Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Oligodendrocyte wars

Key Points

  • Oligodendrocytes develop from precursor cells that migrate throughout the spinal cord and brain before differentiating and enwrapping axons. Oligodendrocyte precursors (OLPs) are generated from neuroepithelial cells that line the central canal of the spinal cord and the ventricles of the brain. Where exactly the OLPs originate in the ventricular zone (VZ) has been a contentious issue, which is now being resolved through the application of mouse genetics.

  • The 'classic' view was that gliogenesis was the default behaviour of all neuroepithelial cells after they had finished giving rise to neurons. Later, a specialized OLP 'factory' was discovered in the ventral VZ of the spinal cord; this neuroepithelial domain (pMN) first generates motor neurons before switching to OLPs. Master regulatory genes (oligodendrocyte transcription factors Olig1 and Olig2) that control both motor neuron and OLP production are also expressed in the ventral forebrain, which suggests that ventral production of OLPs is the norm. However, a series of recent articles has debunked this idea by showing that they are widely generated through the VZ of the spinal cord and brain. In the spinal cord, most OLPs are produced in the pMN, but a minority (15%) come from more dorsal parts of the VZ. In the forebrain, OLPs are generated from different parts of the embryonic VZ at different times, starting in the ventral forebrain and progressing dorsally into the cerebral cortex. Surprisingly, the earliest-formed OLPs and their progeny are eliminated during postnatal life.

  • Specification of ventrally-derived OLPs requires sonic hedgehog (SHH). However, OLPs from dorsal sources are hedgehog-independent, instead relying on fibroblast growth factor (FGF) and other local signals. Whether this implies that there are different functional subtypes of oligodendrocytes is not clear.

  • In the forebrain, OLPs intermix and compete with one another for territory. This is evident from the observation that if OLPs from one part of the VZ are ablated in transgenic mice, the remaining OLPs quickly expand into the empty space and the mice survive and behave normally. This implies that there are no major functional differences among OLPs in the forebrain, even though they begin by expressing different region-specific transcription factors such as Nkx2.1, Gsh2 or Emx1.

  • There is some evidence that OLPs are generated only from ventral territories in birds. Why should they differ from mammals? We propose that ventral production was the 'primitive' mode and that recruitment of more dorsal sources was required as the brain, particularly the cerebral cortex, increased in size during vertebrate evolution.

Abstract

Oligodendrocyte precursors first arise in a restricted ventral part of the embryonic spinal cord and migrate laterally and dorsally from there. Later, secondary sources develop in the dorsal cord. Normally, the ventrally-derived precursors compete with and suppress their dorsal counterparts. There are also ventral and dorsal sources in the forebrain, but here the more dorsal precursors prevail and the ventral-most lineage is eliminated during postnatal life. How do the different populations compete and what is the outcome of the competition? Do different embryonic origins signify different functional subgroups of oligodendrocyte?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Progenitor domains in the embryonic spinal cord and the cell types that they generate.
Figure 2: Origins and migration of oligodendrocyte precursors in the rodent cervical spinal cord and telencephalon.
Figure 3: Ventral origin of PDGFRα-positive oligodendrocyte precursors.

Similar content being viewed by others

References

  1. Altman, J. Proliferation and migration of undifferentiated precursor cells in the rat during postnatal gliogenesis. Exp. Neurol. 16, 263–278 (1966).

    Article  CAS  Google Scholar 

  2. Choi, B. H., Kim, R. C. & Lapham, L. W. Do radial glia give rise to both astroglial and oligodendroglial cells? Dev. Brain Res. 8, 119–130 (1983).

    Article  Google Scholar 

  3. Choi, B. H. & Kim, R. C. Expression of glial fibrillary acidic protein by immature oligodendroglia and its implications. J. Neuroimmunol. 8, 215–235 (1985).

    Article  CAS  Google Scholar 

  4. Hirano, M. & Goldman, J. E. Gliogenesis in the rat spinal cord: evidence for origin of astrocytes and oligodendrocytes from radial precursors. J. Neurosci. Res. 21, 155–167 (1988).

    Article  CAS  Google Scholar 

  5. Warf, B. C., Fok-Seang, J. & Miller, R. H. Evidence for the ventral origin of oligodendrocyte precursors in the rat spinal cord. J. Neurosci. 11, 2477–2488 (1991).

    Article  CAS  Google Scholar 

  6. Pringle, N. P. & Richardson, W. D. A singularity of PDGFα-receptor expression in the dorsoventral axis of the neural tube may define the origin of the oligodendrocyte lineage. Development 117, 525–533 (1993).

    CAS  PubMed  Google Scholar 

  7. Noll, E. & Miller, R. H. Oligodendrocyte precursors originate at the ventral ventricular zone dorsal to the ventral midline region in the embryonic rat spinal cord. Development 118, 563–573 (1993).

    CAS  PubMed  Google Scholar 

  8. Yu, W.-P., Collarini, E. J., Pringle, N. P. & Richardson, W. D. Embryonic expression of myelin genes: evidence for a focal source of oligodendrocyte precursors in the ventricular zone of the neural tube. Neuron 12, 1353–1362 (1994).

    Article  CAS  Google Scholar 

  9. Timsit, S. et al. Oligodendrocytes originate in a restricted zone of the embryonic ventral neural tube defined by DM-20 mRNA expression. J. Neurosci. 15, 1012–1024 (1995).

    Article  CAS  Google Scholar 

  10. Lu, Q. R. et al. Sonic hedgehog-regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron 25, 317–329 (2000).

    Article  CAS  Google Scholar 

  11. Takebayashi, H. et al. Dynamic expression of basic helix–loop–helix Olig family members: implication of Olig2 in neuron and oligodendrocyte differentiation and identification of a new member, Olig3. Mech. Dev. 99, 143–148 (2000).

    Article  CAS  Google Scholar 

  12. Zhou, Q., Wang, S. & Anderson, D. J. Identification of a novel family of oligodendrocyte lineage-specific basic helix–loop–helix transcription factors. Neuron 25, 331–343 (2000).

    Article  CAS  Google Scholar 

  13. Rowitch, D. H. Glial specification in the vertebrate neural tube. Nature Rev. Neurosci. 5, 409–419 (2004).

    Article  CAS  Google Scholar 

  14. Tekki-Kessaris, N. et al. Hedgehog-dependent oligodendrocyte lineage specification in the telencephalon. Development 128, 2545–2554 (2001).

    CAS  PubMed  Google Scholar 

  15. Spassky, N. et al. Sonic hedgehog-dependent emergence of oligodendrocytes in the telencephalon: evidence for a source of oligodendrocytes in the olfactory bulb that is independent of PDGFRα signaling. Development 128, 4993–5004 (2001).

    CAS  PubMed  Google Scholar 

  16. Olivier, C. et al. Monofocal origin of telencephalic oligodendrocytes in the chick embryo: the entopeduncular area. Development 128, 1757–1769 (2001).

    CAS  PubMed  Google Scholar 

  17. Jessell, T. M. Neuronal specification in the spinal cord; inductive signals and transcriptional codes. Nature Rev. Genet. 1, 20–29 (2001).

    Article  Google Scholar 

  18. Cai, J. et al. Generation of oligodendrocyte precursor cells from mouse dorsal spinal cord independent of Nkx6 regulation and Shh signaling. Neuron 45, 41–53 (2005). Describes studies with Nkx6.1/Nkx6.2 compound knockout mice, showing sonic hedgehog-independent production of oligodendrocyte precursors (OLPs) in the dorsal spinal cord.

    Article  CAS  Google Scholar 

  19. Vallstedt, A., Klos, J. M. & Ericson, J. Multiple dorsoventral origins of oligodendrocyte generation in the spinal cord and hindbrain. Neuron 45, 55–67 (2005). Like reference 18, this describes studies with Nkx6 -null mice that demonstrate production of oligodendrocyte precursors in the dorsal spinal cord and hindbrain, and provides evidence for the involvement of BMPs in dorsal specification events. Vallstedt et al . also show that the role of the transcription factor Nkx2.2 differs between spinal cord and brainstem.

    Article  CAS  Google Scholar 

  20. Fogarty, M., Richardson, W. D. & Kessaris, N. A subset of oligodendrocytes generated from radial glia in the dorsal spinal cord. Development 132, 1951–1959 (2005). This article from our own laboratory provides independent evidence, by Cre- lox fate mapping in transgenic mice, for dorsal production of OLPs (and astrocytes). It also shows that specification of the dorsal subset of OLPs is hedgehog-independent in culture but depends on FGF signalling.

    Article  CAS  Google Scholar 

  21. Kessaris, N. et al. Competition among oligodendrocyte sub-populations in the forebrain and elimination of an early embryonic lineage. Nature Neurosci. (in the press). Describes experiments that used a series of Cre mouse lines to show that OLPs originate in both ventral and dorsal forebrain territories. Kessaris et al . also killed ventral and dorsal populations separately by targeted expression of Diphtheria toxin A chain, and showed that the different regional populations are able to substitute functionally for one another.

  22. Spassky, N. et al. Multiple restricted origin of oligodendrocytes. J. Neurosci. 18, 8331–8343 (1998).

    Article  CAS  Google Scholar 

  23. Spassky, N. et al. Single or multiple oligodendroglial lineages: a controversy. Glia 29, 143–148 (2000). References 23 and 24 set out the contemporary arguments for and against multiple ventral and dorsal origins of oligodendrocytes versus a restricted ventral origin. These articles epitomize the 'wars' described in the current review.

    Article  CAS  Google Scholar 

  24. Richardson, W. D. et al. Oligodendrocyte lineage and the motor neuron connection. Glia 12, 136–142 (2000).

    Article  Google Scholar 

  25. Rao, M. S., Noble, M. & Mayer-Proschel, M. A tripotential glial precursor cell is present in the developing spinal cord. Proc. Natl Acad. Sci. USA 95, 3996–4001 (1998).

    Article  CAS  Google Scholar 

  26. Liu, Y. & Rao, M. Oligodendrocytes, GRPs and MNOPs. Trends Neurosci. 26, 410–412 (2003). Provides a discussion of the current debate about glial restricted precursors versus neuron–oligodendrocyte precursors.

  27. Rowitch, D. H., Lu, Q. R., Kessaris, N. & Richardson, W. D. An 'oligarchy' rules neural development. Trends Neurosci. 25, 417–422 (2002).

    Article  CAS  Google Scholar 

  28. Lu, Q. R. et al. Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte lineage connection. Cell 109, 75–86 (2002).

    Article  CAS  Google Scholar 

  29. Takebayashi, H. et al. The basic helix–loop–helix factor Olig2 is essential for the development of motoneuron and oligodendrocyte lineages. Curr. Biol. 12, 1157–1163 (2002).

    Article  CAS  Google Scholar 

  30. Zhou, Q. & Anderson, D. J. The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell 109, 61–73 (2002).

    Article  CAS  Google Scholar 

  31. Calver, A. R. et al. Oligodendrocyte population dynamics and the role of PDGF in vivo. Neuron 20, 869–882 (1998).

    Article  CAS  Google Scholar 

  32. van Heyningen, P., Calver, A. R. & Richardson, W. D. Control of progenitor cell number by mitogen supply and demand. Curr. Biol. 11, 232–241 (2001).

    Article  CAS  Google Scholar 

  33. Fogarty, M. Fate mapping the mouse neural tube by Cre-loxP transgenesis. Thesis, Univ. London (2005).

  34. Ivanova, A. et al. Evidence for a second wave of oligodendrogenesis in the postnatal cerebral cortex of the mouse. J. Neurosci. Res. 73, 581–592 (2003).

    Article  CAS  Google Scholar 

  35. Sun, T., Pringle, N. P., Hardy, A. P., Richardson, W. D. & Smith, H. K. Pax6 influences the time and site of origin of glial precursors in the ventral neural tube. Mol. Cell. Neurosci. 12, 228–239 (1998).

    Article  CAS  Google Scholar 

  36. Xu, X. et al. Selective expression of Nkx-2.2 transcription factor in chicken oligodendrocyte progenitors and implications for the embryonic origin of oligodendrocytes. Mol. Cell. Neurosci. 16, 740–753 (2000).

    Article  CAS  Google Scholar 

  37. Soula, C. et al. Distinct sites of origin of oligodendrocytes and somatic motor neurons in the chick spinal cord; oligodendrocytes arise from Nkx2.2-expressing progenitors by a Shh-dependent mechanism. Development 128, 1369–1379 (2001).

    CAS  PubMed  Google Scholar 

  38. Zhou, Q., Choi, G. & Anderson, D. The bHLH transcription factor Olig2 promotes oligodendrocyte differentiation in collaboration with Nkx2.2. Neuron 31, 791–807 (2001). This pioneering article was the first to show a functional role for Nkx2.2 in oligodendrocyte development.

    Article  CAS  Google Scholar 

  39. Fu, H. et al. Dual origin of spinal oligodendrocyte progenitors and evidence for the cooperative role of Olig2 and Nkx2.2 in the control of oligodendrocyte differentiation. Development 129, 681–693 (2002).

    CAS  PubMed  Google Scholar 

  40. Agius, E. et al. Converse control of oligodendrocyte and astrocyte lineage development by sonic hedgehog in the chick spinal cord. Dev. Biol. 270, 308–321 (2004).

    Article  CAS  Google Scholar 

  41. Qi, Y. et al. Control of oligodendrocyte differentiation by the Nkx2.2 homeodomain transcription factor. Development 128, 2723–2733 (2001). Provides evidence that, in the mouse spinal cord, Nkx2.2 has an essential role in oligodendrocyte maturation, but not in initial lineage specification.

    CAS  PubMed  Google Scholar 

  42. Gorski, J. A. et al. Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. J. Neurosci. 22, 6309–6314 (2002).

    Article  CAS  Google Scholar 

  43. He, W., Ingraham, C., Rising, L., Goderie, S. & Temple, S. Multipotent stem cells from the mouse basal forebrain contribute GABAergic neurons and oligodendrocytes to the cerebral cortex during embryogenesis. J. Neurosci. 21, 8854–8862 (2001).

    Article  CAS  Google Scholar 

  44. Wichterle, H., Turnbull, D. H., Nery, S., Fishell, G. & Alvarez-Buylla, A. In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. Development 128, 3759–3771 (2001).

    CAS  PubMed  Google Scholar 

  45. Marshall, C. A. & Goldman, J. E. Subpallial Dlx2-expressing cells give rise to astrocytes and oligodendrocytes in the cerebral cortex and white matter. J. Neurosci. 22, 9821–9830 (2002).

    Article  CAS  Google Scholar 

  46. Yung, S. Y. et al. Differential modulation of BMP signaling promotes the elaboration of cerebral cortical GABAergic neurons or oligodendrocytes from a common sonic hedgehog-responsive ventral forebrain progenitor species. Proc. Natl Acad. Sci. USA 99, 16273–16278 (2002).

    Article  CAS  Google Scholar 

  47. Levison, S. W. & Goldman, J. E. Both oligodendrocytes and astrocytes develop from progenitors in the subventricular zone of postnatal rat forebrain. Neuron 10, 201–212 (1993).

    Article  CAS  Google Scholar 

  48. Luskin, M. B. & McDermott, K. Divergent lineages for oligodendrocytes and astrocytes originating in the neonatal forebrain subventricular zone. Glia 11, 211–226 (1994).

    Article  CAS  Google Scholar 

  49. Levison, S. W. & Goldman, J. E. Multipotential and lineage restricted precursors coexist in the mammalian perinatal subventricular zone. J. Neurosci. Res. 48, 83–94 (1997).

    Article  CAS  Google Scholar 

  50. Parnavelas, J. G. Glial cell lineages in the rat cerebral cortex. Exp. Neurol. 156, 418–429 (1999).

    Article  CAS  Google Scholar 

  51. Levison, S. W., Young, G. M. & Goldman, J. E. Cycling cells in the adult rat neocortex preferentially generate oligodendroglia. J. Neurosci. Res. 57, 435–446 (1999).

    Article  CAS  Google Scholar 

  52. Chandran, S. et al. FGF-dependent generation of oligodendrocytes by a hedgehog-independent pathway. Development 130, 6599–6609 (2004).

    Article  Google Scholar 

  53. Kessaris, N., Jamen, F., Rubin, L. & Richardson, W. D. Cooperation between sonic hedgehog and fibroblast growth factor/MAPK signalling pathways in neocortical precursors. Development 131, 1289–1298 (2004).

    Article  CAS  Google Scholar 

  54. Gross, R. E. et al. Bone morphogenetic proteins promote astroglial lineage commitment by mammalian subventricular zone progenitor cells. Neuron 17, 595–606 (1996).

    Article  CAS  Google Scholar 

  55. Grinspan, J. B. et al. Stage-specific effects of bone morphogenetic proteins on the oligodendrocyte lineage. J. Neurobiol. 43, 1–17 (2000).

    Article  CAS  Google Scholar 

  56. Mekki-Dauriac, S., Agius, E., Kan, P. & Cochard, P. Bone morphogenetic proteins negatively control oligodendrocyte precursor specification in the chick spinal cord. Development 129, 5117–5130 (2002).

    CAS  PubMed  Google Scholar 

  57. Shimizu, T. et al. Wnt signaling controls the timing of oligodendrocyte development in the spinal cord. Dev. Biol. 282, 397–410 (2005).

    Article  CAS  Google Scholar 

  58. Nery, S., Wichterle, H. & Fishell, G. Sonic hedgehog contributes to oligodendrocyte specification in the mammalian forebrain. Development 128, 527–540 (2001).

    CAS  PubMed  Google Scholar 

  59. Marin, O. & Rubenstein, J. L. A long, remarkable journey: tangential migration in the telencephalon. Nature Rev. Neurosci. 2, 780–790 (2001).

    Article  CAS  Google Scholar 

  60. Letinic, K., Zoncu, R. & Rakic, P. Origin of GABAergic neurons in the human neocortex. Nature 417, 645–649 (2002).

    Article  CAS  Google Scholar 

  61. Richardson, W. D., Pringle, N. P., Yu, W.-P. & Hall, A. C. Origins of spinal cord oligodendrocytes: possible developmental and evolutionary relationships with motor neurons. Dev. Neurosci. 19, 54–64 (1997).

    Article  Google Scholar 

  62. Cameron-Curry, P. & Le Douarin, N. M. Oligodendrocyte precursors originate from both the dorsal and the ventral parts of the spinal cord. Neuron 15, 1299–1310 (1995).

    Article  CAS  Google Scholar 

  63. Pringle, N. P., Guthrie, S., Lumsden, A. & Richardson, W. D. Dorsal spinal cord neuroepithelium generates astrocytes but not oligodendrocytes. Neuron 20, 883–893 (1998).

    Article  CAS  Google Scholar 

  64. Fu, H. et al. Molecular mapping of the origin of postnatal spinal cord ependymal cells: evidence that adult ependymal cells are derived from Nkx6.1+ ventral neural progenitor cells. J. Comp. Neurol. 456, 237–244 (2003). Provides persuasive evidence that the postnatal ependymal layer that surrounds the lumen of the postnatal spinal cord is derived exclusively from neuroepithelial cells in the ventral (Nkx6.1-expressing) part of the embryonic spinal cord. The results of Cre- lox fate mapping (see reference 20) support this conclusion, which raises interesting questions about the cell fate potential of neural stem cells in the adult.

    Article  CAS  Google Scholar 

  65. Bunge, R. Glial cells and the central myelin sheath. Physiol. Rev. 48, 197–251 (1968).

    Article  CAS  Google Scholar 

  66. Bjartmar, C., Hildebrand, C. & Loinder, K. Morphological heterogeneity of rat oligodendrocytes: electron microscopic studies on serial sections. Glia 11, 235–244 (1994).

    Article  CAS  Google Scholar 

  67. Butt, A. M., Ibrahim, M. & Berry, M. The relationship between developing oligodendrocyte units and maturing axons during myelinogenesis in the anterior medullary velum of neonatal rats. J. Neurocytol. 27, 327–338 (1997).

    Article  Google Scholar 

  68. Butt, A. M., Colquhoun, K., Tutton, M. & Berry, M. Three-dimensional morphology of astrocytes and oligodendrocytes in the intact mouse optic nerve. J. Neurocytol. 23, 469–485 (1994).

    Article  CAS  Google Scholar 

  69. Kleopa, K. A., Orthmann, J. L., Enriquez, A., Paul, D. L. & Scherer, S. S. Unique distributions of the gap junction proteins connexin29, connexin32 and connexin47 in oligodendrocytes. Glia 47, 346–357 (2004).

    Article  Google Scholar 

  70. Fanarraga, M. L., Griffiths, I. R., Zhao, M. & Duncan, I. D. Oligodendrocytes are not inherently programmed to myelinate a specific size of axon. J. Comp. Neurol. 399, 94–100 (1998).

    Article  CAS  Google Scholar 

  71. Le Bras, B. et al. Oligodendrocyte development in the embryonic brain: the contribution of the plp lineage. Int. J. Dev. Biol. 49, 209–220 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank our colleagues, past and present, for their individual scientific contributions and tremendous fun. We also thank our fellow scientists across the world — some named in this article — for stimulation and collaboration. Work in the authors' laboratory has been supported by the UK Medical Research Council (MRC), the Wellcome Trust and the European Union. N.K. is supported by the Wellcome Trust Functional Genomics Initiative and N.P. by a programme grant from the MRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William D. Richardson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

The Wolfson Institute for Biomedical Research

Richardson's laboratory

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richardson, W., Kessaris, N. & Pringle, N. Oligodendrocyte wars. Nat Rev Neurosci 7, 11–18 (2006). https://doi.org/10.1038/nrn1826

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1826

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing