Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cognitive neuroscience of emotional memory

Key Points

  • Amygdala damage in humans reduces the memory-enhancing benefits of emotional arousal on consolidation processes and on attentional focusing during encoding.

  • Memories for stressful and emotionally arousing events benefit from moderate doses of adrenaline and cortisol released acutely at the time of encoding. These effects have been linked to amygdala function in human and non-human animal studies.

  • By contrast, chronic stress or high levels of acute stress hormones impair memory retrieval and hippocampal function, as exemplified by post-traumatic stress disorder.

  • Encoding of emotionally arousing events recruits amygdala activity and elicits greater functional interactions between the amygdala and medial temporal lobe memory regions, which result in enhanced long-term memory.

  • The interactions between the amygdala and medial temporal lobe memory regions extend to retrieval of remote memories, including those from the remote personal past.

  • Emotional memories are retrieved with an accompanying sense of recollection rather than familiarity, an effect that depends on co-activation of the amygdala and hippocampus.

  • The prefrontal cortex also has a role in the encoding and retrieval of emotional events and shows regional specialization for arousal and valence effects on memory.

  • Across various species, the acquisition of conditioned fear depends on the integrity of the amygdala and its interactions with the thalamus and cortical structures.

  • The extinction of fear behaviour requires a suppressive influence of the prefrontal cortex on amygdala function, and contextual cues processed by the hippocampus can reinstate extinguished fears. These cortical control mechanisms over emotional learning are thought to contribute to relapse of fears and phobias in anxiety disorders.

Abstract

Emotional events often attain a privileged status in memory. Cognitive neuroscientists have begun to elucidate the psychological and neural mechanisms underlying emotional retention advantages in the human brain. The amygdala is a brain structure that directly mediates aspects of emotional learning and facilitates memory operations in other regions, including the hippocampus and prefrontal cortex. Emotion–memory interactions occur at various stages of information processing, from the initial encoding and consolidation of memory traces to their long-term retrieval. Recent advances are revealing new insights into the reactivation of latent emotional associations and the recollection of personal episodes from the remote past.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Potential mechanisms by which the amygdala mediates the influence of emotional arousal on memory.
Figure 2: β-Adrenergic receptor blockade in healthy adults during encoding produces similar deficits to amygdala damage on a test of emotional memory.
Figure 3: Two routes to emotional remembering: arousal- and valence-mediated subsequent memory effects.
Figure 4: Interactions between the amygdala and medial temporal lobe memory system during encoding predict emotional retention advantages and recollection-based emotional retrieval.
Figure 5: Successful retrieval of emotionally arousing memories from long-term storage depends on the amygdala and medial temporal lobe memory system.
Figure 6: Studies of patients with rare brain lesions reveal dissociable contributions of the amygdala and hippocampus to conditioned fear learning.
Figure 7: Functional neuroimaging of healthy adults during conditioned fear acquisition reveals activation in a thalamo–amygdalo–cingulate network.

Similar content being viewed by others

References

  1. Bacon, F. The New Organon (ed. Anderson, F. H.) (Bobbs-Merrill, New York, 1620/1960).

    Google Scholar 

  2. Schacter, D. L. The seven sins of memory. Insights from psychology and cognitive neuroscience. Am. Psychol. 54, 182–203 (1999).

    CAS  PubMed  Google Scholar 

  3. Hamann, S. Cognitive and neural mechanisms of emotional memory. Trends Cogn. Sci. 5, 394–400 (2001).

    CAS  PubMed  Google Scholar 

  4. Zald, D. H. The human amygdala and the emotional evaluation of sensory stimuli. Brain Res. Brain Res. Rev. 41, 88–123 (2003).

    PubMed  Google Scholar 

  5. Phelps, E. A. Human emotion and memory: interactions of the amygdala and hippocampal complex. Curr. Opin. Neurobiol. 14, 198–202 (2004).

    CAS  PubMed  Google Scholar 

  6. Kleinsmith, L. J. & Kaplan, S. Paired-associate learning as a function of arousal and interpolated interval. J. Exp. Psychol. 65, 190–193 (1963).

    CAS  PubMed  Google Scholar 

  7. LaBar, K. S. & Phelps, E. A. Arousal-mediated memory consolidation: role of the medial temporal lobe in humans. Psychol. Sci. 9, 527–540 (1998). One of the only experiments to test emotional recall in patients with amygdala lesions over multiple retention intervals to specify deficits in the consolidation phase of declarative memory.

    Google Scholar 

  8. Sharot, T. & Phelps, E. A. How arousal modulates memory: disentangling the effects of attention and retention. Cogn. Affect. Behav. Neurosci. 4, 294–306 (2004).

    PubMed  Google Scholar 

  9. Phelps, E. A. et al. Specifying the contributions of the human amygdala to emotional memory: a case study. Neurocase 4, 527–540 (1998).

    Google Scholar 

  10. Markowitsch, H. J. et al. The amygdala's contribution to memory — a study on two patients with Urbach–Wiethe disease. Neuroreport 5, 1349–1352 (1994).

    CAS  PubMed  Google Scholar 

  11. Cahill, L., Babinsky, R., Markowitsch, H. J. & McGaugh, J. L. The amygdala and emotional memory. Nature 377, 295–296 (1995).

    CAS  PubMed  Google Scholar 

  12. Adolphs, R., Cahill, L., Schul, R. & Babinsky, R. Impaired declarative memory for emotional material following bilateral amygdala damage in humans. Learn. Mem. 4, 291–300 (1997).

    CAS  PubMed  Google Scholar 

  13. Adolphs, R., Tranel, D. & Buchanan, T. W. Amygdala damage impairs emotional memory for gist but not details of complex stimuli. Nature Neurosci. 8, 512–518 (2005). Reports that patients with amygdala damage fail to focus their emotional memories on central gist information at the expense of peripheral details, which has implications for understanding neural mechanisms underlying 'weapon focus' and 'tunnel memories

    CAS  PubMed  Google Scholar 

  14. Phelps, E. A., LaBar, K. S. & Spencer, D. D. Memory for emotional words following unilateral temporal lobectomy. Brain Cogn. 35, 85–109 (1997).

    CAS  PubMed  Google Scholar 

  15. Talmi, D. & Moscovitch, M. Can semantic relatedness explain the enhancement of memory for emotional words? Mem. Cognit. 32, 742–751 (2004).

    PubMed  Google Scholar 

  16. Shaw, P., Brierley, B. & David, A. S. A critical period for the impact of amygdala damage on the emotional enhancement of memory? Neurology 65, 326–328 (2005).

    CAS  PubMed  Google Scholar 

  17. Cahill, L. & McGaugh, J. L. Amygdaloid complex lesions differentially affect retention of tasks using appetitive and aversive reinforcement. Behav. Neurosci. 104, 532–543 (1990).

    CAS  PubMed  Google Scholar 

  18. McGaugh, J. L. The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annu. Rev. Neurosci. 27, 1–28 (2004).

    CAS  PubMed  Google Scholar 

  19. McGaugh, J. L. & Roozendaal, B. Role of adrenal stress hormones in forming lasting memories in the brain. Curr. Opin. Neurobiol. 12, 205–210 (2002).

    CAS  PubMed  Google Scholar 

  20. Liang, K. C., Juler, R. & McGaugh, J. L. Modulating effects of posttraining epinephrine on memory: involvement of the amygdala noradrenergic system. Brain Res. 368, 125–133 (1986).

    CAS  PubMed  Google Scholar 

  21. Ferry, B. & McGaugh, J. L. Clenbuterol administration into the basolateral amygdala post-training enhances retention in an inhibitory avoidance task. Neurobiol. Learn. Mem. 72, 8–12 (1999).

    CAS  PubMed  Google Scholar 

  22. Wang, S. J. et al. Blockade of isoproterenol-induced synaptic potentiation by tetra-9-aminoacridine in the rat amygdala. Neurosci. Lett. 214, 87–90 (1996).

    CAS  PubMed  Google Scholar 

  23. Huang, Y. Y. & Kandel, E. R. Modulation of both the early and late phase of mossy fiber LTP by the activation of β-adrenergic receptors. Neuron 16, 611–617 (1996).

    CAS  PubMed  Google Scholar 

  24. Quirarte, G. L., Roozendaal, B. & McGaugh, J. L. Glucocorticoid enhancement of memory storage involves noradrenergic activation in the basolateral amygdala. Proc. Natl Acad. Sci. USA 94, 14048–14053 (1997).

    CAS  PubMed  Google Scholar 

  25. Roozendaal, B. & McGaugh, J. L. Basolateral amygdala lesions block the memory-enhancing effect of glucocorticoid administration in the dorsal hippocampus of rats. Eur. J. Neurosci. 9, 76–83 (1997).

    CAS  PubMed  Google Scholar 

  26. Liu, L., Tsuji, M., Takeda, H., Takada, K. & Matsumiya, T. Adrenocortical suppression blocks the enhancement of memory storage produced by exposure to psychological stress in rats. Brain Res. 821, 134–140 (1999).

    CAS  PubMed  Google Scholar 

  27. Roozendaal, B., Nguyen, B. T., Power, A. E. & McGaugh, J. L. Basolateral amygdala noradrenergic influence enables enhancement of memory consolidation induced by hippocampal glucocorticoid receptor activation. Proc. Natl Acad. Sci. USA 96, 11642–11647 (1999).

    CAS  PubMed  Google Scholar 

  28. Roozendaal, B., Quirarte, G. L. & McGaugh, J. L. Glucocorticoids interact with the basolateral amygdala β-adrenoceptor–cAMP/PKA system in influencing memory consolidation. Eur. J. Neurosci. 15, 553–560 (2002).

    PubMed  Google Scholar 

  29. Roozendaal, B., McReynolds, J. R. & McGaugh, J. L. The basolateral amygdala interacts with the medial prefrontal cortex in regulating glucocorticoid effects on working memory impairment. J. Neurosci. 24, 1385–1392 (2004).

    CAS  PubMed  Google Scholar 

  30. Clark, K. B., Naritoku, D. K., Smith, D. C., Browning, R. A. & Jensen, R. A. Enhanced recognition memory following vagus nerve stimulation in human subjects. Nature Neurosci. 2, 94–98 (1999).

    CAS  PubMed  Google Scholar 

  31. Cahill, L., Prins, B., Weber, M. & McGaugh, J. L. β-Adrenergic activation and memory for emotional events. Nature 371, 702–704 (1994). A landmark experiment that shows a selective role of beta-blockers in disrupting declarative emotional memory in humans, which has potential applications in the treatment of PTSD.

    CAS  PubMed  Google Scholar 

  32. van Stegeren, A. H., Everaerd, W., Cahill, L., McGaugh, J. L. & Gooren, L. J. G. Memory for emotional events: differential effects of centrally versus peripherally acting beta-blocking agents. Psychopharmacology 138, 305–310 (1998).

    CAS  PubMed  Google Scholar 

  33. O'Carroll, R. E., Drysdale, E., Cahill, L., Shajahan, P. & Ebmeier, K. P. Stimulation of the noradrenergic system enhances and blockade reduces memory for emotional material in man. Psychol. Med. 29, 1083–1088 (1999).

    CAS  PubMed  Google Scholar 

  34. Cahill, L. & Akire, M. T. Epinephrine enhancement of human memory consolidation: interaction with arousal at encoding. Neurobiol. Learn. Mem. 79, 194–198 (2003).

    CAS  PubMed  Google Scholar 

  35. van Stegeren, A. H., Everaerd, W. & Gooren, L. J. G. The effect of β-adrenergic blockade after encoding on memory of an emotional event. Psychopharmacology 163, 202–212 (2002).

    CAS  PubMed  Google Scholar 

  36. Maheu, F. S., Joober, R., Beaulieu, S. & Lupien, S. J. Differential effects of adrenergic and corticosteroid hormonal systems on human short- and long-term declarative memory for emotionally arousing material. Behav. Neurosci. 118, 420–428 (2004).

    CAS  PubMed  Google Scholar 

  37. Strange, B. A., Hurlemann, R. & Dolan, R. J. An emotion-induced retrograde amnesia in humans is amygdala- and β-adrenergic-dependent. Proc. Natl Acad. Sci. USA 100, 13626–13631 (2003).

    CAS  PubMed  Google Scholar 

  38. O'Carroll, R. E., Drysdale, E., Cahill, L., Shajahan, P. & Ebmeier, K. P. Memory for emotional material: a comparison of central versus peripheral beta blockade. J. Psychopharmacol. 13, 32–39 (1999).

    CAS  PubMed  Google Scholar 

  39. Adolphs, R., Tranel, D. & Denburg, N. Impaired emotional declarative memory following unilateral amygdala damage. Learn. Mem. 7, 180–186 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Strange, B. A. & Dolan, R. J. β-Adrenergic modulation of emotional memory-evoked human amygdala and hippocampal responses. Proc. Natl Acad. Sci. USA 101, 11454–11458 (2004).

    CAS  PubMed  Google Scholar 

  41. van Stegeren, A. H. et al. Noradrenaline mediates amygdala activation in men and women during encoding of emotional material. Neuroimage 24, 898–909 (2005).

    PubMed  Google Scholar 

  42. Buchanan, T. W. & Lovallo, W. R. Enhanced memory for emotional material following stress-level cortisol treatment in humans. Psychoneuroendocrinology 26, 307–317 (2001).

    CAS  PubMed  Google Scholar 

  43. Cahill, L., Gorski, L. & Le, K. Enhanced human memory consolidation with post-learning stress: interaction with the degree of arousal at encoding. Learn. Mem. 10, 270–274 (2003).

    PubMed  PubMed Central  Google Scholar 

  44. Jelicic, M., Geraerts, E., Merckelbach, H. & Guerrieri, R. Acute stress enhances memory for emotional words, but impairs memory for neutral words. Int. J. Neurosci. 114, 1343–1351 (2004).

    Google Scholar 

  45. Zorawski, M., Cook, C. A., Kuhn, C. M. & LaBar, K. S. Sex, stress, and fear: individual differences in conditioned learning. Cogn. Affect. Behav. Neurosci. 5, 191–201 (2005).

    PubMed  Google Scholar 

  46. Kuhlmann, S., Kirschbaum, C. & Wolf, O. T. Effects of oral cortisol treatment in healthy young women on memory retrieval of negative and neutral words. Neurobiol. Learn. Mem. 83, 158–162 (2005).

    CAS  PubMed  Google Scholar 

  47. Kuhlmann, S., Piel, M. & Wolf, O. T. Impaired memory retrieval after psychosocial stress in healthy young men. J. Neurosci. 25, 2977–2982 (2005).

    CAS  PubMed  Google Scholar 

  48. Abercrombie, H. C., Kalin, N. H., Thurow, M. E., Rosenkranz, M. A. & Davidson, R. J. Cortisol variation in humans affects memory for emotionally laden and neutral information. Behav. Neurosci. 117, 505–516 (2003).

    CAS  PubMed  Google Scholar 

  49. Rimmele, U., Domes, G., Mathiak, K. & Hautzinger, M. Cortisol has different effects on human memory for emotional and neutral material. Neuroreport 14, 2485–2488 (2003).

    CAS  PubMed  Google Scholar 

  50. Buss, C., Wolf, O. T., Witt, J. & Hellhammer, D. H. Autobiographic memory impairment following acute cortisol administration. Psychoneuroendocrinology 29, 1093–1096 (2004).

    CAS  PubMed  Google Scholar 

  51. Lupien, S. J., Gillin, J. C. & Hauger, R. L. Working memory is more sensitive than declarative memory to the acute effects of corticosteroids: a dose-response study in humans. Behav. Neurosci. 113, 420–430 (1999).

    CAS  PubMed  Google Scholar 

  52. Wolf, O. T. et al. Cortisol differentially affects memory in young and elderly men. Behav. Neurosci. 115, 1002–1011 (2001).

    CAS  PubMed  Google Scholar 

  53. Elzinga, B. M. & Roelofs, K. Cortisol-induced impairments of working memory require acute sympathetic activation. Behav. Neurosci. 119, 98–103 (2005).

    CAS  PubMed  Google Scholar 

  54. Lupien, S. J. et al. Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nature Neurosci. 1, 69–73 (1998).

    CAS  PubMed  Google Scholar 

  55. Belanoff, J. K., Kalehzan, M., Sund, B., Fleming Ficek, S. K. & Schatzberg, A. F. Cortisol activity and cognitive changes in psychotic major depression. Am. J. Psychiatry 158, 1612–1616 (2001).

    CAS  PubMed  Google Scholar 

  56. de Quervian, D. J. et al. Glucocorticoid-induced impairment of declarative memory retrieval is associated with reduced blood flow in the medial temporal lobe. Eur. J. Neurosci. 17, 1296–1302 (2003).

    Google Scholar 

  57. Cahill, L. et al. Amygdala activity at encoding correlated with long-term, free recall of emotional information. Proc. Natl Acad. Sci. USA 93, 8016–8021 (1996).

    CAS  PubMed  Google Scholar 

  58. Kilpatrick, L. & Cahill, L. Amygdala modulation of parahippocampal and frontal regions during emotionally influenced memory storage. Neuroimage 20, 2091–2099 (2003).

    PubMed  Google Scholar 

  59. Hamann, S. B., Ely, T. D., Grafton, S. T. & Kilts, C. D. Amygdala activity related to enhanced memory for pleasant and aversive stimuli. Nature Neurosci. 2, 289–293 (1999). Using PET, the authors showed that the amygdala's role in emotional memory is similar across positive and negative valence.

    CAS  PubMed  Google Scholar 

  60. Canli, T., Zhao, Z., Brewer, J., Gabrieli, J. D. E. & Cahill, L. Event-related activation in the human amygdala associates with later memory for individual emotional experience. J. Neurosci. 20, RC99 (2000).

    CAS  PubMed  Google Scholar 

  61. Cahill, L. et al. Sex-related difference in amygdala activity during emotionally influenced memory storage. Neurobiol. Learn. Mem. 75, 1–9 (2001).

    CAS  PubMed  Google Scholar 

  62. Canli, T., Desmond, J. E., Zhao, Z. & Gabrieli, J. D. Sex differences in the neural basis of emotional memories. Proc. Natl Acad. Sci. USA 99, 10789–10794 (2002). A functional neuroimaging view of how emotional memory processing differs in male and female brains.

    CAS  PubMed  Google Scholar 

  63. Cahill, L., Uncapher, M., Kilpatrick, L., Alkire, M. T. & Turner, J. Sex-related hemispheric lateralization of amygdala function in emotionally influenced memory: an fMRI investigation. Learn. Mem. 11, 261–266 (2004).

    PubMed  PubMed Central  Google Scholar 

  64. Dolcos, F., LaBar, K. S. & Cabeza, R. Interaction between the amygdala and the medial temporal lobe memory system predicts better memory for emotional events. Neuron 42, 855–863 (2004). This experiment provides strong support for the memory-modulation hypothesis by identifying fMRI activation in and interactions between the amygdala and MTL memory regions that differentiate successful memory encoding as a function of emotional content.

    CAS  PubMed  Google Scholar 

  65. Kensinger, E. A. & Corkin, S. Two routes to emotional memory: distinct neural processes for valence and arousal. Proc. Natl Acad. Sci. USA 101, 3310–3315 (2004).

    CAS  PubMed  Google Scholar 

  66. Richardson, M. P., Strange, B. A. & Dolan, R. J. Encoding of emotional memories depends on amygdala and hippocampus and their interactions. Nature Neurosci. 7, 278–285 (2004). An experimental tour de force that combines structural and functional MRI of patients with MTL epilepsy to show co-dependencies between the amygdala and hippocampus during encoding that yield emotional memories accompanied by a sense of recollection.

    CAS  PubMed  Google Scholar 

  67. Sergerie, K., Lepage, M. & Armony, J. L. A face to remember: emotional expression modulates prefrontal activity during memory formation. Neuroimage 24, 580–585 (2005).

    PubMed  Google Scholar 

  68. Paller, K. A. & Wagner, A. D. Observing the transformation of experience into memory. Trends Cogn. Sci. 6, 93–102 (2002).

    PubMed  Google Scholar 

  69. Dolcos, F. & Cabeza, R. Event-related potentials of emotional memory: encoding pleasant, unpleasant, and neutral pictures. Cogn. Affect. Behav. Neurosci. 2, 252–263 (2002).

    PubMed  Google Scholar 

  70. Erk, S. et al. Emotional context modulates subsequent memory effect. Neuroimage 18, 439–447 (2003).

    PubMed  Google Scholar 

  71. Aggleton, J. P., Burton, M. J. & Passingham, R. E. Cortical and subcortical afferents to the amygdala of the rhesus monkey (Macaca mulatta). Brain Res. 190, 347–368 (1980).

    CAS  PubMed  Google Scholar 

  72. Amaral, D. G. & Price, J. L. Amygdalo–cortical projections in the monkey (Macaca fascicularis). J. Comp. Neurol. 230, 465–496 (1984).

    CAS  PubMed  Google Scholar 

  73. Dolcos, F., LaBar, K. S. & Cabeza, R. Dissociable effects of arousal and valence on prefrontal activity indexing emotional evaluation and subsequent memory: an event-related potential study. Neuroimage 23, 64–74 (2004).

    PubMed  Google Scholar 

  74. Nader, K., Schafe, G. E. & Le Doux, J. E. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 406, 722–726 (2000).

    CAS  PubMed  Google Scholar 

  75. Taylor, S. F. et al. The effect of emotional content on visual recognition memory: a PET activation study. Neuroimage 8, 188–197 (1998).

    CAS  PubMed  Google Scholar 

  76. Tabert, M. H. et al. Differential amygdala activation during emotional decision and recognition memory tasks using unpleasant words: an fMRI study. Neuropsychologia 39, 556–573 (2001).

    CAS  PubMed  Google Scholar 

  77. Dolan, R. J., Lane, R., Chua, P. & Fletcher, P. Dissociable temporal lobe activations during emotional episodic memory retrieval. Neuroimage 11, 203–209 (2000).

    CAS  PubMed  Google Scholar 

  78. Maratos, E. J., Dolan, R. J., Morris, J. S., Henson, R. N. A. & Rugg, M. D. Neural activity associated with episodic memory for emotional context. Neuropsychologia 39, 910–920 (2001).

    CAS  PubMed  Google Scholar 

  79. Maratos, E. J. & Rugg, M. D. Electrophysiological correlates of the retrieval of emotional and non-emotional context. J. Cogn. Neurosci. 13, 877–891 (2001).

    CAS  PubMed  Google Scholar 

  80. Smith, A. P. R., Dolan, R. J. & Rugg, M. D. Event-related potential correlates of the retrieval of emotional and nonemotional context. J. Cogn. Neurosci. 16, 760–775 (2004).

    PubMed  Google Scholar 

  81. Smith, A. P., Henson, R. N., Dolan, R. J. & Rugg, M. D. fMRI correlates of the episodic retrieval of emotional contexts. Neuroimage 22, 868–878 (2004).

    CAS  PubMed  Google Scholar 

  82. Medford, N. et al. Emotional memory: separating content and context. Psychiatry Res. 138, 247–258 (2005).

    PubMed  Google Scholar 

  83. Yonelinas, A. P., Otten, L. J., Shaw, K. N. & Rugg, M. D. Separating the brain regions involved in recollection and familiarity in recognition memory. J. Neurosci. 25, 3002–3008 (2005).

    CAS  PubMed  Google Scholar 

  84. Ochsner, K. N. Are affective events richly recollected or simply familiar? The experience and process of recognizing feelings past. J. Exp. Psychol. 129, 242–261 (2000).

    CAS  Google Scholar 

  85. Talarico, J. M., LaBar, K. S. & Rubin, D. C. Emotional intensity predicts autobiographical memory experience. Mem. Cogn. 32, 1118–1132 (2004).

    Google Scholar 

  86. Dolcos, F., LaBar, K. S. & Cabeza, R. Remembering one year later: role of the amygdala and the medial temporal lobe memory system in retrieving emotional memories. Proc. Natl Acad. Sci. USA 102, 2626–2631 (2005). Shows that functional interactions between the amygdala and MTL memory regions extend beyond encoding and consolidation to promote recollection-based successful retrieval of 1-year-old emotional memories.

    CAS  PubMed  Google Scholar 

  87. Sharot, T., Delgado, M. R. & Phelps, E. A. How emotion enhances the feeling of remembering. Nature Neurosci. 7, 1376–1380 (2004).

    CAS  PubMed  Google Scholar 

  88. Markowitsch, H. J. Which brain regions are critically involved in the retrieval of old episodic memory? Brain Res. Rev. 21, 117–127 (1995).

    CAS  PubMed  Google Scholar 

  89. Kroll, N. E., Markowitsch, H. J., Knight, R. T. & von Cramon, D. Y. Retrieval of old memories: the temporofrontal hypothesis. Brain 120, 1377–1399 (1997).

    PubMed  Google Scholar 

  90. Levine, B. et al. Episodic memory and the self in a case of isolated retrograde amnesia. Brain 121, 1951–1973 (1998).

    PubMed  Google Scholar 

  91. Fink, G. R. et al. Cerebral representation of one's own past: neural networks involved in autobiographical memory. J. Neurosci. 16, 4275–4282 (1996).

    CAS  PubMed  Google Scholar 

  92. Markowitsch, H. J. et al. Right amygdalar and temporofrontal activation during autobiographic, but not during fictitious memory retrieval. Behav. Neurol. 12, 117–127 (2000).

    Google Scholar 

  93. Maguire, E. A., Vargha-Khadem, F. & Mishkin, M. The effects of bilateral hippocampal damage on fMRI regional activations and interactions during memory retrieval. Brain 124, 1156–1170 (2001).

    CAS  PubMed  Google Scholar 

  94. Piefke, M., Weiss, P. H., Zilles, K., Markowitsch, H. J. & Fink, G. R. Differential remoteness and emotional tone modulate the neural correlates of autobiographical memory. Brain 126, 650–668 (2003).

    PubMed  Google Scholar 

  95. Gilboa, A., Winocur, G., Grady, C. L., Hevenor, S. J. & Moscovitch, M. Remembering our past: functional neuroanatomy of recollection of recent and very remote personal events. Cereb. Cortex 14, 1214–1225 (2004).

    PubMed  Google Scholar 

  96. Greenberg, D. L. et al. Co-activation of the amygdala, hippocampus, and inferior frontal gyrus during autobiographical memory retrieval. Neuropsychologia 43, 659–674 (2005).

    PubMed  Google Scholar 

  97. Ohman, A. & Soares, J. J. F. On the automatic nature of phobic fear: conditioned electrodermal responses to masked fear-relevant stimuli. J. Abnorm. Psychol. 102, 121–132 (1993).

    CAS  PubMed  Google Scholar 

  98. Olsson, A., Ebert, J. P., Banaji, M. R. & Phelps, E. A. The role of social groups in the persistence of learned fear. Science 309, 785–787 (2005).

    CAS  PubMed  Google Scholar 

  99. Kapp, B. S., Frysinger, R. C., Gallagher, M. & Haselton, J. R. Amygdala central nucleus lesions: effect on heart rate conditioning in the rabbit. Physiol. Behav. 23, 1109–1117 (1979).

    CAS  PubMed  Google Scholar 

  100. Phillips, R. G. & LeDoux, J. E. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav. Neurosci. 106, 274–285 (1992).

    CAS  PubMed  Google Scholar 

  101. Romanski, L. M., Clugnet, M. C., Bordi, F. & LeDoux, J. E. Somatosensory and auditory convergence in the lateral nucleus of the amygdala. Behav. Neurosci. 104, 444–450 (1993).

    Google Scholar 

  102. Quirk, G. J., Repa, J. C. & LeDoux, J. E. Fear conditioning enhances short-latency auditory responses of lateral amygdala neurons: parallel recordings in the freely behaving rat. Neuron 15, 1029–1039 (1995).

    CAS  PubMed  Google Scholar 

  103. Armony, J. L., Quirk, G. J. & LeDoux, J. E. Differential effects of amygdala lesions on early and late plastic components of auditory cortex spike trains during fear conditioning. J. Neurosci. 18, 2592–2601 (1998).

    CAS  PubMed  Google Scholar 

  104. Maren, S., Yap, S. A. & Goosens, K. A. The amygdala is essential for the development of neuronal plasticity in the medial geniculate nucleus during auditory fear conditioning in rats. J. Neurosci. 21, RC135 (2001).

    CAS  PubMed  Google Scholar 

  105. Rogan, M. T., Staubli, U. V. & LeDoux, J. E. Fear conditioning induces associative long-term potentiation in the amygdala. Nature 390, 604–607 (1997).

    CAS  PubMed  Google Scholar 

  106. McKernan, M. G. & Shinnick-Gallagher, P. Fear conditioning induces a lasting potentiation of synaptic currents in vitro. Nature 390, 607–611 (1997).

    CAS  PubMed  Google Scholar 

  107. Tsvetkov, E., Carlezon, W. A., Benes, F. M., Kandel, E. R. & Bolshakov, V. Y. Fear conditioning occludes LTP-induced presynaptic enhancement of synaptic transmission in the cortical pathway to the lateral amygdala. Neuron 34, 289–300 (2002).

    CAS  PubMed  Google Scholar 

  108. Lamprecht, R. & LeDoux, J. E. Structural plasticity and memory. Nature Rev. Neurosci. 5, 45–54 (2004).

    CAS  Google Scholar 

  109. Maren, S. & Quirk, G. J. Neuronal signalling of fear memory. Nature Rev. Neurosci. 5, 844–852 (2004).

    CAS  Google Scholar 

  110. Sotres-Boyen, F., Bush, D. E. A. & LeDoux, J. E. Emotional perseveration: an update on prefrontal–amygdala interactions in fear extinction. Learn. Mem. 11, 525–535 (2004).

    Google Scholar 

  111. Bechara, A. et al. Double dissociation of conditioning and declarative knowledge relative to the amygdala and hippocampus in humans. Science 269, 1115–1118 (1995). An excellent example of the value of neuropsychological approaches showing how patients with selective lesions to adjacent MTL structures perform differently on declarative and non-declarative aspects of the same emotional learning task.

    CAS  PubMed  Google Scholar 

  112. LaBar, K. S., LeDoux, J. E., Spencer, D. D. & Phelps, E. A. Impaired fear conditioning following unilateral temporal lobectomy in humans. J. Neurosci. 15, 6846–6855 (1995).

    CAS  PubMed  Google Scholar 

  113. Peper, M., Karcher, S., Wohlfarth, R., Reinshagen, G. & LeDoux, J. E. Aversive learning in patients with unilateral lesions of the amygdala and hippocampus. Biol. Psychol. 58, 1–23 (2001).

    CAS  PubMed  Google Scholar 

  114. Angrilli, A. et al. Startle reflex and emotion modulation impairment after a right amygdala lesion. Brain 119, 1991–2000 (1996).

    PubMed  Google Scholar 

  115. Funayama, E. S., Grillon, C., Davis, M. & Phelps, E. A. A double dissociation in the affective modulation of startle in humans: effects of unilateral temporal lobectomy. J. Cogn. Neurosci. 13, 721–729 (2001).

    CAS  PubMed  Google Scholar 

  116. Buchanan, T. W., Tranel, D. & Adolphs, R. Anteromedial temporal lobe damage blocks startle modulation by fear and disgust. Behav. Neurosci. 118, 429–437 (2004).

    PubMed  Google Scholar 

  117. LaBar, K. S. & Phelps, E. A. Reinstatement of conditioned fear in humans is context-dependent and impaired in amnesia. Behav. Neurosci. 119, 677–686 (2005).

    PubMed  Google Scholar 

  118. LaBar, K. S. & Disterhoft, J. F. Conditioning, awareness, and the hippocampus. Hippocampus 8, 620–626 (1998).

    CAS  PubMed  Google Scholar 

  119. Bouton, M. E. Context, time, and memory retrieval in the interference paradigms of Pavlovian learning. Psychol. Bull. 114, 80–99 (1993).

    CAS  PubMed  Google Scholar 

  120. Corcoran, K. A. & Maren, S. Factors regulating the effects of hippocampal inactivation on renewal of conditional fear after extinction. Learn. Mem. 11, 598–603 (2004).

    PubMed  PubMed Central  Google Scholar 

  121. Vansteenwegen, D. et al. Return of fear in a human differential conditioning paradigm caused by a return to the original acquisition context. Behav. Res. Ther. 43, 323–336 (2005).

    PubMed  Google Scholar 

  122. Milad, M. R., Orr, S. P., Pitman, R. K. & Rauch, S. L. Context modulation of memory for fear extinction in humans. Psychophysiology 42, 456–464 (2005).

    PubMed  Google Scholar 

  123. Mineka, S., Mystkowski, J. L., Hladek, D. & Rodriquez, B. I. The effects of changing contexts on return of fear following exposure treatment for spider fear. J. Consult. Clin. Psychol. 67, 599–604 (1999).

    CAS  PubMed  Google Scholar 

  124. Fredrikson, M., Wik, G., Fischer, H. & Andersson, J. Affective and attentive neural networks in humans: a PET study of Pavlovian conditioning. Neuroreport 7, 97–101 (1995).

    CAS  PubMed  Google Scholar 

  125. Hugdahl, D. et al. Brain mechanisms in human classical conditioning: a PET blood flow study. Neuroreport 6, 1723–1728 (1995).

    CAS  PubMed  Google Scholar 

  126. Buchel, C., Morris, J. S., Dolan, R. J. & Friston, K. J. Brain systems mediating aversive conditioning: an event-related fMRI study. Neuron 20, 947–957 (1998).

    CAS  PubMed  Google Scholar 

  127. LaBar, K. S., Gatenby, J. C., Gore, J. C., LeDoux, J. E. & Phelps, E. A. Human amygdala activation during conditioned fear acquisition and extinction: a mixed trial fMRI study. Neuron 20, 937–945 (1998). This study uses event-related fMRI to reveal time-delimited amygdala activation during the acquisition and extinction of fear conditioning.

    CAS  PubMed  Google Scholar 

  128. Morris, J. S., Friston, K. J. & Dolan, R. J. Experience-dependent modulation of tonotopic neural responses in human auditory cortex. Proc. R. Soc. Lond. B Biol. Soc. 265, 649–657 (1998).

    CAS  Google Scholar 

  129. Buchel, C., Dolan, R. J., Armony, J. L. & Friston, K. J. Amygdala–hippocampal involvement in human aversive trace conditioning revealed through event-related functional magnetic resonance imaging. J. Neurosci. 19, 10869–10876 (1999).

    CAS  PubMed  Google Scholar 

  130. Cheng, D. T., Knight, D. C., Smith, C. N., Stein, E. A. & Helmstetter, F. J. Functional MRI of human amygdala activity during Pavlovian fear conditioning: stimulus processing versus response expression. Behav. Neurosci. 117, 3–10 (2003).

    PubMed  Google Scholar 

  131. Knight, D. C., Cheng, D. T., Smith, C. N., Stein, E. A. & Helmstetter, F. J. Neural substrates mediating human delay and trace fear conditioning. J. Neurosci. 24, 218–228 (2004).

    CAS  PubMed  Google Scholar 

  132. Morris, J. S., Friston, K. J. & Dolan, R. J. Neural responses to salient visual stimuli. Proc. Biol. Sci. 264, 769–775 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Morris, J. S., Buchel, C. & Dolan, R. J. Parallel neural responses in amygdala subregions and sensory cortex during implicit fear conditioning. Neuroimage 13, 1044–1052 (2001).

    CAS  PubMed  Google Scholar 

  134. Critchley, H. D., Mathias, C. J. & Dolan, R. J. Fear conditioning in humans: the influence of awareness and autonomic arousal on functional neuroanatomy. Neuron 33, 653–663 (2002).

    CAS  PubMed  Google Scholar 

  135. Morris, J. S., Ohman, A. & Dolan, R. J. Conscious and unconscious emotional learning in the human amygdala. Nature 393, 467–470 (1998).

    CAS  PubMed  Google Scholar 

  136. Morris, J. S., Ohman, A. & Dolan, R. J. A subcortical pathway to the right amygdala mediating 'unseen' fear. Proc. Natl Acad. Sci. USA 96, 1680–1685 (1999).

    CAS  PubMed  Google Scholar 

  137. Furmark, T., Fischer, H., Wik, G., Larsson, M. & Fredrikson, M. The amygdala and individual differences in human fear conditioning. Neuroreport 8, 3957–3960 (1997).

    CAS  PubMed  Google Scholar 

  138. Phelps, E. A., Delgado, M. R., Nearing, K. I. & LeDoux, J. E. Extinction learning in humans: role of the amygdala and vmPFC. Neuron 43, 897–905 (2004).

    CAS  PubMed  Google Scholar 

  139. Kessler, R. C., Sonnega, A., Bromet, E., Hughes, M. & Nelson, C. B. Posttraumatic stress disorder in the National Comorbidity Survey. Arch. Gen. Psychiatry 52, 1048–1060 (1995).

    CAS  PubMed  Google Scholar 

  140. Baker, D. G. et al. Higher levels of basal CSF cortisol in combat veterans with posttraumatic stress disorder. Am. J. Psychiatry 162, 992–994 (2005).

    PubMed  Google Scholar 

  141. Bremner, J. D. et al. MRI-based measurement of hippocampal volume in patients with combat-related posttraumatic stress disorder. Am. J. Psychiatry 152, 973–981 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Rausch, S. L. et al. A symptom provocation study of posttraumatic stress disorder using positron emission tomography and script-driven imagery. Arch. Gen. Psychiatry 53, 380–387 (1996).

    Google Scholar 

  143. Shin, L. M. et al. Visual imagery and perception in posttraumatic stress disorder. Arch. Gen. Psychiatry 54, 233–241 (1997).

    CAS  PubMed  Google Scholar 

  144. Orr, S. P., Lasko, N. B., Shalev, A. Y. & Pitman, R. K. Physiologic response to loud tones in Vietnam veterans with posttraumatic stress disorder. J. Abnorm. Psychol. 104, 75–82 (1995).

    CAS  PubMed  Google Scholar 

  145. Grillon, C. & Morgan, C. A. Fear-potentiated startle conditioning to explicit and contextual cues in Gulf War veterans with posttraumatic stress disorder. J. Abnorm. Psychol. 108, 134–142 (1999).

    CAS  PubMed  Google Scholar 

  146. Orr, S. P. et al. De novo conditioning in trauma-exposed individuals with and without posttraumatic stress disorder. J. Abnorm. Psychol. 109, 290–298 (2000).

    CAS  PubMed  Google Scholar 

  147. Pitman, R. K. et al. Pilot study of secondary prevention of posttraumatic stress disorder with propranolol. Biol. Psychiatry 51, 189–192 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research was supported by grants from US National Institutes of Health and a US National Science Foundation CAREER award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin S LaBar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

Urbach–Wiethe syndrome

FURTHER INFORMATION

Center for Cognitive Neuroscience, Duke University

Glossary

Arousal

A dimension of emotion that varies from calm to excitement.

Valence

A dimension of emotion that varies from unpleasant (negative) to pleasant (positive), with neutral often considered an intermediate value.

Declarative memory

(Or explicit memory). Conscious memories for events and facts that depend on the integrity of the MTL.

Non-declarative memory

(Or implicit memory). Various non-conscious memories that are independent of MTL function and are expressed as a facilitation in behavioural performance due to previous exposure.

Recollection

Episodic retrieval that is accompanied by recovery of specific contextual details about a past event.

Urbach–Wiethe syndrome

(Or lipoid proteinosis). A rare, hereditary, congenital disorder characterized by systemic deposits of hyaline material that are prominent in the skin, oral mucosa and pharynx. About 50% of all cases have additional intracranial deposits in the MTL, which occasionally target the amygdala selectively.

Working memory

A form of memory in which stimulus representations are actively maintained and/or manipulated in conscious awareness over a short period of time.

Dm effect

An index of brain activity at encoding that distinguishes subsequently remembered from subsequently forgotten items and is assumed to reflect successful encoding processes.

Familiarity

Episodic retrieval that is accompanied by a feeling that an event happened in the past, although no contextual details are available.

Biological preparedness theory

A theory proposed by Martin Seligman that considers phobias as arising from a selective set of biological associations that the organism is evolutionarily tuned ('prepared') to learn, which leads to rapid fear acquisition and persistence of fear.

Visual masking

A psychophysical technique that can be used to reduce perceptual awareness of visual stimuli by presenting them briefly (for typically <33 msec) on a computer screen or tachistoscope and immediately displaying another stimulus of equal or greater complexity ('backward' masking). Participants report seeing only the second stimulus, although the visual system processes aspects of the masked stimulus.

Renewal

After extinction training, conditioned fear can be renewed by presenting the conditioned stimulus in a novel context.

Reinstatement

After extinction training, conditioned fear can be reinstated by presenting the conditioned stimulus in a context in which a noxious or stressful stimulus was recently encountered.

Rights and permissions

Reprints and permissions

About this article

Cite this article

LaBar, K., Cabeza, R. Cognitive neuroscience of emotional memory. Nat Rev Neurosci 7, 54–64 (2006). https://doi.org/10.1038/nrn1825

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1825

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing