Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Can the immune system be harnessed to repair the CNS?

Abstract

Experimental and clinical data have demonstrated that activating the immune system in the CNS can be destructive. However, other studies have shown that enhancing an immune response can be therapeutic, and several clinical trials have been initiated with the aim of boosting immune responses in the CNS of individuals with spinal cord injury, multiple sclerosis and Alzheimer's disease. Here, we evaluate the controversies in the field and discuss the remaining scientific challenges that are associated with enhancing immune function in the CNS to treat neurological diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The magnitude and rate of tissue pathology influences the nature of neuroimmune interactions.

Similar content being viewed by others

References

  1. Galea, I., Bechmann, I. & Perry, V. H. What is immune privilege (not)? Trends Immunol. 28, 12–18 (2007).

    CAS  PubMed  Google Scholar 

  2. Feuerstein, G. Z., Wang, X. & Barone, F. C. The role of cytokines in the neuropathology of stroke and neurotrauma. Neuroimmunomodulation. 5, 143–159 (1998).

    CAS  PubMed  Google Scholar 

  3. Barnett, M. H., Henderson, A. P. & Prineas, J. W. The macrophage in MS: just a scavenger after all? Pathology and pathogenesis of the acute MS lesion. Mult. Scler. 12, 121–132 (2006).

    CAS  PubMed  Google Scholar 

  4. Schroeter, M. & Jander, S. T-cell cytokines in injury-induced neural damage and repair. Neuromolecular. Med. 7, 183–195 (2005).

    CAS  PubMed  Google Scholar 

  5. Schwartz, M. Harnessing the immune system for neuroprotection: therapeutic vaccines for acute and chronic neurodegenerative disorders. Cell Mol. Neurobiol. 21, 617–627 (2001).

    CAS  PubMed  Google Scholar 

  6. Schwartz, M. & Kipnis, J. Protective autoimmunity: regulation and prospects for vaccination after brain and spinal cord injuries. Trends Mol. Med. 7, 252–258 (2001).

    CAS  PubMed  Google Scholar 

  7. Hauwel, M. et al. Innate (inherent) control of brain infection, brain inflammation and brain repair: the role of microglia, astrocytes, “protective” glial stem cells and stromal ependymal cells. Brain Res. Brain Res. Rev. 48, 220–233 (2005).

    CAS  PubMed  Google Scholar 

  8. Farina, C., Aloisi, F. & MeinL, E. Astrocytes are active players in cerebral innate immunity. Trends Immunol. 28, 138–145 (2007).

    CAS  PubMed  Google Scholar 

  9. Kreutzberg, G. W. Microglia: A sensor for pathological events in the CNS. Trends Neurosci. 19, 312–318 (1996).

    CAS  PubMed  Google Scholar 

  10. Nathan, C. Points of control in inflammation. Nature 420, 846–852 (2002).

    CAS  PubMed  Google Scholar 

  11. Matzinger, P. The danger model: a renewed sense of self. Science 296, 301–305 (2002).

    CAS  PubMed  Google Scholar 

  12. Matzinger, P. Friendly and dangerous signals: is the tissue in control? Nature Immunol. 8, 11–13 (2007).

    CAS  Google Scholar 

  13. Davalos, D. et al. ATP mediates rapid microglial response to local brain injury in vivo. Nature Neurosci. 8, 752–758 (2005).

    CAS  PubMed  Google Scholar 

  14. Cotrina, M. L., Lin, J. H., Lopez-Garcia, J. C., Naus, C. C. & Nedergaard, M. ATP-mediated glia signaling. J. Neurosci. 20, 2835–2844 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Koizumi, S. et al. UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis. Nature 446, 1091–1095 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ohsawa, K. et al. Involvement of P2X4 and P2Y12 receptors in ATP-induced microglial chemotaxis. Glia. 55, 604–616 (2007).

    PubMed  Google Scholar 

  17. Dong, Y. & Benveniste, E. N. Immune function of astrocytes. Glia. 36, 180–190 (2001).

    CAS  PubMed  Google Scholar 

  18. Elkabes, S., DiCicco-Bloom, E. M. & Black, I. B. Brain microglia/macrophages express neurotrophins that selectively regulate microglial proliferation and function. J. Neurosci. 16, 2508–2521 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Persson, M., Brantefjord, M., Hansson, E. & Ronnback, L. Lipopolysaccharide increases microglial GLT-1 expression and glutamate uptake capacity in vitro by a mechanism dependent on TNF-α. Glia. 51, 111–120 (2005).

    PubMed  Google Scholar 

  20. Bessis, A., Bechade, C., Bernard, D. & Roumier, A. Microglial control of neuronal death and synaptic properties. Glia 55, 233–238 (2007).

    PubMed  Google Scholar 

  21. Pender, M. P. & Rist, M. J. Apoptosis of inflammatory cells in immune control of the nervous system: role of glia. Glia 36, 137–144 (2001).

    CAS  PubMed  Google Scholar 

  22. Faulkner, J. R. et al. Reactive astrocytes protect tissue and preserve function after spinal cord injury. J. Neurosci. 24, 2143–2155 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Myer, D. J., Gurkoff, G. G., Lee, S. M., Hovda, D. A. & Sofroniew, M. V. Essential protective roles of reactive astrocytes in traumatic brain injury. Brain 129, 2761–2772 (2006).

    CAS  PubMed  Google Scholar 

  24. Bush, T. G. et al. Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron 23, 297–308 (1999).

    CAS  PubMed  Google Scholar 

  25. Okada, S. et al. Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury. Nature Med. 12, 829–834 (2006).

    CAS  PubMed  Google Scholar 

  26. Brambilla, R. et al. Inhibition of astroglial nuclear factor κB reduces inflammation and improves functional recovery after spinal cord injury. J. Exp. Med. 202, 145–156 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Simard, A. R., Soulet, D., Gowing, G., Julien, J. P. & Rivest, S. Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer's disease. Neuron 49, 489–502 (2006).

    CAS  PubMed  Google Scholar 

  28. Lalancette-Hebert, M., Gowing, G., Simard, A., Weng, Y. C. & Kriz, J. Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J. Neurosci. 27, 2596–2605 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Neumann, H. Control of glial immune function by neurons. Glia 36, 191–199 (2001).

    CAS  PubMed  Google Scholar 

  30. Griffiths, M., Neal, J. W. & Gasque, P. Innate immunity and protective neuroinflammation: new emphasis on the role of neuroimmune regulatory proteins. Int. Rev. Neurobiol. 82, 29–55 (2007).

    CAS  PubMed  Google Scholar 

  31. Cardona, A. E. et al. Control of microglial neurotoxicity by the fractalkine receptor. Nature Neurosci. 9, 917–924 (2006).

    CAS  PubMed  Google Scholar 

  32. Hoek, R. M. et al. Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 290, 1768–1771 (2000).

    CAS  PubMed  Google Scholar 

  33. Mott, R. T. et al. Neuronal expression of CD22: novel mechanism for inhibiting microglial proinflammatory cytokine production. Glia 46, 369–379 (2004).

    PubMed  Google Scholar 

  34. Bechmann, I. et al. Reactive astrocytes upregulate Fas (CD95) and Fas ligand (CD95L) expression but do not undergo programmed cell death during the course of anterograde degeneration. Glia 32, 25–41 (2000).

    CAS  PubMed  Google Scholar 

  35. Dirnagl, U., Iadecola, C. & Moskowitz, M. A. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 22, 391–397 (1999).

    CAS  PubMed  Google Scholar 

  36. Kuhlmann, T., Bitsch, A., Stadelmann, C., Siebert, H. & Bruck, W. Macrophages are eliminated from the injured peripheral nerve via local apoptosis and circulation to regional lymph nodes and the spleen. J. Neurosci. 21, 3401–3408 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Mutlu, L. et al. Tolerogenic effect of fiber tract injury: reduced EAE severity following entorhinal cortex lesion. Exp. Brain Res. 178, 542–553 (2007).

    PubMed  Google Scholar 

  38. Savill, J., Dransfield, I., Gregory, C. & Haslett, C. A blast from the past: clearance of apoptotic cells regulates immune responses. Nature Rev. Immunol. 2, 965–975 (2002).

    CAS  Google Scholar 

  39. Velardo, M. J. et al. Patterns of gene expression reveal a temporally orchestrated wound healing response in the injured spinal cord. J. Neurosci. 24, 8562–8576 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Goodman, J. H., Bingham, W. G., Jr. & Hunt, W. E. Platelet aggregation in experimental spinal cord injury. Ultrastructural observations. Arch Neurol 36, 197–201 (1979).

    CAS  PubMed  Google Scholar 

  41. Koyanagi, I., Iwasaki, Y., Isu, T., Akino, M. & Abe, H. Significance of spinal cord swelling in the prognosis of acute cervical spinal cord injury. Paraplegia 27, 190–197 (1989).

    CAS  PubMed  Google Scholar 

  42. Aarabi, B. et al. Outcome following decompressive craniectomy for malignant swelling due to severe head injury. J. Neurosurg. 104, 469–479 (2006).

    PubMed  Google Scholar 

  43. Nagy, Z., Kolev, K., Csonka, E., Vastag, M. & Machovich, R. Perturbation of the integrity of the blood-brain barrier by fibrinolytic enzymes. Blood Coagul. Fibrinolysis 9, 471–478 (1998).

    CAS  PubMed  Google Scholar 

  44. Armao, D., Kornfeld, M., Estrada, E. Y., Grossetete, M. & Rosenberg, G. A. Neutral proteases and disruption of the blood-brain barrier in rat. Brain Res. 767, 259–264 (1997).

    CAS  PubMed  Google Scholar 

  45. Weber, C., Fraemohs, L. & Dejana, E. The role of junctional adhesion molecules in vascular inflammation. Nature Rev. Immunol. 7, 467–477 (2007).

    CAS  Google Scholar 

  46. Engelhardt, B. & Ransohoff, R. M. The ins and outs of T-lymphocyte trafficking to the CNS: anatomical sites and molecular mechanisms. Trends Immunol. 26, 485–495 (2005).

    CAS  PubMed  Google Scholar 

  47. Gingrich, M. B., Junge, C. E., Lyuboslavsky, P. & Traynelis, S. F. Potentiation of NMDA receptor function by the serine protease thrombin. J. Neurosci. 20, 4582–4595 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Suo, Z. et al. Participation of protease-activated receptor-1 in thrombin-induced microglial activation. J. Neurochem. 80, 655–666 (2002).

    CAS  PubMed  Google Scholar 

  49. Ohnishi, M. et al. Involvement of thrombin and mitogen-activated protein kinase pathways in hemorrhagic brain injury. Exp. Neurol. 206, 43–52 (2007).

    CAS  PubMed  Google Scholar 

  50. Choi, S. H., Joe, E. H., Kim, S. U. & Jin, B. K. Thrombin-induced microglial activation produces degeneration of nigral dopaminergic neurons in vivo. J. Neurosci. 23, 5877–5886 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kadota, E. et al. Biological functions of extravasated serum IgG in rat brain. Acta Neurochir. Suppl 76, 69–72 (2000).

    CAS  PubMed  Google Scholar 

  52. Ankeny, D. P., Lucin, K. M., Sanders, V. M., McGaughy, V. M. & Popovich, P. G. Spinal cord injury triggers systemic autoimmunity: evidence for chronic B lymphocyte activation and lupus-like autoantibody synthesis. J. Neurochem. 99, 1073–1087 (2006).

    CAS  PubMed  Google Scholar 

  53. Anderson, A. J., Robert, S., Huang, W., Young, W. & Cotman, C. W. Activation of complement pathways after contusion-induced spinal cord injury. J. Neurotrauma 21, 1831–1846 (2004).

    PubMed  Google Scholar 

  54. Leinhase, I. et al. Reduced neuronal cell death after experimental brain injury in mice lacking a functional alternative pathway of complement activation. BMC Neurosci. 7, 55 (2006).

    PubMed  PubMed Central  Google Scholar 

  55. Stahel, P. F., Morganti-Kossman, M. C. & Kossman, T. The role of the complement system in traumatic brain injury. Brain Res. Rev. 27, 243–256 (1998).

    CAS  PubMed  Google Scholar 

  56. Stahel, P. F. et al. Intrathecal levels of complement-derived soluble membrane attack complex (sC5b-9) correlate with blood-brain barrier dysfunction in patients with traumatic brain injury. J. Neurotrauma 18, 773–781 (2001).

    CAS  PubMed  Google Scholar 

  57. Martin, P. & Leibovich, S. J. Inflammatory cells during wound repair: the good, the bad and the ugly. Trends Cell Biol. 15, 599–607 (2005).

    CAS  PubMed  Google Scholar 

  58. Martin, P. Wound healing — aiming for perfect skin regeneration. Science 276, 75–81 (1997).

    CAS  PubMed  Google Scholar 

  59. Hashimoto, Y. et al. Transforming growth factor β2 autocrinally mediates neuronal cell death induced by amyloid-β. J. Neurosci. Res. 83, 1039–1047 (2006).

    CAS  PubMed  Google Scholar 

  60. Floden, A. M., Li, S. & Combs, C. K. β-amyloid-stimulated microglia induce neuron death via synergistic stimulation of tumor necrosis factor α and NMDA receptors. J. Neurosci. 25, 2566–2575 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Hailer, N. P., Vogt, C., Korf, H. W. & Dehghani, F. Interleukin-1β exacerbates and interleukin-1 receptor antagonist attenuates neuronal injury and microglial activation after excitotoxic damage in organotypic hippocampal slice cultures. Eur. J. Neurosci. 21, 2347–2360 (2005).

    PubMed  Google Scholar 

  62. Silver, J. & Miller, J. H. Regeneration beyond the glial scar. Nature Rev. Neurosci. 5, 146–156 (2004).

    CAS  Google Scholar 

  63. Sofroniew, M. V. Reactive astrocytes in neural repair and protection. Neuroscientist. 11, 400–407 (2005).

    CAS  PubMed  Google Scholar 

  64. Wang, Y., Moges, H., Bharucha, Y. & Symes, A. Smad3 null mice display more rapid wound closure and reduced scar formation after a stab wound to the cerebral cortex. Exp. Neurol. 203, 168–184 (2007).

    CAS  PubMed  Google Scholar 

  65. Smith, G. M. & Strunz, C. Growth factor and cytokine regulation of chondroitin sulfate proteoglycans by astrocytes. Glia 52, 209–218 (2005).

    PubMed  Google Scholar 

  66. Colavita, A., Krishna, S., Zheng, H., Padgett, R. W. & Culotti, J. G. Pioneer axon guidance by UNC-129, a C. elegans TGF-β. Science 281, 706–709 (1998).

    CAS  PubMed  Google Scholar 

  67. Miao, T. et al. Suppressor of cytokine signaling-3 suppresses the ability of activated signal transducer and activator of transcription-3 to stimulate neurite growth in rat primary sensory neurons. J. Neurosci. 26, 9512–9519 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kubo, M., Hanada, T. & Yoshimura, A. Suppressors of cytokine signaling and immunity. Nature Immunol. 4, 1169–1176 (2003).

    CAS  Google Scholar 

  69. Wang, J. & Campbell, I. L. Cytokine signaling in the brain: putting a SOCS in it? J. Neurosci. Res. 67, 423–427 (2002).

    CAS  PubMed  Google Scholar 

  70. Martin, P. et al. Wound healing in the PU.1 null mouse — tissue repair is not dependent on inflammatory cells. Curr. Biol. 13, 1122–1128 (2003).

    CAS  PubMed  Google Scholar 

  71. Ashcroft, G. S. et al. Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nature Cell Biol. 1, 260–266 (1999).

    CAS  PubMed  Google Scholar 

  72. Dang, C., Ting, K., Soo, C., Longaker, M. T. & Lorenz, H. P. Fetal wound healing current perspectives. Clin. Plast. Surg. 30, 13–23 (2003).

    PubMed  Google Scholar 

  73. Triarhou, L. C. & Herndon, R. M. Effect of macrophage inactivation on the neuropathology of lysolecithin-induced demyelination. Br. J. Exp. Pathol. 66, 293–301 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Felts, P. A. et al. Inflammation and primary demyelination induced by the intraspinal injection of lipopolysaccharide. Brain 128, 1649–1666 (2005).

    PubMed  Google Scholar 

  75. Schonberg, D. L., Popovich, P. G. & McTigue, D. M. Oligodendrocyte generation is differentially influenced by Toll-like receptor (TLR) 2 and TLR4-mediated intraspinal macrophage activation. J. Neuropathol. Exp. Neurol. 66, 1124–1135 (2007).

    PubMed  Google Scholar 

  76. Bieber, A. J., Kerr, S. & Rodriguez, M. Efficient central nervous system remyelination requires T cells. Ann. Neurol. 53, 680–684 (2003).

    PubMed  Google Scholar 

  77. Yin, Y. et al. Macrophage-derived factors stimulate optic nerve regeneration. J. Neurosci. 23, 2284–2293 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Yin, Y. et al. Oncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells. Nature Neurosci. 9, 843–852 (2006).

    CAS  PubMed  Google Scholar 

  79. Fitch, M. T. & Silver, J. Activated macrophages and the blood-brain barrier: inflammation after CNS injury leads to increases in putative inhibitory molecules. Exp. Neurol. 148, 587–603 (1997).

    CAS  PubMed  Google Scholar 

  80. Popovich, P. G. et al. The neuropathological and behavioral consequences of intraspinal microglial/macrophage activation. J. Neuropathol. Exp. Neurol. 61, 623–633 (2002).

    CAS  PubMed  Google Scholar 

  81. Kotter, M. R., Setzu, A., Sim, F. J., van Rooijen, N. & Franklin, R. J. Macrophage depletion impairs oligodendrocyte remyelination following lysolecithin-induced demyelination. Glia 35, 204–212 (2001).

    CAS  PubMed  Google Scholar 

  82. Ghasemlou, N., Jeong, S. Y., Lacroix, S. & David, S. T cells contribute to lysophosphatidylcholine-induced macrophage activation and demyelination in the CNS. Glia 55, 294–302 (2007).

    PubMed  Google Scholar 

  83. Taub, R. Liver regeneration: from myth to mechanism. Nature Rev. Mol. Cell Biol. 5, 836–847 (2004).

    CAS  Google Scholar 

  84. Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Vallieres, N., Berard, J. L., David, S. & Lacroix, S. Systemic injections of lipopolysaccharide accelerates myelin phagocytosis during Wallerian degeneration in the injured mouse spinal cord. Glia 53, 103–113 (2006).

    PubMed  Google Scholar 

  86. Rotshenker, S. Microglia and macrophage activation and the regulation of complement-receptor-3 (CR3/MAC-1)-mediated myelin phagocytosis in injury and disease. J. Mol. Neurosci. 21, 65–72 (2003).

    CAS  PubMed  Google Scholar 

  87. Hashimoto, M. et al. Involvement of glial cell line-derived neurotrophic factor in activation processes of rodent macrophages. J. Neurosci. Res. 79, 476–487 (2005).

    CAS  PubMed  Google Scholar 

  88. Li, W. W., Setzu, A., Zhao, C. & Franklin, R. J. Minocycline-mediated inhibition of microglia activation impairs oligodendrocyte progenitor cell responses and remyelination in a non-immune model of demyelination. J. Neuroimmunol. 158, 58–66 (2005).

    CAS  PubMed  Google Scholar 

  89. Leon, S., Yin, Y., Nguyen, J., Irwin, N. & Benowitz, L. I. Lens injury stimulates axon regeneration in the mature rat optic nerve. J Neurosci 20, 4615–4626 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Lazarov-Spiegler, O., Solomon, A. S. & Schwartz, M. Peripheral nerve-stimulated macrophages simulate a peripheral nerve-like regenerative response in rat transected optic nerve. Glia 24, 329–337 (1998).

    CAS  PubMed  Google Scholar 

  91. Bouhy, D. et al. Delayed GM-CSF treatment stimulates axonal regeneration and functional recovery in paraplegic rats via an increased BDNF expression by endogenous macrophages. FASEB J. 20, 1239–1241 (2006).

    CAS  PubMed  Google Scholar 

  92. Mitrasinovic, O. M. & Murphy, G. M. Jr. Accelerated phagocytosis of amyloid-β by mouse and human microglia overexpressing the macrophage colony-stimulating factor receptor. J. Biol. Chem. 277, 29889–29896 (2002).

    CAS  PubMed  Google Scholar 

  93. Shie, F. S., Breyer, R. M. & Montine, T. J. Microglia lacking E Prostanoid Receptor subtype 2 have enhanced Aβ phagocytosis yet lack Aβ-activated neurotoxicity. Am. J. Pathol. 166, 1163–1172 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Lazarov-Spiegler, O. et al. Transplantation of activated macrophages overcomes central nervous system regrowth failure. FASEB J. 10, 1296–1302 (1996).

    CAS  PubMed  Google Scholar 

  95. Rapalino, O. et al. Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nature Med. 4, 814–821 (1998).

    CAS  PubMed  Google Scholar 

  96. Butovsky, O. et al. Glatiramer acetate fights against Alzheimer's disease by inducing dendritic-like microglia expressing insulin-like growth factor 1. Proc. Natl Acad. Sci. USA 103, 11784–11789 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Perry, V. H., Brown, M. C. & Gordon, S. The macrophage response to central and peripheral nerve injury. A possible role for macrophages in regeneration. J. Exp. Med. 165, 1218–1223 (1987).

    CAS  PubMed  Google Scholar 

  98. Zeev-Brann, A. B., Lazarov-Spiegler, O., Brenner, T. & Schwartz, M. Differential effects of central and peripheral nerves on macrophages and microglia. Glia 23, 181–190 (1998).

    CAS  PubMed  Google Scholar 

  99. Knoller, N. et al. Clinical experience using incubated autologous macrophages as a treatment for complete spinal cord injury: phase I study results. J. Neurosurg. Spine 3, 173–181 (2005).

    PubMed  Google Scholar 

  100. Chang, H. T. Subacute human spinal cord contusion: few lymphocytes and many macrophages. Spinal Cord. 45, 174–182 (2007).

    CAS  PubMed  Google Scholar 

  101. Fleming, J. C. et al. The cellular inflammatory response in human spinal cords after injury. Brain 129, 3249–3269 (2006).

    PubMed  Google Scholar 

  102. Dusart, I. & Schwab, M. E. Secondary cell death and the inflammatory reaction after dorsal hemisection of the rat spinal cord. Eur. J. Neurosci. 6, 712–724 (1994).

    CAS  PubMed  Google Scholar 

  103. Popovich, P. G., Wei, P. & Stokes, B. T. The cellular inflammatory response after spinal cord injury in Sprague-Dawley and Lewis rats. J. Comp. Neurol. 377, 443–464 (1997).

    CAS  PubMed  Google Scholar 

  104. Kigerl, K. A., McGaughy, V. M. & Popovich, P. G. Comparative analysis of lesion development and intraspinal inflammation in four strains of mice following spinal contusion injury. J. Comp. Neurol. 494, 578–594 (2006).

    PubMed  PubMed Central  Google Scholar 

  105. Stout, R. D. et al. Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J. Immunol. 175, 342–349 (2005).

    CAS  PubMed  Google Scholar 

  106. Schnell, L., Fearn, S., Schwab, M., Perry, V. H. & Anthony, D. C. Cytokine-induced acute inflammation in the brain and spinal cord. J. Neuropathol. Exp. Neurol. 58, 245–254 (1999).

    CAS  PubMed  Google Scholar 

  107. Schnell, L., Fearn, S., Klassen, H., Schwab, M. E. & Perry, V. H. Acute inflammatory responses to mechanical lesions in the CNS: differences between brain and spinal cord. Eur. J. Neurosci. 11, 3648–3658 (1999).

    CAS  PubMed  Google Scholar 

  108. Streit, W. J. et al. Cytokine mRNA profiles in contused spinal cord and axotomized facial nucleus suggest a beneficial role for inflammation and gliosis. Exp. Neurol. 152, 74–87 (1998).

    CAS  PubMed  Google Scholar 

  109. Pan, J. Z. et al. Cytokine activity contributes to induction of inflammatory cytokine mRNAs in spinal cord following contusion. J. Neurosci. Res. 68, 315–322 (2002).

    CAS  PubMed  Google Scholar 

  110. Pineau, I. & Lacroix, S. Proinflammatory cytokine synthesis in the injured mouse spinal cord: multiphasic expression pattern and identification of the cell types involved. J. Comp. Neurol. 500, 267–285 (2007).

    CAS  PubMed  Google Scholar 

  111. Makwana, M. et al. Endogenous transforming growth factor β 1 suppresses inflammation and promotes survival in adult CNS. J. Neurosci. 27, 11201–11213 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Liu, Y. et al. Suppression of microglial inflammatory activity by myelin phagocytosis: role of p47-PHOX-mediated generation of reactive oxygen species. J. Neurosci. 26, 12904–12913 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Giulian, D. & Robertson, C. Inhibition of mononuclear phagocytes reduces ischemic injury in the spinal cord. Ann. Neurol. 27, 33–42 (1990).

    CAS  PubMed  Google Scholar 

  114. Blight, A. R. Effects of silica on the outcome from experimental spinal cord injury: implication of macrophages in secondary tissue damage. Neuroscience 60, 263–273 (1994).

    CAS  PubMed  Google Scholar 

  115. Popovich, P. G. et al. Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury. Exp. Neurol. 158, 351–365 (1999).

    CAS  PubMed  Google Scholar 

  116. Gris, D. et al. Transient blockade of the CD11d/CD18 integrin reduces secondary damage after spinal cord injury, improving sensory, autonomic, and motor function. J. Neurosci. 24, 4043–4051 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Yong, V. W. et al. The promise of minocycline in neurology. Lancet Neurol. 3, 744–751 (2004).

    PubMed  Google Scholar 

  118. Lampl, Y. et al. Minocycline treatment in acute stroke: an open-label, evaluator-blinded study. Neurology 69, 1404–1410 (2007).

    CAS  PubMed  Google Scholar 

  119. Gordon, P. H. et al. Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial. Lancet Neurol. 6, 1045–1053 (2007).

    CAS  PubMed  Google Scholar 

  120. Nahrendorf, M. et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med. 204, 3037–3047 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhu, B. et al. CD11b+Ly-6Chigh suppressive monocytes in experimental autoimmune encephalomyelitis. J. Immunol. 179, 5228–5237 (2007).

    CAS  PubMed  Google Scholar 

  122. Weber, M. S. et al. Type II monocytes modulate T cell-mediated central nervous system autoimmune disease. Nature Med. 13, 935–943 (2007).

    CAS  PubMed  Google Scholar 

  123. Hauben, E. & Schwartz, M. Therapeutic vaccination for spinal cord injury: helping the body to cure itself. Trends Pharmacol. Sci. 24, 7–12 (2003).

    CAS  PubMed  Google Scholar 

  124. Hafler, D. A. Multiple sclerosis. J. Clin. Invest 113, 788–794 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Prat, A. & Antel, J. Pathogenesis of multiple sclerosis. Curr. Opin. Neurol. 18, 225–230 (2005).

    CAS  PubMed  Google Scholar 

  126. Potas, J. R. et al. Augmented locomotor recovery after spinal cord injury in the athymic nude rat. J. Neurotrauma 23, 660–673 (2006).

    PubMed  Google Scholar 

  127. Fee, D. et al. Activated/effector CD4+ T cells exacerbate acute damage in the central nervous system following traumatic injury. J. Neuroimmunol. 136, 54–66 (2003).

    CAS  PubMed  Google Scholar 

  128. Yilmaz, G., Arumugam, T. V., Stokes, K. Y. & Granger, D. N. Role of T lymphocytes and interferon-γ in ischemic stroke. Circulation 113, 2105–2112 (2006).

    PubMed  Google Scholar 

  129. Moalem, G., Xu, K. & Yu, L. T lymphocytes play a role in neuropathic pain following peripheral nerve injury in rats. Neuroscience 129, 767–777 (2004).

    CAS  PubMed  Google Scholar 

  130. Ankeny, D. P. & Popovich, P. G. Central nervous system and non-central nervous system antigen vaccines exacerbate neuropathology caused by nerve injury. Eur. J. Neurosci. 25, 2053–2064 (2007).

    PubMed  Google Scholar 

  131. Zipp, F., Krammer, P. H. & Weller, M. Immune (dys)regulation in multiple sclerosis: role of the CD95-CD95 ligand system. Immunol Today 20, 550–554 (1999).

    CAS  PubMed  Google Scholar 

  132. Aktas, O., Schulze-Topphoff, U. & Zipp, F. The role of TRAIL/TRAIL receptors in central nervous system pathology. Front Biosci. 12, 2912–2921 (2007).

    CAS  PubMed  Google Scholar 

  133. Aktas, O. et al. Neuronal damage in autoimmune neuroinflammation mediated by the death ligand TRAIL. Neuron 46, 421–432 (2005).

    CAS  PubMed  Google Scholar 

  134. Giuliani, F., Goodyer, C. G., Antel, J. P. & Yong, V. W. Vulnerability of human neurons to T cell-mediated cytotoxicity. J. Immunol. 171, 368–379 (2003).

    CAS  PubMed  Google Scholar 

  135. Nitsch, R. et al. Human brain-cell death induced by tumour-necrosis-factor-related apoptosis-inducing ligand (TRAIL). Lancet 356, 827–828 (2000).

    CAS  PubMed  Google Scholar 

  136. Neumann, H., Medana, I. M., Bauer, J. & Lassmann, H. Cytotoxic T lymphocytes in autoimmune and degenerative CNS diseases. Trends Neurosci. 25, 313–319 (2002).

    CAS  PubMed  Google Scholar 

  137. Giraudon, P. et al. Semaphorin CD100 from activated T lymphocytes induces process extension collapse in oligodendrocytes and death of immature neural cells. J. Immunol. 172, 1246–1255 (2004).

    CAS  PubMed  Google Scholar 

  138. Shaked, I. et al. Protective autoimmunity: interferon-γ enables microglia to remove glutamate without evoking inflammatory mediators. J. Neurochem. 92, 997–1009 (2005).

    CAS  PubMed  Google Scholar 

  139. Moalem, G. et al. Autoimmune T-cells protect neurons from secondary degeneration after central nervous system axotomy. Nature Med. 5, 49–55 (1999).

    CAS  PubMed  Google Scholar 

  140. Moalem, G. et al. Production of neurotrophins by activated T-cells: implications for neuroprotective autoimmunity. J. Autoimmun. 15, 331–345 (2000).

    CAS  PubMed  Google Scholar 

  141. Barouch, R. & Schwartz, M. Autoreactive T cells induce neurotrophin production by immune and neural cells in injured rat optic nerve: implications for protective autoimmunity. FASEB J. 16, 1304–1306 (2002).

    CAS  PubMed  Google Scholar 

  142. Butovsky, O. et al. Microglia activated by IL-4 or IFN-γ differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol. Cell Neurosci. 31, 149–160 (2006).

    CAS  PubMed  Google Scholar 

  143. Ziv, Y., Avidan, H., Pluchino, S., Martino, G. & Schwartz, M. Synergy between immune cells and adult neural stem/progenitor cells promotes functional recovery from spinal cord injury. Proc. Natl Acad. Sci. USA 103, 13174–13179 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Ben Hur, T. Immunomodulation by neural stem cells. J. Neurol. Sci. 265, 102–104 (2008).

    CAS  PubMed  Google Scholar 

  145. Imitola, J. et al. Neural stem/progenitor cells express costimulatory molecules that are differentially regulated by inflammatory and apoptotic stimuli. Am. J. Pathol. 164, 1615–1625 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Einstein, O. et al. Neural precursors attenuate autoimmune encephalomyelitis by peripheral immunosuppression. Ann. Neurol. 61, 209–218 (2007).

    CAS  PubMed  Google Scholar 

  147. Uccelli, A., Pistoia, V. & Moretta, L. Mesenchymal stem cells: a new strategy for immunosuppression? Trends Immunol. 28, 219–226 (2007).

    CAS  PubMed  Google Scholar 

  148. Pluchino, S. et al. Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature 436, 266–271 (2005).

    CAS  PubMed  Google Scholar 

  149. Ben Hur, T. et al. Effects of proinflammatory cytokines on the growth, fate, and motility of multipotential neural precursor cells. Mol. Cell Neurosci. 24, 623–631 (2003).

    CAS  PubMed  Google Scholar 

  150. Andrews, T., Zhang, P. & Bhat, N. R. TNFα potentiates IFNγ-induced cell death in oligodendrocyte progenitors. J. Neurosci. Res. 54, 574–583 (1998).

    CAS  PubMed  Google Scholar 

  151. Monje, M. L., Toda, H. & Palmer, T. D. Inflammatory blockade restores adult hippocampal neurogenesis. Science 302, 1760–1765 (2003).

    CAS  PubMed  Google Scholar 

  152. Kim, J. B. et al. Dexamethasone inhibits proliferation of adult hippocampal neurogenesis in vivo and in vitro. Brain Res. 1027, 1–10 (2004).

    CAS  PubMed  Google Scholar 

  153. Battista, D., Ferrari, C. C., Gage, F. H. & Pitossi, F. J. Neurogenic niche modulation by activated microglia: transforming growth factor β increases neurogenesis in the adult dentate gyrus. Eur. J. Neurosci. 23, 83–93 (2006).

    PubMed  Google Scholar 

  154. Huang, D. W., McKerracher, L., Braun, P. E. & David, S. A therapeutic vaccine approach to stimulate axon regeneration in the adult mammalian spinal cord. Neuron 24, 639–647 (1999).

    CAS  PubMed  Google Scholar 

  155. Kaku, M. et al. Amyloid β protein deposition and neuron loss in osteopetrotic (op/op) mice. Brain Res. Brain Res. Protoc. 12, 104–108 (2003).

    CAS  PubMed  Google Scholar 

  156. Fiala, M. et al. Ineffective phagocytosis of amyloid-β by macrophages of Alzheimer's disease patients. J. Alzheimers. Dis. 7, 221–232 (2005).

    CAS  PubMed  Google Scholar 

  157. Xu, G. et al. Recombinant DNA vaccine encoding multiple domains related to inhibition of neurite outgrowth: a potential strategy for axonal regeneration. J. Neurochem. 91, 1018–1023 (2004).

    CAS  PubMed  Google Scholar 

  158. Schenk, D. et al. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400, 173–177 (1999).

    CAS  PubMed  Google Scholar 

  159. Lemere, C. A. et al. Alzheimer's disease aβ vaccine reduces central nervous system aβ levels in a non-human primate, the Caribbean vervet. Am. J. Pathol. 165, 283–297 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Sicotte, M. et al. Immunization with myelin or recombinant Nogo-66/MAG in alum promotes axon regeneration and sprouting after corticospinal tract lesions in the spinal cord. Mol. Cell Neurosci. 23, 251–263 (2003).

    CAS  PubMed  Google Scholar 

  161. Heeger, P. S. et al. Revisiting tolerance induced by autoantigen in incomplete Freund's adjuvant. J. Immunol. 164, 5771–5781 (2000).

    CAS  PubMed  Google Scholar 

  162. Falcone, M. & Bloom, B. R. A T-helper cell 2 (Th2) immune response against non-self antigens modifies the cytokine profile of autoimmune T-cells and protects against experimental allergic encephalomyelitis. J. Exp. Med. 185, 901–907 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Karnezis, T. et al. The neurite outgrowth inhibitor Nogo A is involved in autoimmune-mediated demyelination. Nature Neurosci. 7, 736–744 (2004).

    CAS  PubMed  Google Scholar 

  164. Hauben, E. et al. Vaccination with a Nogo-A-derived peptide after incomplete spinal-cord injury promotes recovery via a T-cell-mediated neuroprotective response: comparison with other myelin antigens. Proc. Natl Acad. Sci. USA 98, 15173–15178 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Becker, K. J. et al. Immunologic tolerance to myelin basic protein decreases stroke size after transient focal cerebral ischemia. Proc. Natl Acad. Sci. USA 94, 10873–10878 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Frenkel, D. et al. Nasal vaccination with myelin oligodendrocyte glycoprotein reduces stroke size by inducing IL-10-producing CD4+ T cells. J. Immunol. 171, 6549–6555 (2003).

    CAS  PubMed  Google Scholar 

  167. Khoury, S. J., Hancock, W. W. & Weiner, H. L. Oral tolerance to myelin basic protein and natural recovery from experimental autoimmune encephalomyelitis are associated with downregulation of inflammatory cytokines and differential upregulation of transforming growth factor β, interleukin 4, and prostaglandin E expression in the brain. J. Exp. Med. 176, 1355–1364 (1992).

    CAS  PubMed  Google Scholar 

  168. Gee, J. M., Kalil, A., Thullbery, M. & Becker, K. J. Induction of Immunologic Tolerance to Myelin Basic Protein Prevents Central Nervous System Autoimmunity and Improves Outcome After Stroke. Stroke (2008).

  169. Whitacre, C. C., Gienapp, Orosz, C. G. & Bitar, D. M. Oral tolerance in experimental autoimmune encephalomyelitis. III. Evidence for clonal anergy. J. Immunol. 147, 2155–2163 (1991).

    CAS  PubMed  Google Scholar 

  170. Benson, J. M. et al. Oral administration of myelin basic protein is superior to myelin in suppressing established relapsing experimental autoimmune encephalomyelitis. J. Immunol. 162, 6247–6254 (1999).

    CAS  PubMed  Google Scholar 

  171. Popovich, P. G., Yu, J. Y. & Whitacre, C. C. Spinal cord neuropathology in rat experimental autoimmune encephalomyelitis: modulation by oral administration of myelin basic protein. J. Neuropathol. Exp. Neurol. 56, 1323–1338 (1997).

    CAS  PubMed  Google Scholar 

  172. Weiner, H. L. et al. Double-blind pilot trial of oral tolerization with myelin antigens in multiple sclerosis. Science 259, 1321–1324 (1993).

    CAS  PubMed  Google Scholar 

  173. Wiendl, H. & Hohlfeld, R. Therapeutic approaches in multiple sclerosis: lessons from failed and interrupted treatment trials. BioDrugs 16, 183–200 (2002).

    CAS  PubMed  Google Scholar 

  174. Bar-Or, A. et al. Induction of antigen-specific tolerance in multiple sclerosis after immunization with DNA encoding myelin basic protein in a randomized, placebo-controlled phase 1/2 trial. Arch. Neurol. 64, 1407–1415 (2007).

    PubMed  Google Scholar 

  175. Nicoll, J. A. et al. Neuropathology of human Alzheimer disease after immunization with amyloid-β peptide: a case report. Nature Med. 9, 448–452 (2003).

    CAS  PubMed  Google Scholar 

  176. Gilman, S. et al. Clinical effects of Aβ immunization (AN1792) in patients with AD in an interrupted trial. Neurology 64, 1553–1562 (2005).

    CAS  PubMed  Google Scholar 

  177. Orgogozo, J. M. et al. Subacute meningoencephalitis in a subset of patients with AD after Aβ42 immunization. Neurology 61, 46–54 (2003).

    CAS  PubMed  Google Scholar 

  178. Fox, N. C. et al. Effects of Aβ immunization (AN1792) on MRI measures of cerebral volume in Alzheimer disease. Neurology 64, 1563–1572 (2005).

    CAS  PubMed  Google Scholar 

  179. Ferrer, I., Boada, R. M., Sanchez Guerra, M. L., Rey, M. J. & Costa-Jussa, F. Neuropathology and pathogenesis of encephalitis following amyloid-β immunization in Alzheimer's disease. Brain Pathol. 14, 11–20 (2004).

    CAS  PubMed  Google Scholar 

  180. Nicoll, J. A. et al. Aβ species removal after aβ42 immunization. J. Neuropathol. Exp. Neurol. 65, 1040–1048 (2006).

    CAS  PubMed  Google Scholar 

  181. Masliah, E. et al. Aβ vaccination effects on plaque pathology in the absence of encephalitis in Alzheimer disease. Neurology 64, 129–131 (2005).

    CAS  PubMed  Google Scholar 

  182. Hock, C. et al. Antibodies against β-amyloid slow cognitive decline in Alzheimer's disease. Neuron 38, 547–554 (2003).

    CAS  PubMed  Google Scholar 

  183. Lichtlen, P. & Mohajeri, M. H. Antibody-based approaches in Alzheimer's research: safety, pharmacokinetics, metabolism, and analytical tools. J. Neurochem. (2007).

  184. Gardberg, A. S. et al. Molecular basis for passive immunotherapy of Alzheimer's disease. Proc. Natl Acad. Sci. USA 104, 15659–15664 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Prada, C. M. et al. Antibody-mediated clearance of amyloid-β peptide from cerebral amyloid angiopathy revealed by quantitative in vivo imaging. J. Neurosci. 27, 1973–1980 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Farina, C., Weber, M. S., MeinL, E., Wekerle, H. & Hohlfeld, R. Glatiramer acetate in multiple sclerosis: update on potential mechanisms of action. Lancet Neurol. 4, 567–575 (2005).

    CAS  PubMed  Google Scholar 

  187. Bakalash, S. et al. T-cell-based vaccination for morphological and functional neuroprotection in a rat model of chronically elevated intraocular pressure. J. Mol. Med. 83, 904–916 (2005).

    PubMed  Google Scholar 

  188. Gordon, P. H. et al. Randomized controlled phase II trial of glatiramer acetate in ALS. Neurology 66, 1117–1119 (2006).

    CAS  PubMed  Google Scholar 

  189. Laurie, C. et al. CD4+ T cells from Copolymer-1 immunized mice protect dopaminergic neurons in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine model of Parkinson's disease. J. Neuroimmunol. 183, 60–68 (2007).

    CAS  PubMed  Google Scholar 

  190. Arnon, R., Sela, M. & Teitelbaum, D. New insights into the mechanism of action of copolymer 1 in experimental allergic encephalomyelitis and multiple sclerosis. J. Neurol. 243, S8–13 (1996).

    CAS  PubMed  Google Scholar 

  191. Liu, J. et al. T cell independent mechanism for copolymer-1-induced neuroprotection. Eur. J. Immunol. 37, 3143–3154 (2007).

    CAS  PubMed  Google Scholar 

  192. Ziv, Y. et al. A novel immune-based therapy for stroke induces neuroprotection and supports neurogenesis. Stroke 38, 774–782 (2007).

    CAS  PubMed  Google Scholar 

  193. Frenkel, D., Maron, R., Burt, D. S. & Weiner, H. L. Nasal vaccination with a proteosome-based adjuvant and glatiramer acetate clears β-amyloid in a mouse model of Alzheimer disease. J. Clin. Invest 115, 2423–2433 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Frenkel, D. et al. A nasal proteosome adjuvant activates microglia and prevents amyloid deposition. Ann. Neurol. 21 March 2008 [epub ahead of print].

  195. Jyothi, M. D., Flavell, R. A. & Geiger, T. L. Targeting autoantigen-specific T cells and suppression of autoimmune encephalomyelitis with receptor-modified T lymphocytes. Nature Biotechnol. 20, 1215–1220 (2002).

    CAS  Google Scholar 

  196. Tuohy, V. K. & Mathisen, P. M. T-cell design: optimizing the therapeutic potential of autoreactive T cells by genetic modification. Res. Immunol. 149, 834–842 (1998).

    CAS  PubMed  Google Scholar 

  197. Priller, J. et al. Targeting gene-modified hematopoietic cells to the central nervous system: use of green fluorescent protein uncovers microglial engraftment. Nature Med. 7, 1356–1361 (2001).

    CAS  PubMed  Google Scholar 

  198. Priller, J. et al. Early and rapid engraftment of bone marrow-derived microglia in scrapie. J. Neurosci. 26, 11753–11762 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Simard, A. R. & Rivest, S. Bone marrow stem cells have the ability to populate the entire central nervous system into fully differentiated parenchymal microglia. FASEB J. 18, 998–1000 (2004).

    CAS  PubMed  Google Scholar 

  200. Biffi, A. et al. Correction of metachromatic leukodystrophy in the mouse model by transplantation of genetically modified hematopoietic stem cells. J. Clin. Inves. 113, 1118–1129 (2004).

    CAS  Google Scholar 

  201. Kennedy, K. J., Smith, W. S., Miller, S. D. & Karpus, W. J. Induction of antigen-specific tolerance for the treatment of ongoing, relapsing, autoimmune encephalomyelitis. J. Immunol. 159, 1044 (1997).

    Google Scholar 

  202. Massengale, M., Wagers, A. J., Vogel, H. & Weissman, I. L. Hematopoietic cells maintain hematopoietic fates upon entering the brain. J. Exp. Med. 201, 1579–1589 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Ajami, B., Bennett, J. L., Krieger, C., Tetzlaff, W. & Rossi, F. M. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nature Neurosci. 10, 1538–1543 (2007).

    CAS  PubMed  Google Scholar 

  204. Mildner, A. et al. Microglia in the adult brain arise from Ly-6C(hi)CCR2(+) monocytes only under defined host conditions. Nature Neurosci. 10, 1544–1553 (2007).

    CAS  PubMed  Google Scholar 

  205. Djukic, M. et al. Circulating monocytes engraft in the brain, differentiate into microglia and contribute to the pathology following meningitis in mice. Brain 129, 2394–2403 (2006).

    PubMed  Google Scholar 

  206. Takahashi, K., Prinz, M., Stagi, M., Chechneva, O. & Neumann, H. TREM2-transduced myeloid precursors mediate nervous tissue debris clearance and facilitate recovery in an animal model of multiple sclerosis. PLoS. Med. 4, e124 (2007).

    PubMed  PubMed Central  Google Scholar 

  207. Aarum, J., Sandberg, K., Haeberlein, S. L. & Persson, M. A. Migration and differentiation of neural precursor cells can be directed by microglia. Proc. Natl Acad. Sci. USA 100, 15983–15988 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Muller, F. J., Snyder, E. Y. & Loring, J. F. Gene therapy: can neural stem cells deliver? Nature Rev. Neurosci. 7, 75–84 (2006).

    Google Scholar 

  209. Leavitt, B. R., Hernit-Grant, C. S. & Macklis, J. D. Mature astrocytes transform into transitional radial glia within adult mouse neocortex that supports directed migration of transplanted immature neurons. Exp. Neurol. 157, 43–57 (1999).

    CAS  PubMed  Google Scholar 

  210. Mescher, A. L. & Neff, A. W. Regenerative capacity and the developing immune system. Adv. Biochem. Eng Biotechnol. 93, 39–66 (2005).

    CAS  PubMed  Google Scholar 

  211. Godwin, J. W. & Brockes, J. P. Regeneration, tissue injury and the immune response. J. Anat. 209, 423–432 (2006).

    PubMed  PubMed Central  Google Scholar 

  212. Gordon, S. Alternative activation of macrophages. Nature Rev. Immunol. 3, 23–35 (2003).

    CAS  Google Scholar 

  213. Barker, R. N. et al. Antigen presentation by macrophages is enhanced by the uptake of necrotic, but not apoptotic, cells. Clin. Exp. Immunol. 127, 220–225 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Perez-Capote, K., Serratosa, J. & Sola, C. Excitotoxic and apoptotic neuronal death induce different patterns of glial activation in vitro. J. Neurochem. 94, 226–237 (2005).

    CAS  PubMed  Google Scholar 

  215. Stein, M., Keshav, S., Harris, N. & Gordon, S. Interleukin 4 potently enhances murine macrophage mannose receptor activity: A marker of alternative immunologic macrophage activation. J. Exp. Med. 176, 287–292 (1992).

    CAS  PubMed  Google Scholar 

  216. Mantovani, A. et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25, 677–686 (2004).

    CAS  PubMed  Google Scholar 

  217. Gratchev, A. et al. Alternatively activated macrophages differentially express fibronectin and its splice variants and the extracellular matrix protein βIG-H3. Scand. J. Immunol. 53, 386–392 (2001).

    CAS  PubMed  Google Scholar 

  218. Arnold, L. et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J. Exp. Med. 204, 1057–1069 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Kipnis, J. et al. Myelin specific Th1 cells are necessary for post-traumatic protective autoimmunity. J. Neuroimmunol. 130, 78–85 (2002).

    CAS  PubMed  Google Scholar 

  220. Yoles, E. et al. Protective autoimmunity is a physiological response to CNS trauma. J Neurosci. 21, 3740–3748 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Kipnis, J. et al. Neuroprotective autoimmunity: naturally occurring CD4+CD25+ regulatory T cells suppress the ability to withstand injury to the central nervous system. Proc. Natl Acad. Sci. USA 99, 15620–15625 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Kipnis, J., Avidan, H., Caspi, R. R. & Schwartz, M. Dual effect of CD4+CD25+ regulatory T cells in neurodegeneration: a dialogue with microglia. Proc. Natl Acad. Sci. USA 101, S14663–S14669 (2004).

    Google Scholar 

  223. Hauben, E. et al. Vaccination with dendritic cells pulsed with peptides of myelin basic protein promotes functional recovery from spinal cord injury. J. Neurosci. 23, 8808–8819 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Hauben, E. et al. Posttraumatic therapeutic vaccination with modified myelin self-antigen prevents complete paralysis while avoiding autoimmune disease. J. Clin. Invest 108, 591–599 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Stinissen, P., Raus, J. & Zhang, J. Autoimmune pathogenesis of multiple sclerosis: role of autoreactive T lymphocytes and new immunotherapeutic strategies. Crit. Rev. Immunol. 17, 33–75 (1997).

    CAS  PubMed  Google Scholar 

  226. McFarland, H. F. & Martin, R. Multiple sclerosis: a complicated picture of autoimmunity. Nature Immunol. 8, 913–919 (2007).

    CAS  Google Scholar 

  227. Wolf, S. A. et al. Neuroprotection by T-cells depends on their subtype and activation state. J. Neuroimmunol. 133, 72–80 (2002).

    CAS  PubMed  Google Scholar 

  228. Hendrix, S. & Nitsch, R. The role of T helper cells in neuroprotection and regeneration. J. Neuroimmunol. 184, 100–112 (2007).

    CAS  PubMed  Google Scholar 

  229. Reynolds, A. D., Banerjee, R., Liu, J., Gendelman, H. E. & Mosley, R. L. Neuroprotective activities of CD4+CD25+ regulatory T cells in an animal model of Parkinson's disease. J. Leukoc. Biol. 82, 1083–1094 (2007).

    CAS  PubMed  Google Scholar 

  230. Jones, T. B. et al. Passive or active immunization with myelin basic protein impairs neurological function and exacerbates neuropathology after spinal cord injury in rats. J. Neurosci. 24, 3752–3761 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Haenggeli, C. et al. Therapeutic immunization with a glatiramer acetate derivative does not alter survival in G93A and G37R SOD1 mouse models of familial ALS. Neurobiol. Dis. 26, 146–152 (2007).

    CAS  PubMed  Google Scholar 

  232. Benveniste, H., Einstein, G., Kim, K. R., Hulette, C. & Johnson, G. A. Detection of neuritic plaques in Alzheimer's disease by magnetic resonance microscopy. Proc. Natl Acad. Sci. USA 96, 14079–14084 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Hand, P. J. et al. Magnetic resonance brain imaging in patients with acute stroke: feasibility and patient related difficulties. J. Neurol. Neurosurg. Psychiatry 76, 1525–1527 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Morgan, D., Gordon, M. N., Tan, J., Wilcock, D. & Rojiani, A. M. Dynamic complexity of the microglial activation response in transgenic models of amyloid deposition: implications for Alzheimer therapeutics. J. Neuropathol. Exp. Neurol. 64, 743–753 (2005).

    CAS  PubMed  Google Scholar 

  235. Morgan, D. et al. Aβ peptide vaccination prevents memory loss in an animal model of Alzheimer's disease. Nature 408, 982–985 (2000).

    CAS  PubMed  Google Scholar 

  236. Furlan, R. et al. Vaccination with amyloid-β peptide induces autoimmune encephalomyelitis in C57/BL6 mice. Brain 126, 285–291 (2003).

    PubMed  Google Scholar 

  237. Yamasaki, Y. et al. New therapeutic possibility of blocking cytokine-induced neutrophil chemoattractant on transient ischemic brain damage in rats. Brain Res. 759, 103–111 (1997).

    CAS  PubMed  Google Scholar 

  238. Bowes, M. P., Rothlein, R., Fagan, S. C. & Zivin, J. A. Monoclonal antibodies preventing leukocyte activation reduce experimental neurologic injury and enhance efficacy of thrombolytic therapy. Neurology 45, 815–819 (1995).

    CAS  PubMed  Google Scholar 

  239. Zhang, X., Hupperts, R. & De Baets, M. Monoclonal antibody therapy in experimental allergic encephalomyelitis and multiple sclerosis. Immunol. Res. 28, 61–78 (2003).

    CAS  PubMed  Google Scholar 

  240. Hurn, P. D. et al. T- and B-cell-deficient mice with experimental stroke have reduced lesion size and inflammation. J. Cereb. Blood Flow Metab 27, 1798–1805 (2007).

    CAS  PubMed  Google Scholar 

  241. Martin-Villalba, A. et al. Therapeutic neutralization of CD95-ligand and TNF attenuates brain damage in stroke. Cell Death. Differ. 8, 679–686 (2001).

    CAS  PubMed  Google Scholar 

  242. Lovering, F. & Zhang, Y. Therapeutic potential of TACE inhibitors in stroke. CNS & Neurol. Disord. 4, 161–168 (2005).

    CAS  Google Scholar 

  243. Lees, K. R., Diener, H. C., Asplund, K. & Krams, M. UK-279276, a neutrophil inhibitory glycoprotein, in acute stroke: tolerability and pharmacokinetics. Stroke 34, 1704–1709 (2003).

    CAS  PubMed  Google Scholar 

  244. Krams, M. et al. Acute stroke therapy by inhibition of neutrophils (ASTIN): an adaptive dose-response study of UK-279276 in acute ischemic stroke. Stroke 34, 2543–2548 (2003).

    CAS  PubMed  Google Scholar 

  245. Enlimomab acute stroke trial investigators. Use of anti-ICAM-1 therapy in ischemic stroke: results of the enlimomab acute stroke trial. Neurology 57, 1428–1434 (2001).

  246. Emsley, H. C. et al. A randomised phase II study of interleukin-1 receptor antagonist in acute stroke patients. J. Neurol. Neurosurg. Psychiatry 76, 1366–1372 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Morris, D. C. et al. Treatment of acute stroke with recombinant tissue plasminogen activator and abciximab. Acad. Emerg. Med. 10, 1396–1399 (2003).

    PubMed  Google Scholar 

  248. Topol, E. J. et al. Randomized, double-blind, placebo-controlled, international trial of the oral IIb/IIIa antagonist lotrafiban in coronary and cerebrovascular disease. Circulation 108, 399–406 (2003).

    CAS  PubMed  Google Scholar 

  249. Abciximab emergent stroke treatment trial (AbESTT) investigators. Emergency administration of abciximab for treatment of patients with acute ischemic stroke: results of a randomized phase 2 trial. Stroke 36, 880–890 (2005).

  250. Abciximab in ischemic stroke investigators. Abciximab in acute ischemic stroke: a randomized, double-blind, placebo-controlled, dose-escalation study. The abciximab in ischemic stroke investigators. Stroke 31, 601–609 (2000).

    Google Scholar 

  251. Bartholdi, D. & Schwab, M. E. Methylprednisolone inhibits early inflammatory processes but not ischemic cell death after experimental spinal cord lesion in the rat. Brain Res. 672, 177–186 (1995).

    CAS  PubMed  Google Scholar 

  252. Xu, J. et al. Methylprednisolone inhibition of TNF-α expression and NF-kB activation after spinal cord injury in rats. Brain Res. Mol. Brain Res. 59, 135–142 (1998).

    CAS  PubMed  Google Scholar 

  253. Bracken, M. B. et al. Methylprednisolone and neurological function 1 year after spinal cord injury. Results of the National Acute Spinal Cord Injury Study. J. Neurosurg. 63, 704–713 (1985).

    CAS  PubMed  Google Scholar 

  254. Bracken, M. B. et al. A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the Second National Acute Spinal Cord Injury Study. N. Engl. J. Med. 322, 1405–1411 (1990).

    CAS  PubMed  Google Scholar 

  255. Bracken, M. B. et al. Methylprednisolone or naloxone treatment after acute spinal cord injury: 1-year follow-up data: Results of the second National Acute Spinal Cord Injury Study. J. Neurosurg. 76, 23–31 (1992).

    CAS  PubMed  Google Scholar 

  256. Bracken, M. B. et al. Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. National Acute Spinal Cord Injury Study. JAMA 277, 1597–1604 (1997).

    CAS  PubMed  Google Scholar 

  257. Sayer, F. T., Kronvall, E. & Nilsson, O. G. Methylprednisolone treatment in acute spinal cord injury: the myth challenged through a structured analysis of published literature. Spine J. 6, 335–343 (2006).

    PubMed  Google Scholar 

  258. Farooque, M., Isaksson, J. & Olsson, Y. Improved recovery after spinal cord trauma in ICAM-1 and P-selectin knockout mice. Neuroreport 10, 131–134 (1999).

    CAS  PubMed  Google Scholar 

  259. Farooque, M., Isaksson, J. & Olsson, Y. White matter preservation after spinal cord injury in ICAM-1/P-selectin-deficient mice. Acta Neuropathol. (Berl) 102, 132–140 (2001).

    CAS  Google Scholar 

  260. Taoka, Y. et al. Role of neutrophils in spinal cord injury in the rat. Neuroscience 79, 1177–1182 (1997).

    CAS  PubMed  Google Scholar 

  261. Taoka, Y., Okajima, K., Murakami, K., Johno, M. & Naruo, M. Role of neutrophil elastase in compression-induced spinal cord injury in rats. Brain Res. 799, 264–269 (1998).

    CAS  PubMed  Google Scholar 

  262. Bye, N. et al. Transient neuroprotection by minocycline following traumatic brain injury is associated with attenuated microglial activation but no changes in cell apoptosis or neutrophil infiltration. Exp. Neurol. 204, 220–233 (2007).

    CAS  PubMed  Google Scholar 

  263. NINDS NET-PD Investigators. A randomized, double-blind, futility clinical trial of creatine and minocycline in early Parkinson disease. Neurology 66, 664–671 (2006).

  264. Gordon, P. H. et al. Placebo-controlled phase I/II studies of minocycline in amyotrophic lateral sclerosis. Neurology 62, 1845–1847 (2004).

    CAS  PubMed  Google Scholar 

  265. Jones, N. C. et al. Antagonism of the interleukin-1 receptor following traumatic brain injury in the mouse reduces the number of nitric oxide synthase-2-positive cells and improves anatomical and functional outcomes. Eur. J. Neurosci. 22, 72–78 (2005).

    PubMed  Google Scholar 

  266. Shohami, E., Bass, R., Wallach, D., Yamin, A. & Gallily, R. Inhibition of tumor necrosis factor α (TNFα) activity in rat brain is associated with cerebroprotection after closed head injury. J. Cereb. Blood Flow Metab 16, 378–384 (1996).

    CAS  PubMed  Google Scholar 

  267. Stirling, D. P. et al. Minocycline treatment reduces delayed oligodendrocyte death, attenuates axonal dieback, and improves functional outcome after spinal cord injury. J. Neurosci. 24, 2182–2190 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  268. Festoff, B. W. et al. Minocycline neuroprotects, reduces microgliosis, and inhibits caspase protease expression early after spinal cord injury. J. Neurochem. 97, 1314–1326 (2006).

    CAS  PubMed  Google Scholar 

  269. Nesic, O. et al. IL-1 receptor antagonist prevents apoptosis and caspase-3 activation after spinal cord injury. J. Neurotrauma 18, 947–956 (2001).

    CAS  PubMed  Google Scholar 

  270. Yune, T. Y. et al. Increased production of tumor necrosis factor-α induces apoptosis after traumatic spinal cord injury in rats. J. Neurotrauma 20, 207–219 (2003).

    PubMed  Google Scholar 

  271. Lee, Y. B. et al. Role of tumor necrosis factor-α in neuronal and glial apoptosis after spinal cord injury. Exp. Neurol. 166, 190–195 (2000).

    CAS  PubMed  Google Scholar 

  272. Tuna, M. et al. Effect of anti-rat interleukin-6 antibody after spinal cord injury in the rat: inducible nitric oxide synthase expression, sodium- and potassium-activated, magnesium-dependent adenosine-5'-triphosphatase and superoxide dismutase activation, and ultrastructural changes. J. Neurosurg. 95, 64–73 (2001).

    CAS  PubMed  Google Scholar 

  273. Bomstein, Y. et al. Features of skin-coincubated macrophages that promote recovery from spinal cord injury. J. Neuroimmunol. 142, 10–16 (2003).

    CAS  PubMed  Google Scholar 

  274. Hauben, E. et al. Passive or active immunization with myelin basic protein promotes recovery from spinal cord contusion. J. Neurosci. 20, 6421–6430 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  275. Jones, T. B. et al. Pathological CNS autoimmune disease triggered by traumatic spinal cord injury: implications for autoimmune vaccine therapy. J. Neurosci. 22, 2690–2700 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  276. Fox, R. J. & Ransohoff, R. M. New directions in MS therapeutics: vehicles of hope. Trends Immunol. 25, 632–636 (2004).

    CAS  PubMed  Google Scholar 

  277. Mauch, E., Kornhuber, H. H., Krapf, H., Fetzer, U. & Laufen, H. Treatment of multiple sclerosis with mitoxantrone. Eur. Arch. Psychiatry Clin. Neurosci. 242, 96–102 (1992).

    CAS  PubMed  Google Scholar 

  278. Millefiorini, E. et al. Randomized placebo-controlled trial of mitoxantrone in relapsing-remitting multiple sclerosis: 24-month clinical and MRI outcome. J. Neurol. 244, 153–159 (1997).

    CAS  PubMed  Google Scholar 

  279. Scott, L. J. & Figgitt, D. P. Mitoxantrone: a review of its use in multiple sclerosis. CNS Drugs 18, 379–396 (2004).

    CAS  PubMed  Google Scholar 

  280. Kerfoot, S. M. et al. Reevaluation of P-selectin and α 4 integrin as targets for the treatment of experimental autoimmune encephalomyelitis. J. Immunol. 176, 6225–6234 (2006).

    CAS  PubMed  Google Scholar 

  281. Tsunoda, I. et al. Modulation of experimental autoimmune encephalomyelitis by VLA-2 blockade. Brain Pathol. 17, 45–55 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  282. Yu, M., Nishiyama, A., Trapp, B. D. & Tuohy, V. K. Interferon-β inhibits progression of relapsing-remitting experimental autoimmune encephalomyelitis. J. Neuroimmunol. 64, 91–100 (1996).

    CAS  PubMed  Google Scholar 

  283. Polman, C. H. et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med. 354, 899–910 (2006).

    CAS  PubMed  Google Scholar 

  284. Miller, D. H. et al. A controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med. 348, 15–23 (2003).

    CAS  PubMed  Google Scholar 

  285. O'Connor, P. W. et al. Randomized multicenter trial of natalizumab in acute MS relapses: clinical and MRI effects. Neurology 62, 2038–2043 (2004).

    CAS  PubMed  Google Scholar 

  286. Paty, D. W. & Li, D. K. Interferon β-1b is effective in relapsing-remitting multiple sclerosis. II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. UBC MS/MRI Study Group and the IFNB Multiple Sclerosis Study Group. Neurology 43, 662–667 (1993).

    CAS  PubMed  Google Scholar 

  287. The IFNB Multiple Sclerosis Study Group. Interferon β-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. D. Neurology 43, 655–661 (1993).

  288. Clerico, M., Contessa, G. & Durelli, L. Interferon-β1a for the treatment of multiple sclerosis. Expert. Opin. Biol. Ther. 7, 535–542 (2007).

    CAS  PubMed  Google Scholar 

  289. Zhang, J., Medaer, R., Stinissen, P., Hafler, D. & Raus, J. MHC-restricted depletion of human myelin basic protein-reactive T cells by T cell vaccination. Science 261, 1451–1454 (1993).

    CAS  PubMed  Google Scholar 

  290. Zhang, J. T cell vaccination as an immunotherapy for autoimmune diseases. Cell Mol. Immunol. 1, 321–327 (2004).

    CAS  PubMed  Google Scholar 

  291. Perumal, J. et al. Glatiramer acetate therapy for multiple sclerosis: a review. Expert. Opin. Drug Metab Toxicol. 2, 1019–1029 (2006).

    CAS  PubMed  Google Scholar 

  292. Kleinschmidt-DeMasters, B. K. & Tyler, K. L. Progressive multifocal leukoencephalopathy complicating treatment with natalizumab and interferon β-1a for multiple sclerosis. N. Engl. J. Med. 353, 369–374 (2005).

    CAS  PubMed  Google Scholar 

  293. Langer-Gould, A., Atlas, S. W., Green, A. J., Bollen, A. W. & Pelletier, D. Progressive multifocal leukoencephalopathy in a patient treated with natalizumab. N. Engl. J. Med. 353, 375–381 (2005).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillip G. Popovich.

Related links

Related links

DATABASES

OMIM

Alzheimer's disease

multiple sclerosis

Parkinson's disease

FURTHER INFORMATION

List of completed and ongoing stroke trials

Additional information on the humanized Aβ antibody, AAB-001 (bapineusumab)

Center for Brain and Spinal Cord Repair

Glossary

Adaptive immunity

The response of T and B cells to antigens as a result of infection, injury or intentional immunization. It enables discrimination between self and non-self antigens and the ability to respond more rapidly and efficiently to antigens upon subsequent re-exposure.

Adjuvant

A substance, usually an oil, aluminium salt or virosome that amplifies the immune response to an antigen that is injected as part of a vaccine.

Antibodies

Glycoproteins produced by B lymphocytes that are a critical component of adaptive immunity.

Antigen

An antibody generating molecule that elicits adaptive immunity. It is typically a protein that is processed and presented as part of a complex with MHC molecules to T lymphocytes.

B lymphocyte

Adaptive immune cell that acts as an antigen presenting cell and produces antibodies against protein and glycoprotein antigens.

Bystander suppression

The generation of antigen-specific regulatory T cells by oral or nasal administration of low doses of antigen. After these regulatory T cells encounter the autoantigen in the target organ, they release cytokines (for example, IL-10 and TGF-β) that suppress deleterious immune functions.

Chemokines

A family of small (8–10 kD) chemotactic cytokines that promote directed migration in responsive cells.

Complement proteins

A family of serum proteins that promote opsonization, chemotaxis and cell lysis. They are part of the innate immune system and can be produced in the CNS by glia and neurons.

Cytokines

Originally defined as immune system proteins that modified biological responses, these proteins are now known to be released by most cells and are important in regulating intercellular communication, cell function and cell survival.

Fibrosis

Development of excess fibrous connective tissue, usually as a result of injury or infection. It promotes scar formation during wound healing.

Immune response

Activation of the innate and/or adaptive immune system in response to a disruption of tissue (or systemic) homeostasis.

Inflammation

The complex biological response of vascularized tissues to injury or infection. Derived from the Latin, inflammare (to set on fire), it was historically defined by the clinical signs of pain, redness, heat, swelling and loss of function.

Innate immunity

A phylogenetically ancient mechanism of defence against pathogens that is comprised of physical and chemical barriers and inducible cells (including monocytes, neutrophils and dendritic cells) or proteins. Unlike the adaptive immune system, it does not require exposure to antigen to become active.

Leukocyte

White blood cell derived from multipotent haematopoetic stem cells in the bone marrow. Leukocytes are of myeloid or lymphoid lineage and are found in the blood and lymphatic system.

Major histocompatability complex (MHC) molecule

Membrane glycoprotein that is essential for recognition of self and non-self antigens by adaptive immune cells.

Monocyte

Circulating precursor of tissue macrophages, an innate immune cell.

T lymphocyte

A leukocyte involved in triggering, amplifying and regulating immune responses against specific antigens presented by B cells, macrophages (microglia in CNS) or dendritic cells.

Toll-like receptors

(TLRs). Non-catalytic receptors that recognize structurally conserved molecules found on microbes and non-pathogenic molecules found at sites of tissue injury. TLRs are involved in the activation of innate immune cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popovich, P., Longbrake, E. Can the immune system be harnessed to repair the CNS?. Nat Rev Neurosci 9, 481–493 (2008). https://doi.org/10.1038/nrn2398

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2398

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing