Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

What attributes guide the deployment of visual attention and how do they do it?

Abstract

As you drive into the centre of town, cars and trucks approach from several directions, and pedestrians swarm into the intersection. The wind blows a newspaper into the gutter and a pigeon does something unexpected on your windshield. This would be a demanding and stressful situation, but you would probably make it to the other side of town without mishap. Why is this situation taxing, and how do you cope?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Easy and difficult examples of visual search.
Figure 2: Models of visual processing.
Figure 3: Distribution of slopes from individual sessions in a wide range of search tasks.
Figure 4: Clues to guidance.
Figure 5: Target–distractor and distractor–distractor differences.

Similar content being viewed by others

References

  1. Tsotsos, J. K. Analyzing vision at the complexity level. Brain Behav. Sci. 13, 423–469 (1990).

    Article  Google Scholar 

  2. James, W. The Principles of Psychology (Henry Holt and Co., New York, 1890).

    Google Scholar 

  3. Lu, Z. -L. & Dosher, B. A. External noise distinguishes attention mechanisms. Vision Res. 38, 1183–1198 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Treue, S. & Maunsell, J. H. R. Attentional modulation of visual motion processing in cortical areas MT and MST. Nature 382, 539–541 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Moran, J. & Desimone, R. Selective attention gates visual processing in the extrastriate cortex. Science 229, 782–784 (1985).

    Article  CAS  PubMed  Google Scholar 

  6. Goldsmith, M. What's in a location? Comparing object-based and space-based models of feature integration in visual search. J. Exp. Psychol. Gen. 127, 189–219 (1998).

    Article  Google Scholar 

  7. Chun, M. M. & Potter, M. C. A two-stage model for multiple target detection in RSVP. J. Exp. Psychol. Hum. Percept. Perform. 21, 109–127 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Wolfe, J. M. & DiMase, J. S. Do intersections serve as basic features in visual search? Perception 32, 645–656 (2003).

    Article  PubMed  Google Scholar 

  9. Treisman, A. & Gelade, G. A feature-integration theory of attention. Cognit. Psychol. 12, 97–136 (1980).

    Article  CAS  PubMed  Google Scholar 

  10. Neisser, U. Cognitive Psychology (Appleton, Century, Crofts, New York, 1967).

    Google Scholar 

  11. Wolfe, J. M., Cave, K. R. & Franzel, S. L. Guided search: an alternative to the feature integration model for visual search. J. Exp. Psychol. Hum. Percept. Perform. 15, 419–433 (1989).

    Article  CAS  PubMed  Google Scholar 

  12. Wolfe, J. M. Guided search 2.0: a revised model of visual search. Psychon. Bull. Rev. 1, 202–238 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. DiLollo, V., Kawahara, J., Zuvic, S. M. & Visser, T. A. W. The preattentive emperor has no clothes: a dynamic redressing. J. Exp. Psychol. Gen. 130, 479–492 (2001).

    Article  CAS  Google Scholar 

  14. Nakayama, K. & Joseph, J. S. in The Attentive Brain (ed. Parasuraman, R.) 279–298 (MIT Press, Cambridge, 1998).

    Google Scholar 

  15. Rensink, R. A. & Enns, J. T. Pre-emption effects in visual search: evidence for low-level grouping. Psychol. Rev. 102, 101–130 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Hochstein, S. & Ahissar, M. View from the top: hierarchies and reverse hierarchies in the visual system. Neuron 36, 791–804 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Carrasco, M., Penpeci-Talgar, C. & Eckstein, M. Spatial covert attention increases contrast sensitivity across the CSF: support for signal enhancement. Vision Res. 40, 1203–1215 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Torralba, A. Modeling global scene factors in attention. J. Opt. Soc. Am. A 20, 1407–1418 (2003).

    Article  Google Scholar 

  19. Wolfe, J. M. What do 1,000,000 trials tell us about visual search? Psychol. Sci. 9, 33–39 (1998).

    Article  Google Scholar 

  20. Haslam, N., Porter, M. & Rothschild, L. Visual search: efficiency continuum or distinct processes? Psychon. Bull. Rev. 8, 742–746 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Theeuwes, J. & Kooi, J. L. Parallel search for a conjunction of shape and contrast polarity. Vision Res. 34, 3013–3016 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Julesz, B. & Bergen, J. R. Textons, the fundamental elements in preattentive vision and perceptions of textures. Bell Sys. Tech. J. 62, 1619–1646 (1983).

    Article  Google Scholar 

  23. Beck, J. Perceptual grouping produced by changes in orientation and shape. Science 154, 538–540 (1966).

    Article  CAS  PubMed  Google Scholar 

  24. Julesz, B. A brief outline of the texton theory of human vision. Trends Neurosci. 7, 41–45 (1984).

    Article  Google Scholar 

  25. Wolfe, J. M. 'Effortless' texture segmentation and 'parallel' visual search are not the same thing. Vision Res. 32, 757–763 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Treisman, A. & Souther, J. Search asymmetry: a diagnostic for preattentive processing of seperable features. J. Exp. Psychol. Gen. 114, 285–310 (1985).

    Article  CAS  PubMed  Google Scholar 

  27. Treisman, A. & Gormican, S. Feature analysis in early vision: evidence from search asymmetries. Psychol. Rev. 95, 15–48 (1988).

    Article  CAS  PubMed  Google Scholar 

  28. Wolfe, J. M. Asymmetries in visual search: an introduction. Percept. Psychophys. 63, 381–389 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Royden, C. S., Wolfe, J. & Klempen, N. Visual search asymmetries in motion and optic flow fields. Percept. Psychophys. 63, 436–444 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Rosenholtz, R. Search asymmetries? What search asymmetries? Percept. Psychophys. 63, 476–489 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Treisman, A. M. & Schmidt, H. Illusory conjunctions in the perception of objects. Cognit. Psychol. 14, 107–141 (1982).

    Article  CAS  PubMed  Google Scholar 

  32. Treisman, A. & Souther, J. Illusory words: the roles of attention and of top-down constraints in conjoining letters to form words. J. Exp. Psychol. Hum. Percept. Perform. 12, 3–17 (1986).

    Article  CAS  PubMed  Google Scholar 

  33. Duncan, J. & Humphreys, G. W. Visual search and stimulus similarity. Psychol. Rev. 96, 433–458 (1989).

    Article  CAS  PubMed  Google Scholar 

  34. Verghese, P. Visual search and attention: a signal detection approach. Neuron 31, 523–535 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Eckstein, M. P. The lower visual search efficiency for conjunctions is due to noise and not serial attentional processing. Psychol. Sci. 9, 111–118 (1998).

    Article  Google Scholar 

  36. Palmer, J., Verghese, P. & Pavel, M. The psychophysics of visual search. Vision Res. 40, 1227–1268 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Nagy, A. L. & Sanchez, R. R. Critical color differences determined with a visual search task. J. Opt. Soc. Am. A 7, 1209–1217 (1990).

    Article  CAS  PubMed  Google Scholar 

  38. MacAdam, D. L. Visual sensitivities to color differences in daylight. J. Opt. Soc. Am. 32, 247–274 (1942).

    Article  Google Scholar 

  39. D'Zmura, M. Color in visual search. Vision Res. 31, 951–966 (1991).

    Article  CAS  PubMed  Google Scholar 

  40. Bauer, B., Jolicœur, P. & Cowan, W. B. Visual search for colour targets that are or are not linearly-separable from distractors. Vision Res. 36, 1439–1466 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Foster, D. H. & Ward, P. A. Asymmetries in oriented-line detection indicate two orthogonal filters in early vision. Proc. R Soc. Lond. B 243, 75–81 (1991).

    Article  CAS  Google Scholar 

  42. Wolfe, J. M., Friedman-Hill, S. R., Stewart, M. I. & O'Connell, K. M. The role of categorization in visual search for orientation. J. Exp. Psychol. Hum. Percept. Perform. 18, 34–49 (1992).

    Article  CAS  PubMed  Google Scholar 

  43. Treisman, A. in Handbook of Human Perception and Performance (eds Boff, K. R., Kaufmann, L. & Thomas, J. P.) 35.1–35.70 (John Wiley and Sons, New York, 1986).

    Google Scholar 

  44. Wolfe, J. M. in Attention (ed. Pashler, H.) 13–74 (Psychology Press Ltd., Hove, East Sussex, UK, 1998).

    Google Scholar 

  45. Chun, M. M. & Wolfe, J. M. in Blackwell's Handbook of Perception (ed. Goldstein, E. B.) 272–310 (Blackwell, Oxford, UK, 2001).

    Google Scholar 

  46. Bilsky, A. A. & Wolfe, J. M. Part-whole information is useful in size X size but not in orientation X orientation conjunction searches. Percept. Psychophys. 57, 749–760 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Chastain, G. & Cheal, M. Attentional capture with various distractor and target types. Percept. Psychophys. 63, 979–990 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Driver, J., McLeod, P. & Dienes, Z. Are direction and speed coded independently by the visual system? Evidence from visual search. Spat. Vis. 6, 133–147 (1992).

    Article  CAS  PubMed  Google Scholar 

  49. Findlay, J. M. Feature detectors and vernier acuity. Nature 241, 135–137 (1973).

    Article  CAS  PubMed  Google Scholar 

  50. Barenholtz, E., Cohen, E. H., Feldman, J. & Singh, M. Detection of change in shape: an advantage for concavities. Cognition 89, 1–9 (2003).

    Article  PubMed  Google Scholar 

  51. Ramachandran, V. S. Perception of shape from shading. Nature 331, 163–165 (1988).

    Article  CAS  PubMed  Google Scholar 

  52. Wolfe, J. M. & Franzel, S. L. Binocularity and visual search. Percept. Psychophys. 44, 81–93 (1988).

    Article  CAS  PubMed  Google Scholar 

  53. Wang, Q., Cavanagh, P. & Green, M. Familiarity and pop-out in visual search. Percept. Psychophys. 56, 495–500 (1994).

    Article  CAS  PubMed  Google Scholar 

  54. Malinowski, P. & Hübner, R. The effect of familiarity on visual-search performance: evidence for learned basic features. Percept. Psychophys. 63, 458–463 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Caerwinski, M., Lightfoot, N. & Shiffrin, R. Automatization and training in visual search. Am. J. Psychol. 105, 271–315 (1992).

    Article  Google Scholar 

  56. Dick, M., Ullman, S. & Sagi, D. Parallel and serial processes in motion detection. Science 237, 400–402 (1987).

    Article  CAS  PubMed  Google Scholar 

  57. McLeod, P., Driver, J. & Crisp, J. Visual search for conjunctions of movement and form is parallel. Nature 332, 154–155 (1988).

    Article  CAS  PubMed  Google Scholar 

  58. Bergen, J. R. & Julesz, B. Rapid discrimination of visual patterns. IEEE Trans Syst. Man Cybern. SMC-13, 857–863 (1983).

    Article  Google Scholar 

  59. Moraglia, G. Display organization and the detection of horizontal lines segments. Percept. Psychophys. 45, 265–272 (1989).

    Article  CAS  PubMed  Google Scholar 

  60. Cavanagh, P., Arguin, M. & Treisman, A. Effect of surface medium on visual search for orientation and size features. J. Exp. Psychol. Hum. Percept. Perform. 16, 479–492 (1990).

    Article  CAS  PubMed  Google Scholar 

  61. Wolfe, J. M., Klempen, N. L. & Shulman, E. P. Which end is up? Two representations of orientation in visual search. Vision Res. 39, 2075–2086 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Sagi, D. The combination of spatial frequency and orientation is effortlessly perceived. Percept. Psychophys. 43, 601–603 (1988).

    Article  CAS  PubMed  Google Scholar 

  63. Moraglia, G. Visual search: spatial frequency and orientation. Percept. Mot. Skills 69, 675–689 (1989).

    Article  CAS  PubMed  Google Scholar 

  64. Theeuwes, J. Abrupt luminance change pops out; abrupt color change does not. Percept. Psychophys. 57, 637–644 (1995).

    Article  CAS  PubMed  Google Scholar 

  65. Yantis, S. & Jonides, J. Abrupt visual onsets and selective attention: voluntary versus automatic allocation. J. Exp. Psychol. Hum. Percept. Perform. 16, 121–134 (1990).

    Article  CAS  PubMed  Google Scholar 

  66. Gilchrist, I. D., Humphreys, G. W. & Riddoch, M. J. Grouping and extinction: evidence for low-level modulation of visual selection. Cognit. Neuropsychol. 13, 1223–1249 (1996).

    Article  Google Scholar 

  67. Fahle, M. Parallel perception of vernier offests, curvature, and chevrons in humans. Vision Res. 31, 2149–2184 (1991).

    Article  CAS  PubMed  Google Scholar 

  68. Nakayama, K. & Silverman, G. H. Serial and parallel processing of visual feature conjunctions. Nature 320, 264–265 (1986).

    Article  CAS  PubMed  Google Scholar 

  69. O'Toole, A. J. & Walker, C. L. On the preattentive accessibility of stereoscopic disparity: evidence from visual search. Percept. Psychophys. 59, 202–218 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. He, Z. J. & Nakayama, K. Surfaces versus features in visual search. Nature 359, 231–233 (1992).

    Article  CAS  PubMed  Google Scholar 

  71. Enns, J. T., Rensink, R. A. & Douglas, R. The influence of line relations on visual search. Invest. Ophthalmol. Vis. Sci. (Suppl.) 31(4), 105 (1990).

    Google Scholar 

  72. Enns, J. T. & Rensink, R. A. in Visual Search 2 (eds Brogan, D., Gale, A. & Carr, K.) 73–89 (Taylor & Francis, London, UK, 1993).

    Google Scholar 

  73. Sun, J. & Perona, P. Preattentive perception of elementary three dimensional shapes. Vision Res. 36, 2515–2529 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. Tsal, Y., Meiran, N. & Lamy, D. Towards a resolution theory of visual attention. Vis. Cognit. 2, 313–330 (1995).

    Article  Google Scholar 

  75. Wolfe, J. M. & Bennett, S. C. Preattentive object files: shapeless bundles of basic features. Vision Res. 37, 25–43 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Kristjansson, A. & Tse, P. U. Curvature discontinuities are cues for rapid shape analysis. Percept. Psychophys. 63, 390–403 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Chen, L. Toplogical structure in visual perception. Science 218, 699–700 (1982).

    Article  CAS  PubMed  Google Scholar 

  78. Chen, L. Holes and wholes: a reply to Rubin and Kanwisher. Percept. Psychophys. 47, 47–53 (1990).

    Article  CAS  PubMed  Google Scholar 

  79. Cheal, M. & Lyon, D. Attention in visual search: multiple search classes. Percept. Psychophys. 52, 113–138 (1992).

    Article  CAS  PubMed  Google Scholar 

  80. Pomerantz, J. R. & Pristach, E. A. Emergent features, attention, and perceptual glue in visual form perception. J. Exp. Psychol. Hum. Percept. Perform. 15, 635–649 (1989).

    Article  CAS  PubMed  Google Scholar 

  81. Taylor, S. & Badcock, D. Processing feature density in preattentive perception. Percept. Psychophys. 44, 551–562 (1988).

    Article  CAS  PubMed  Google Scholar 

  82. Donnelly, N., Humphreys, G. W. & Riddoch, M. J. Parallel computation of primitive shape descriptions. J. Exp. Psychol. Hum. Percept. Perform. 17, 561–570 (1991).

    Article  CAS  PubMed  Google Scholar 

  83. Elder, J. & Zucker, S. A measure of closure. Vision Res. 34, 3361–3369 (1994).

    Article  CAS  PubMed  Google Scholar 

  84. Kovacs, I. & Julesz, B. A closed curve is much more than an incomplete one: effect of closure in figure-ground segmentation. Proc. Natl Acad. Sci. USA 90, 7495–7497 (1993).

    Article  CAS  PubMed  Google Scholar 

  85. Williams, D. & Julesz, B. Perceptual asymmetry in texture perception. Proc. Natl Acad. Sci. USA 89, 6531–6534 (1992).

    Article  CAS  PubMed  Google Scholar 

  86. Chen, L. The topological approach to perceptual organization. Vis. Cognit. (in the press).

  87. Rubin, J. M. & Kanwisher, N. Topological perception: holes in an experiment. Percept. Psychophys. 37, 179–180 (1985).

    Article  CAS  PubMed  Google Scholar 

  88. Wolfe, J. M., Yee, A. & Friedman-Hill, S. R. Curvature is a basic feature for visual search. Perception 21, 465–480 (1992).

    Article  CAS  PubMed  Google Scholar 

  89. Kleffner, D. A. & Ramachandran, V. S. On the perception of shape from shading. Percept. Psychophys. 52, 18–36 (1992).

    Article  CAS  PubMed  Google Scholar 

  90. Takeuchi, T. Visual search of expansion and contraction. Vision Res. 37, 2083–2090 (1997).

    Article  CAS  PubMed  Google Scholar 

  91. Braddick, O. J. & Holliday, I. E. Serial search for targets defined by divergence or deformation of optic flow. Perception 20, 345–354 (1991).

    Article  CAS  PubMed  Google Scholar 

  92. Frith, U. A curious effect with reversed letters explained by a theory of schema. Percept. Psychophys. 16, 113–116 (1974).

    Article  Google Scholar 

  93. Kinchla, R. A. & Collyer, C. E. Detecting a target letter in briefly presented arrays: a confidence rating analysis in terms of a weighted additive effects model. Percept. Psychophys. 16, 117–122 (1974).

    Article  Google Scholar 

  94. Shiffrin, R. M. & Gardner, G. T. Visual processing capacity and attentional control. J. Exp. Psychol. 93, 72–82 (1972).

    Article  CAS  PubMed  Google Scholar 

  95. Grice, G. R. & Canham, L. Redundancy phenomena are affected by response requirments. Percept. Psychophys. 48, 209–213 (1990).

    Article  CAS  PubMed  Google Scholar 

  96. Brand, J. Classification without identification in visual search. Quart. J. Exp. Psychol. 23, 178–186 (1971).

    Article  CAS  Google Scholar 

  97. Jonides, J. & Gleitman, H. A conceptual category effect in visual search: O as letter or digit. Percept. Psychophys. 12, 457–460 (1972).

    Article  Google Scholar 

  98. Duncan, J. Category effects in visual search: a failure to replicate the 'oh–zero' phenomenon. Percept. Psychophys. 34, 221–232 (1983).

    Article  CAS  PubMed  Google Scholar 

  99. Krueger, L. E. The category effect in visual search depends on physical rather than conceptual differences. Percept. Psychophys. 35, 558–564 (1984).

    Article  CAS  PubMed  Google Scholar 

  100. Brown, J. M., Weisstein, N. & May, J. G. Visual search for simple volumetric shapes. Percept. Psychophys. 51, 40–48 (1992).

    Article  CAS  PubMed  Google Scholar 

  101. Pilon, D. & Friedman, A. Grouping and detecting vertices in 2-D, 3-D, and quasi-3-D objects. Can. J. Exp. Psychol. 52, 114–127 (1998).

    Article  Google Scholar 

  102. Nothdurft, H. C. Faces and facial expression do not pop-out. Perception 22, 1287–1298 (1993).

    Article  CAS  PubMed  Google Scholar 

  103. Suzuki, S. & Cavanagh, P. Facial organization blocks access to low-level features: an object inferiority effect. J. Exp. Psychol. Hum. Percept. Perform. 21, 901–913 (1995).

    Article  Google Scholar 

  104. Purcell, D. G., Stewart, A. L. & Skov, R. B. It takes a confounded face to pop out of a crowd. Perception 25, 1091–1108 (1996).

    Article  CAS  PubMed  Google Scholar 

  105. Hansen, C. H. & Hansen, R. D. Finding the face in the crowd: An anger superiority effect. J. Pers. Soc. Psychol. 54, 917–924 (1988).

    Article  CAS  PubMed  Google Scholar 

  106. von Grunau, M. & Anston, C. The detection of gaze direction: a stare-in-the-crowd effect. Perception 24, 1297–1313 (1995).

    Article  CAS  PubMed  Google Scholar 

  107. Tong, F. & Nakayama, K. Robust representations for faces: evidence from visual search. J. Exp. Psychol. Hum. Percept. Perform. 25, 1016–1035 (1999).

    Article  CAS  PubMed  Google Scholar 

  108. Eastwood, J. D., Smilek, D. & Merikle, P. M. Differential attentional guidance by unattended faces expressing positive and negative emotion. Percept. Psychophys. 63, 1004–1013 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Bundesen, C., Kyllingsbaek, S., Houmann, K. J. & Jensen, R. M. Is visual attention automatically attracted by one's own name? Percept. Psychophys. 59, 714–720 (1997).

    Article  CAS  PubMed  Google Scholar 

  110. Tipples, J., Young, A., Quinlan, P., Broks, P. & Ellis, A. Searching for threat. Quart. J. Exp. Psychol. 55, 1007–1026 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy M. Wolfe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Visual attention lab

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolfe, J., Horowitz, T. What attributes guide the deployment of visual attention and how do they do it?. Nat Rev Neurosci 5, 495–501 (2004). https://doi.org/10.1038/nrn1411

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1411

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing