Warland, D. K. & Meister, M. Mechanisms of concerted firing among retinal ganglion cells. Neuron 20, 527–539 (1998). This study showed that different types of ganglion cell and amacrine cell electrical coupling result in different patterns of correlated spike activity.

    Article  CAS  PubMed  Google Scholar 

  144. DeVries, S. H. Correlated firing in rabbit retinal ganglion cells. J. Neurophysiol. 81, 908–920 (1999).

    Article  CAS  PubMed  Google Scholar 

  145. Hu, E. H. & Bloomfield, S. A. Gap junctional coupling underlies the short-latency spike synchrony of retinal α ganglion cells. J. Neurosci. 23, 6768–6777 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Shlens, J., Rieke, F. & Chichilnisky, E. Synchronized firing in the retina. Curr. Opin. Neurobiol. 18, 396–402 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Castelo-Branco, M., Neuenschwander, S. & Singer, W. Synchronization of visual responses between the cortex, lateral geniculate nucleus and retina in the anasthetized cat. J. Neurosci. 18, 6395–63410 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Schnitzer, M. J. & Meister, M. Multineuronal firing patterns in the signal from eye to brain. Neuron 37, 499–511 (2003).

    Article  CAS  PubMed  Google Scholar 

  149. Meister, M. & Berry, M. The neural code of the retina. Neuron 22, 435–450 (1999).

    Article  CAS  PubMed  Google Scholar 

  150. Alonso, J. M., Usrey, W. M. & Reid, R. C. Precisely correlated firing in cells of the lateral geniculate nucleus. Nature 383, 815–819 (1996).

    Article  CAS  PubMed  Google Scholar 

  151. Stevens, C. F. & Zador, A. M. Input synchrony and irregular firing of cortical neurons. Nature Neurosci. 1, 210–217 (1998).

    Article  CAS  PubMed  Google Scholar 

  152. Usrey, W. M. & Reid, R. C. Synchronous activity in the visual system. Annu. Rev. Physiol. 61, 435–456 (1999).

    Article  CAS  PubMed  Google Scholar 

  153. Singer, W. Neuronal synchrony: a versatile code for the definition of relations? Neuron 24, 49–65 (1999).

    Article  CAS  PubMed  Google Scholar 

  154. Mills, S. L. et al. Dopaminergic modulation of tracer coupling in a ganglion-amacrine cell network. Vis. Neurosci. 24, 593–608 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Naus, C. C. & Bani-Yaghoub, M. Gap junctional communication in the developing central nervous system. Cell Biol. Int. 22, 751–763 (1998).

    Article  CAS  PubMed  Google Scholar 

  156. Grubb, M. S. & Thompson, I. D. The influence of early experience on the development of sensory systems. Curr. Opin. Neurobiol. 14, 503–512 (2004).

    Article  CAS  PubMed  Google Scholar 

  157. Syed, M. M., Lee, S., He, S. & Zhou, Z. J. Spontaneous waves in the ventricular zone of developing mammalian retina. J. Neurophysiol. 91, 1999–2009 (2004).

    Article  PubMed  Google Scholar 

  158. Sernagor, E., Eglen, S. J. & Wong, R. O. Development of retinal ganglion cell structure and function. Prog. Retin. Eye Res. 20, 139–174 (2001).

    Article  CAS  PubMed  Google Scholar 

  159. Ackert, J. M. et al. Light induced changes in spike synchronization between coupled ON direction selective ganglion cells in the mammalian retina. J. Neurosci. 26, 4206–4215 (2006). This study showed that changes in the synchronous activity of coupled ON direction-selective ganglion cells provide a mechanism to encode the direction of stimulus motion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Oyster, C. W. The analysis of image motion by the retina. J. Physiol. 199, 613–635 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Oyster, C. W., Simpson, J. I., Takahashi, E. S. & Soodak, R. E. Retinal ganglion cells projecting to the rabbit accessory optic system. J. Comp. Neurol. 190, 49–61 (1980).

    Article  CAS  PubMed  Google Scholar 

  162. Buhl, E. H. & Peichl, L. Morphology of rabbit retinal ganglion cells projecting to the medial terminal nucleus of the accessory optic system. J. Comp. Neurol. 253, 163–174 (1986).

    Article  CAS  PubMed  Google Scholar 

  163. Pu, M. L. & Amthor, F. R. Dendritic morphologies of retinal ganglion cells projecting to the nucleus of the optic tract in the rabbit. J. Comp. Neurol. 302, 657–674 (1990).

    Article  CAS  PubMed  Google Scholar 

  164. Simpson, J. I. The accessory optic sytem. Annu. Rev. Neurosci. 7, 13–41 (1984).

    Article  CAS  PubMed  Google Scholar 

  165. Nakase, T. & Nasus, C. C. G. Gap junctions and neurological disorders of the central nervous system. Biochim. Biophys. Acta 1662, 149–158 (2004).

    Article  CAS  PubMed  Google Scholar 

  166. O'Brien, J. J. et al. Coupling between A-type horizontal cells is mediated by connexin 50 gap junctions in the rabbit retina. J. Neurosci. 26, 11624–11636 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Schubert, T. et al. Connexin36 mediates gap junctional coupling of alpha-ganglion cells in mouse retina. J. Comp. Neurol. 485, 191–201 (2005).

    Article  CAS  PubMed  Google Scholar 

  168. Schubert, T., Maxeiner, S., Krüger, O., Willecke, K. & Weiler, R. Connexin45 mediates gap junctional coupling of bistratified ganglion cells in the mouse retina. J. Comp. Neurol. 490, 29–39 (2005).

    Article  CAS  PubMed  Google Scholar 

  169. Völgyi, B., Abrams, J., Paul, D. L. & Bloomfield, S. A. Morphology and tracer coupling of alpha ganglion cells in the mouse retina. J. Comp. Neurol. 492, 66–77 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the National Eye Institute of the US National Institutes of Health for support of their research programmes (grants EY007360 (S.A.B.) and EY017832 (B.V.)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stewart A. Bloomfield.

Glossary

Amacrine cell

An interneuron located in the inner plexiform layer of the retina, at the level where bipolar cells and ganglion cells synapse.

Gap junction plaque

A collection of up to thousands of single gap junction channels.

Bipolar cell

A cell that receives information formed by the interactions of horizontal cells with cone or rod photoreceptors and conveys it to the inner retina. ON (cone or rod) bipolar cells respond to increases in intensity, whereas OFF cone bipolar cells respond to decreases in intensity.

All amacrine cell

A subtype of retinal amacrine cell with a small dendritic field that conveys the rod signal to cone bipolar cells.

Sign-inverting synapse

A synapse that inverts the polarity of the signal passed from the pre- to the postsynaptic neuron.

Sign-conserving synapse

A synapse that preserves the polarity of the signal passed from the pre- to the postsynaptic neuron.

Ganglion cells

The output neurons of the retina, the axons of which form the optic nerve. ON ganglion cells respond to increases in light intensity, whereas OFF ganglion cells respond to decreases in light intensity.

Scotopic

Relating to dim ambient light conditions under which only rod photoreceptors are active.

Horizontal cells

Retinal neurons that form a network just beneath the photoreceptors that is responsible for averaging visual activity over space and time, which is important for contrast signalling.

Receptive field

A dynamic area of the retina in which stimulus presentation leads to the response of a particular cell.

Ephaptic

Relating to the direct electrical interaction between neighbouring neurons, mediated by current flow through the extracellular space that separates them.

Mesopic

Relating to the ambient light condition under which both rod and cone photoreceptors are active.

Accessory optic system

A visuosensory pathway with a direct retinal input to the midbrain.

Optokinetic response

A compensatory eye movement that stabilizes an image on the retina during slow head rotation.

Pannexins

Proteins expressed in both vertebrates and invertebrates that can form intercellular gap junction channels.They are genetically related to the invertebrate innexin family but are not related to connexins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bloomfield, S., Völgyi, B. The diverse functional roles and regulation of neuronal gap junctions in the retina. Nat Rev Neurosci 10, 495–506 (2009). https://doi.org/10.1038/nrn2636

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2636

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing