Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genesis of dendritic spines: insights from ultrastructural and imaging studies

Key Points

  • Dendritic spines were first described more than a hundred years ago, yet their function is still unclear. Insights into the roles of spines in the adult nervous system could be gained by understanding how they originate during development.

  • Evidence from the Purkinje cell dendritic tree indicates that spine development has two phases: an initial period of spine proliferation, which is probably intrinsic to the neuron, followed by a decline, which depends on the activity of the synapse and the neuron.

  • Spine formation in pyramidal neurons of the neocortex and hippocampus occurs after birth in many species. In the rat neocortex, spine density increases during the first few weeks after birth, then declines with age. The spines also undergo profound morphological rearrangements. These events seem to be influenced by the presynaptic terminal, although the extent to which they depend on neuronal activity is still unclear.

  • Two recent studies using in vivo two-photon microscopy investigated the generation and disappearance of spines in the adult cerebral cortex. One study concluded that spines are very stable in the adult brain, whereas the other concluded that there is a high rate of turnover. However, there were inconsistencies between the two studies that might explain this discrepancy.

  • Dendritic filopodia are long, thin structures that are present in developing dendrites, and it has been suggested that they serve as spine precursors. Live imaging of intact tissue will be required to test the validity of the filopodial model of spine formation.

  • Conflicting data on spinogenesis have emerged from the study of various cell types. The simplest explanation for these controversies is that different populations of spines behave differently. Live imaging studies will enable us to understand the biological diversity of dendritic spines, and to resolve the function of these fascinating yet mysterious organelles.

Abstract

Dendritic spines are small protrusions from many types of neuron, which receive most of the excitatory inputs to the cell. Spines are thought to have important roles in neural information processing and plasticity, yet we still have a poor understanding of how they emerge during development. Here, we review the developmental generation of dendritic spines, covering recent live imaging experiments and older ultrastructural data. We address the potential role of dendritic filopodia in spine development and recent findings of spinogenesis in adult animals, and conclude by discussing three potential models of spinogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dendritic spines in Purkinje cells without presynaptic input.
Figure 2: Examples of different spine morphologies.
Figure 3: Three models for spinogenesis.
Figure 4: Spinogenesis in pyramidal cells.

Similar content being viewed by others

References

  1. Ramón y Cajal, S. Estructura de los centros nerviosos de las aves. Rev. Trim. Histol. Norm. Pat. 1, 1–10 (1888).

    Google Scholar 

  2. Peters, A. & Kaiserman-Abramof, I. R. The small pyramidal neuron of the rat cerebral cortex. The perikaryon, dendrites and spines. Am. J. Anat. 127, 321–355 (1970). One of the first ultrastructural descriptions of the morphological variability of dendritic spines. The authors propose the classification of spines into 'stubby', 'thin' and 'mushroom' types.

    Article  CAS  PubMed  Google Scholar 

  3. Swindale, N. V. Dendritic spines only connect. Trends Neurosci. 4, 240–241 (1981).

    Article  Google Scholar 

  4. Koch, C. & Zador, A. The function of dendritic spines — devices subserving biochemical rather than electrical compartmentalization. J. Neurosci. 13, 413–422 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Shepherd, G. The dendritic spine: a multifunctional integrative unit. J. Neurophysiol. 75, 2197–2210 (1996).

    CAS  PubMed  Google Scholar 

  6. Yuste, R. & Majewska, A. On the function of dendritic spines. Neuroscientist 7, 387–395 (2001).

    CAS  PubMed  Google Scholar 

  7. Chklovskii, D. B., Schikorski, T. & Stevens, C. F. Wiring optimization in cortical circuits. Neuron 34, 341–347 (2002).

    CAS  PubMed  Google Scholar 

  8. Yuste, R. & Denk, W. Dendritic spines as basic units of synaptic integration. Nature 375, 682–684 (1995).

    CAS  PubMed  Google Scholar 

  9. Llinas, R., Sugimori, M. & Silver, R. B. Microdomains of high calcium concentration in a presynaptic terminal. Science 256, 677–679 (1992).

    CAS  PubMed  Google Scholar 

  10. Goldberg, J. H., Tamas, G., Aronov, D. & Yuste, R. Calcium microdomains in aspiny dendrites. Neuron 40, 807–821 (2003).

    CAS  PubMed  Google Scholar 

  11. Braitenberg, V. & Schüz, A. Anatomy of the Cortex: Statistics and Geometry (eds Barlow, H. B. et al.) (Springer, Berlin, 1991).

    Google Scholar 

  12. Cotman, C. W. & Nieto-Sampedro, M. Cell biology of synaptic plasticity. Science 225, 1287–1294 (1984).

    CAS  PubMed  Google Scholar 

  13. Vaughn, J. E. Fine structure of synaptogenesis in the vertebrate central nervous system. Synapse 3, 255–285 (1989). A thoughtful review of ultrastructural data relating to synaptogenesis. Vaughn proposes his 'synaptotropic' hypothesis, whereby dendritic filopodia capture axons and also produce dendritic branches.

    CAS  PubMed  Google Scholar 

  14. Jacobson, M. Developmental Neurobiology (Plenum, New York, 1991).

    Google Scholar 

  15. Purves, D. & Lichtman, J. W. Principles of Neural Development (Sinauer Associates, Sunderland, 1985).

    Google Scholar 

  16. Zhang, W. & Benson, D. L. Development and molecular organization of dendritic spines and their synapses. Hippocampus 10, 512–526 (2000).

    CAS  PubMed  Google Scholar 

  17. Ziv, N. E. & Garner, C. C. Principles of glutamatergic synapse formation: seeing the forest for the trees. Curr. Opin. Neurobiol. 11, 536–543 (2001).

    CAS  PubMed  Google Scholar 

  18. Jontes, J. D. & Smith, S. J. Filopodia, spines, and the generation of synaptic diversity. Neuron 27, 11–14 (2000).

    CAS  PubMed  Google Scholar 

  19. Hering, H. & Sheng, M. Dendritic spines: structure, dynamics and regulation. Nature Rev. Neurosci. 2, 880–888 (2001).

    CAS  Google Scholar 

  20. Tashiro, A. & Yuste, R. Structure and molecular organization of dendritic spines. Histol. Histopathol. 18, 617–634 (2003).

    CAS  PubMed  Google Scholar 

  21. Adams, R. D. & Victor, M. Principles of Neurology (McGraw-Hill, New York, 1985).

    Google Scholar 

  22. Sotelo, C. Cerebellar synaptogenesis: what we can learn from mutant mice. J. Exp. Biol. 153, 225–279 (1990). A review of the results from developmental studies of mouse mutants with defects in cerebellar circuitry. Sotelo proposes that the development of spines in Purkinje cells is largely independent of the axonal fibre.

    CAS  PubMed  Google Scholar 

  23. Rakic, P. & Sidman, R. L. Organization of cerebellar cortex secondary to deficits of granule cells in weaver mutant mice. J. Comp. Neurol. 152, 133–162 (1973).

    CAS  PubMed  Google Scholar 

  24. Hirano, A. & Dembitzer, H. M. Cerebellar alterations in the weaver mouse. J. Cell Biol. 56, 478–486 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sotelo, C. Anatomical, physiological and biochemical studies of the cerebellum from mutant mice. II. Morphological study of cerebellar cortical neurons and circuits in the weaver mouse. Brain Res. 94, 19–44 (1975).

    CAS  PubMed  Google Scholar 

  26. Landis, D. M. D. & Reese, T. S. Structure of the Purkinje cell membrane in staggerer and weaver mutant mice. J. Comp. Neurol. 171, 247–260 (1977).

    CAS  PubMed  Google Scholar 

  27. Caviness, V. S. & Sidman, R. L. Olfactory structures of the fore brain in the reeler mutant mouse. J. Comp. Neurol. 145, 85–104 (1972).

    PubMed  Google Scholar 

  28. Caviness, V. S. J. & Sidman, R. L. Time of origin of corresponding cell classes in the cerebral cortex of normal and mutant reeler mice: an autoradiographic analysis. J. Comp. Neurol. 148, 141–151 (1973).

    PubMed  Google Scholar 

  29. Mariani, J., Crepel, F., Mikoshiba, K., Changeux, J. P. & Sotelo, C. Anatomical, physiological and biochemical studies of the cerebellum from reeler mutant mouse. Phil. Trans. Roy. Soc. Lond. B 281, 1–28 (1975).

    Google Scholar 

  30. Altman, J. & Anderson, W. J. Experimental reorganization of the cerebellar cortex. I. Morphological effects of elimination of all microneurons with prolonged X-irradiation started at birth. J. Comp. Neurol. 146, 355–406 (1972).

    CAS  PubMed  Google Scholar 

  31. Sotelo, C. Formation of presynaptic dendrites in the rat cerebellum following neonatal X-irradiation. Neuroscience 2, 275–283 (1977).

    CAS  PubMed  Google Scholar 

  32. Larramendi, L. M. H. in Neurobiology of Cerebellar Evolution and Development. (ed. Llinás, R.) 803–843 (Am. Med. Assoc. Educ. Res. Found., Chicago, 1969).

    Google Scholar 

  33. Altman, J. & Bayer, S. A. Development of the Cerebellar System (CRC, Boca Raton, 1997).

    Google Scholar 

  34. Sotelo, C. Purkinje cell ontogeny: formation and maintenance of spines. Prog. Brain Res. 48, 149–170 (1978).

    CAS  PubMed  Google Scholar 

  35. Sanes, J. & Lichtman, J. Development of the vertebrate neuromuscular junction. Annu. Rev. Neurosci. 22, 389–442 (1999).

    CAS  PubMed  Google Scholar 

  36. Baptista, A. A., Hatten, M. E., Blazeski, R. & Mason, C. A. Cell–cell interactions influence survival and differentiation of Purkinje cells in vitro. Neuron 12, 243–260 (1994).

    CAS  PubMed  Google Scholar 

  37. Ramón y Cajal, S. Significación fisiológica de las expansiones protoplásmicas y nerviosas de la sustancia gris. Revista de Ciencias Médicas de Barcelona 22, 23 (1891).

    Google Scholar 

  38. Ramón y Cajal, S. Neue Darstellung vom Histologischen Bau des Centralnervensystem. Arch. Anat. Entwick., Anat. Abt. Supplement 1893, 319–428 (1893).

    Google Scholar 

  39. Ramón y Cajal, S. La Textura del Sistema Nerviosa del Hombre y los Vertebrados (Moya, Madrid, 1899).

    Google Scholar 

  40. Yuste, R. & Bonhoeffer, T. Morphological changes in dendritic spines associated with long-term synaptic plasticity. Ann. Rev. Neurosci. 24, 1071–1089 (2001).

    CAS  PubMed  Google Scholar 

  41. Weiss, G. M. & Pysh, J. J. Evidence for loss of Purkinje cell dendrites during late development: a morphometric Golgi analysis in the mouse. Brain Res. 154, 219–230 (1978).

    CAS  PubMed  Google Scholar 

  42. Rakic, P., Bourgeois, J. P., Eckenhoff, M. F., Zecevic, N. & Goldman-Rakic, P. S. Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science 232, 232–235 (1986).

    CAS  PubMed  Google Scholar 

  43. Ramón y Cajal, S. La Textura del Sistema Nerviosa del Hombre y los Vertebrados 2nd edn (Moya, Madrid, 1904).

    Google Scholar 

  44. Laxson, L. C. & King, J. S. The development of the Purkinje cell in the cerebellar cortex of the opossum. J. Comp. Neurol. 214, 290–308 (1983).

    CAS  PubMed  Google Scholar 

  45. Crepel, L. Maturation of climbing fiber responses in the rat. Brain Res. 35, 272–276 (1971).

    CAS  PubMed  Google Scholar 

  46. Crepel, F., Mariani, J. & Delhaye-Bouchaud, N. Evidence for multiple innervation of Purkinje cells by climbing fibers in the immature rat cerebellum. J. Neurobiol. 7, 567–578 (1976).

    CAS  PubMed  Google Scholar 

  47. Larramandi, L. M. H. & Victor, T. Synapses on the Purkinje cell spines in the mouse. An electron microscopic study. Brain Res. 5, 15–30 (1967).

    Google Scholar 

  48. Sotelo, C., Hillman, D. E., Zamora, A. J. & Llinás, R. Climbing fiber deafferentation: its actions on Purkinje cell dendritic spines. Brain Res. 175, 574–581 (1975).

    Google Scholar 

  49. Bravin, M., Morando, L., Vercelli, A., Rossi, F. & Strata, P. Control of spine formation by electrical activity in the adult rat cerebellum. Proc. Natl Acad. Sci. USA 96, 1704–1709 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Crepel, F. & Mariani, J. Multiple innervation of Purkinje cells by climbing fibers in the cerebellum of the weaver mutant mouse. J. Neurobiol. 7, 579–582 (1976).

    CAS  PubMed  Google Scholar 

  51. Verhage, M. et al. Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 287, 864–869 (2000).

    CAS  PubMed  Google Scholar 

  52. Miller, M. W. in Development and Maturation of Cerebral Cortex (eds Peters, A. & Jones, E. G.) 133–166 (Plenum, New York, 1988).

    Google Scholar 

  53. Wenzel, J., Otani, S., Desmond, N. L. & Levy, W. B. Rapid development of somatic spines in stratum granulosum of the adult hippocampus in vitro. Brain Res. 656, 127–134 (1994).

    CAS  PubMed  Google Scholar 

  54. Mates, S. & Lund, J. Spine formation and maturation of type 1 synapses on spiny stellate neurons in primate visual cortex. J. Comp. Neurol. 221, 91–97 (1983).

    CAS  PubMed  Google Scholar 

  55. Miller, M. & Peters, A. Maturation of rat visual cortex. II. A combined Golgi–electron microscope study of pyramidal neurons. J. Comp. Neurol. 203, 555–573 (1981). An ultrastructural study of the development of dendrites in neocortex. The authors propose a model by which axons promote the maturation of axospinous synapses.

    CAS  PubMed  Google Scholar 

  56. Benavides-Piccione, R., Ballesteros-Yañez, I., DeFelipe, J. & Yuste, R. Cortical area and species differences in dendritic spine morphology. J. Neurocytol. 31, 337–346 (2002).

    PubMed  Google Scholar 

  57. Pokorny, J. & Yamamoto, T. Postnatal ontogenesis of hippocampal CA1 area in rats. II. Development of ultrastructure in stratum lacunosum and moleculare. Brain Res. Bull. 7, 121–130 (1981).

    CAS  PubMed  Google Scholar 

  58. Crain, B., Cotman, C., Taylor, D. & Lynch, G. A quantitative electron microscopic study of synaptogenesis in the dentate gyrus of the rat. Brain Res. 63, 195–204 (1973).

    CAS  PubMed  Google Scholar 

  59. Cotman, C., Matthews, D., Taylor, D. & Lynch, G. Synaptic rearrangement in the dentate gyrus: histochemical evidence of adjustments after lesions in immature and adult rats. Proc. Natl Acad. Sci. USA 70, 3473–3477 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Juraska, J. & Fifkova, E. An electron microscope study of the early postnatal development of the visual cortex of the hooded rat. J. Comp. Neurol. 183, 257–267 (1979).

    CAS  PubMed  Google Scholar 

  61. Schwartzkroin, P. A., Kunkel, D. D. & Mathers, L. H. Development of rabbit hippocampus: anatomy. Dev. Brain Res. 2, 453–486 (1982).

    Google Scholar 

  62. Steward, O. et al. Protein synthesis and processing in cytoplasmic microdomains beneath postsynaptic sites on CNS neurons. A mechanism for establishing and maintaining a mosaic postsynaptic receptive surface. Mol. Neurobiol. 2, 227–261 (1988).

    CAS  PubMed  Google Scholar 

  63. Hamori, J. The inductive role of presynaptic axons in the development of postsynaptic spines. Brain Res. 62, 337–344 (1973).

    CAS  PubMed  Google Scholar 

  64. Ziv, N. & Smith, S. Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron 17, 91–102 (1996). References 64 and 66 contain the first live imaging evidence that filopodia could be spine precursors. For this study, the authors used confocal time-lapse imaging in dissociated cultures from the hippocampus, whereas in the study presented in reference 66, cultured slices from the hippocampus were used.

    CAS  PubMed  Google Scholar 

  65. Anderson, J. C. & Martin, K. A. Does bouton morphology optimize axon length? Nature Neurosci. 4, 1166–1167 (2001).

    CAS  PubMed  Google Scholar 

  66. Dailey, M. E. & Smith, S. J. The dynamics of dendritic structure in developing hippocampal slices. J. Neurosci. 16, 2983–2994 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Engert, F. & Bonhoeffer, T. Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399, 66–70 (1999).

    CAS  PubMed  Google Scholar 

  68. Parnass, Z., Tashiro, A. & Yuste, R. Analysis of spine morphological plasticity in developing hippocampal pyramidal neurons. Hippocampus 10, 561–568 (2000).

    CAS  PubMed  Google Scholar 

  69. Grutzendler, J., Kasthuri, N. & Gan, W. B. Long-term dendritic spine stability in the adult cortex. Nature 420, 812–816 (2002).

    CAS  PubMed  Google Scholar 

  70. Trachtenberg, J. T. et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420, 788–794 (2002). References 69 and 70 report a substantial step forward for the analysis of spine stability in the adult cerebral cortex. Both laboratories performed in vivo two-photon imaging of single, green fluorescent protein-labelled neurons at resolution sufficient to analyse single spines. Grutzendler et al . report that during the critical period, spines are relatively plastic, whereas later they become much more stable such that aproximately 90% of the spines persist for more than a month. This stability is considerably higher than that observed by Trachtenberg et al . who report that 50% of spines persist for less than a month.

    CAS  PubMed  Google Scholar 

  71. Schüz, A. Prenatal development and postnatal changes in the guinea pig cortex: microscopic evaluation of a natural deprivation experiment. I. Prenatal development. J. Hirnforsch. 22, 93–111 (1981) (in German).

    PubMed  Google Scholar 

  72. Shatz, C. J. & Stryker, M. P. Prenatal tetrodotoxin infusion blocks segregation of retinogeniculate afferents. Science 242, 87–89 (1988).

    CAS  PubMed  Google Scholar 

  73. Maffei, L. & Galli-Resta, L. Correlation in the discharges of neighboring rat retinal ganglion cells during prenatal life. Proc. Natl. Acad. Sci. USA 87, 2861–2864 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Katz, L. C. & Shatz, C. J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996).

    CAS  PubMed  Google Scholar 

  75. Valverde, F. Apical dendritic spines of the visual cortex and light deprivation in the mouse. Exp. Brain Res. 3, 337–352 (1967).

    CAS  PubMed  Google Scholar 

  76. Valverde, F. Rate and extent of recovery from dark rearing in the visual cortex of the mouse. Brain Res. 33, 1–11 (1971).

    CAS  PubMed  Google Scholar 

  77. Maletic-Savatic, M., Malinow, R. & Svoboda, K. Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science 283, 1923–1927 (1999).

    CAS  PubMed  Google Scholar 

  78. Lund, J. S., Boothe, R. G. & Lund, R. D. Development of neurons in the visual cortex (area 17) of the monkey (Macaca nemestrina): a Golgi study from fetal day 127 to postnatal maturity. J. Comp. Neurol. 176, 149–188 (1977).

    CAS  PubMed  Google Scholar 

  79. Luo, L. et al. Differential effects of the Rac GTPase on Purkinje cell axons and dendritic trunks and spines. Nature 379, 837–840 (1996).

    CAS  PubMed  Google Scholar 

  80. Nakayama, A. Y. & Luo, L. Intracellular signaling pathways that regulate dendritic spine morphogenesis. Hippocampus 10, 582–586 (2000).

    CAS  PubMed  Google Scholar 

  81. Nakayama, A. Y., Harms, M. B. & Luo, L. Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons. J. Neurosci. 20, 5329–5338 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Tashiro, A., Minden, A. & Yuste, R. Regulation of dendritic spine morphology by the Rho family of small GTPases: antagonistic roles of Rac and Rho. Cereb. Cortex 10, 927–938 (2000).

    CAS  PubMed  Google Scholar 

  83. Fischer, M., Kaech, S., Knutti, D. & Matus, A. Rapid actin-based plasticity in dendritic spines. Neuron 20, 847–854 (1998).

    CAS  PubMed  Google Scholar 

  84. Dunaevsky, A., Tashiro, A., Majewska, A., Mason, C. A. & Yuste, R. Developmental regulation of spine motility in mammalian CNS. Proc. Natl. Acad. Sci. USA 96, 13438–13443 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Bonhoeffer, T. & Yuste, R. Spine motility. Phenomenology, mechanisms, and function Neuron 35, 1019–1027 (2002).

    CAS  PubMed  Google Scholar 

  86. Dunaevsky, A. & Mason, C. A. Spine motility: a means towards an end? Trends Neurosci. 26, 155–160 (2003).

    CAS  PubMed  Google Scholar 

  87. Douglas, R. J. & Martin, K. A. C. in The Synaptic Organization of the Brain (ed. Shepherd, G. M.) 459–511 (Oxford Univ. Press, 1998).

    Google Scholar 

  88. Deuchards, J., West, D. C. & Thomson, A. Relationships between morphology and physiology of pyramid–pyramid single axon connections in rat neocortex in vitro. J. Neurophysiol. 478, 423–435 (1994).

    Google Scholar 

  89. Markram, H., Lubke, J., Frotscher, M., Roth, A. & Sakmann, B. Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. J. Physiol. (Lond.) 500, 409–440 (1997).

    CAS  Google Scholar 

  90. Amaral, D. G. Synaptic extensions from mossy fibers of the fasia dentata. Anat. Embryol. 155, 241–251 (1979).

    CAS  Google Scholar 

  91. Balice-Gordon, R. J. & Lichtman, J. W. Long-term synapse loss induced by focal blockade of postsynaptic receptors. Nature 372, 519–524 (1994).

    CAS  PubMed  Google Scholar 

  92. Walsh, M. K. & Lichtman, J. W. In vivo time-lapse imaging of synaptic takeover associated with naturally occurring synapse elimination. Neuron 37, 67–73 (2003).

    CAS  PubMed  Google Scholar 

  93. Purves, D. & Hadley, R. Changes in the dendritic branching of adult mammalian neurons revealed by repeated imaging in situ. Nature 315, 404–406 (1985).

    CAS  PubMed  Google Scholar 

  94. Purves, D., Hadley, R. & Voyvodic, J. Dynamic changes in the dendritic geometry of individual neurons visualized over periods of up to three months in the superior cervical ganglion of living mice. J. Neurosci. 6, 1051–1060 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Gan, W., Kwon, E., Feng, G., Sanes, J. & Lichtman, J. Synaptic dynamism measured over minutes to months: age-dependent decline in an autonomic ganglion. Nature Neurosci. 6, 956–960 (2003).

    CAS  PubMed  Google Scholar 

  96. Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    CAS  PubMed  Google Scholar 

  97. Fischer, M., Kaech, S., Wagner, U., Brinkhaus, H. & Matus, A. Glutamate receptors regulate actin-based plasticity in dendritic spines. Nature Neurosci. 3, 887–894 (2000).

    CAS  PubMed  Google Scholar 

  98. Harris, K. M., Jensen, F. E. & Tsao, B. Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. J. Neurosci. 12, 2685–2705 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Schikorski, T. & Stevens, C. Quantitative fine-structural analysis of olfactory cortical synapses. Proc. Natl Acad. Sci. USA 96, 4107–4112 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Schikorski, T. & Stevens, C. F. Morphological correlates of functionally defined synaptic vesicle populations. Nature Neurosci. 4, 391–395 (2001).

    CAS  PubMed  Google Scholar 

  101. Lendvai, B., Stern, E., Chen, B. & Svoboda, K. Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature 404, 876–881 (2000).

    CAS  PubMed  Google Scholar 

  102. Purpura, D. Dendritic spine 'dysgenesis' and mental retardation. Science 186, 1126–1128 (1974).

    CAS  PubMed  Google Scholar 

  103. Mar'n-Padilla, M. Structural abnormalities of the cerebral cortex in human chromosomal aberrations. Brain Res. 44, 625–629 (1972).

    Google Scholar 

  104. Fiala, J. C., Feinberg, M., Popov, V. & Harris, K. M. Synaptogenesis via dendritic filopodia in developing hippocampal area CA1. J. Neurosci. 18, 8900–8911 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Portera-Cailliau, C., Pan, D. T. & Yuste, R. Activity-regulated dynamic behavior of early dendritic protrusions: evidence for different types of dendritic filopodia. J. Neurosci. 23, 7129–7142 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Berry, M. & Bradley, P. The growth of the dendritic trees of Purkinje cells in the cerebellum of the rat. Brain Res. 112, 1–35 (1976).

    CAS  PubMed  Google Scholar 

  107. Morest, D. K. The growth of dendrites in the mammalian brain. Z. Anat. Entwick. Gesch. 128, 290–317 (1969).

    CAS  Google Scholar 

  108. Vaughn, J., Henrikson, C. & Grieshaber, J. A quantitative study of synapses on motor neuron dendritic growth cones in developing mouse spinal cord. J. Cell Biol. 60, 664–672 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Bradley, P. M. & Berry, M. The effects of reduced climbing and parallel fibre input on Purkinje cell dendritic growth. Brain Res. 109, 133–151 (1976).

    CAS  PubMed  Google Scholar 

  110. Skoff, R. P. & Hamburger, V. Fine structure of dendritic and axonal growth cones in embryonic chick spinal cord. J. Comp. Neurol. 153, 107–148 (1974).

    CAS  PubMed  Google Scholar 

  111. Tessier-Lavigne, M. & Goodman, C. S. The molecular biology of axon guidance. Science 274, 1123–1133 (1996).

    CAS  PubMed  Google Scholar 

  112. Wang, H. & Macagno, E. The establishment of peripheral sensory arbors in the leech: in vivo time-lapse studies reveal a highly dynamic process. J. Neurosci. 17, 2408–2419 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Konur, S. F. Rabinowitz, D., Fenstermaker, V. & Yuste, R. Systematic regulation of spine head diameters and densities in pyramidal neurons from juvenile mice. J. Neurobiol. 56, 95–112 (2003).

    PubMed  Google Scholar 

  114. Mason, C. Postnatal maturation of neurons in the cat's lateral geniculate nucleus. J. Comp. Neurol. 217, 458–469 (1983).

    CAS  PubMed  Google Scholar 

  115. Wong, R. O., Yamawaki, R. M. & Shatz, C. J. Synaptic contacts and the transient dendritic spines of developing retinal ganglion cells. Eur. J. Neurosci. 4, 1387–1397 (1992).

    PubMed  Google Scholar 

  116. Linke, R., Soriano, E. & Frotscher, M. Transient dendritic appendages on differentiating septohippocampal neurons are not the sites of synaptogenesis. Brain Res. Dev. Brain. Res. 83, 67–78 (1994).

    CAS  PubMed  Google Scholar 

  117. Hall, A. Small GTP-binding proteins and the regulation of the actin cytoskeleton. Annu. Rev. Cell Biol. 10, 31–54 (1994).

    CAS  PubMed  Google Scholar 

  118. Saito, Y., Song, W. & Murakami, F. Preferential termination of corticorubral axons on spine-like dendritic protrusions in developing cat. J. Neurosci. 17, 8792–8803 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Jontes, J. D., Buchanan, J. & Smith, S. J. Growth cone and dendrite dynamics in zebrafish embryos: early events in synaptogenesis imaged in vivo. Nature Neurosci. 3, 231–237 (2000).

    CAS  PubMed  Google Scholar 

  120. Ahmari, S., Buchanan, J. & Smith, S. Assembly of presynaptic active zones from cytoplasmic transport packets. Nature Neurosci. 3, 445–451 (2000).

    CAS  PubMed  Google Scholar 

  121. Vardinon-Friedman, H., Bresler, T., Garner, C. & Ziv, N. Assembly of new individual excitatory synapses: time course and temporal order of synaptic molecule recruitment. Neuron 27, 57–79 (2000).

    Google Scholar 

  122. Yuste, R., Majewska, A., Cash, S. & Denk, W. Mechanisms of calcium influx into spines: heterogeneity among spines, coincidence detection by NMDA receptors and optical quantal analysis. J. Neurosci. 19, 1976–1987 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Yuste, R., Majewska, A. & Holthoff, K. From form to function: calcium compartmentalization in dendritic spines. Nature Neurosci. 3, 653–659 (2000).

    CAS  PubMed  Google Scholar 

  124. Nusser, Z., Cull-Candy, S. & Farrant, M. Differences in synaptic GABAA receptor number underlie variation in GABA mini amplitude. Neuron 19, 697–709 (1997).

    CAS  PubMed  Google Scholar 

  125. Nusser, Z. et al. Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron 21, 545–559 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank V. Nägerl for Figure 2, and C. Lohmann, C. Mason, C. Portera-Cailliau and N. Ziv for comments. R.Y. is funded by the National Eye Institute and the John Merck Fund. T.B. is funded by the Max-Planck Gesellschaft.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASE

LocusLink

munc18

FURTHER INFORMATION

Yuste's laboratory homepage

Bonhoeffer's laboratory homepage

Glossary

PURKINJE CELLS

Inhibitory neurons in the cerebellum that use GABA (γ-aminobutyric acid) as their neurotransmitter. Their cell bodies are situated beneath the molecular layer, and their dendrites branch extensively in this layer. Their axons project into the underlying white matter, and they provide the only output from the cerebellar cortex.

PYRAMIDAL NEURONS

A class of neuron in the cerebral cortex with a pyramid-shaped cell body. These neurons send long axons down the spinal cord and form dendrites that extend laterally through the cortical layer that contains the cell body.

FILOPODIA

Long, thin protrusions that are present at the periphery of migrating cells and growth cones. They are composed largely of F-actin bundles.

WEAVER MUTANT MICE

This mouse strain is characterized by cerebellar abnormalities and ataxia, which are associated with a mutation in an inwardly rectifying potassium channel.

REELER MUTANT MICE

A mouse strain that is characterized by tremors, dystonia and ataxia. These phenotypes are associated with a deficiency in the production of the reelin protein.

PARALLEL FIBRES

The axons of cerebellar granule cells. Parallel fibres emerge from the molecular layer of the cerebellar cortex towards the periphery, where they extend branches perpendicular to the main axis of Purkinje neurons and form 'en passant' synapses with this cell type.

CLIMBING FIBRES

Cerebellar afferents that arise from the inferior olivary nucleus, each of which forms multiple synapses with a single Purkinje cell.

TETRODOTOXIN

(TTX). A potent marine neurotoxin that blocks voltage-gated sodium channels. TTX was originally isolated from the Tetraodon pufferfish, and contains a positively charged guanidinium group and a pyrimidine ring.

STAGGERER MOUSE

A mouse strain that has a deletion in the gene that codes for the nuclear hormone receptor RORα. The homozygous mutant mouse shows ataxia, which is associated with atrophy of the cerebellum and loss of Purkinje cells. The heterozygous mutant also shows an age-related loss of Purkinje cells, but seems to be phenotypically normal.

NEUROPIL

A felt-like network that is interspersed between the cells of the grey matter in the central nervous system. It consists of neuronal and glial processes and synaptic terminals.

TWO-PHOTON LASER MICROSCOPY

A form of microscopy in which a fluorochrome that would normally be excited by a single photon is stimulated quasi-simultaneously by two photons of lower energy. Under these conditions, fluorescence increases as a function of the square of the light intensity, and decreases as the fourth power of the distance from the focus. Because of this behaviour, only fluorochrome molecules near the plane of focus are excited, greatly reducing light scattering and photodamage of the sample.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuste, R., Bonhoeffer, T. Genesis of dendritic spines: insights from ultrastructural and imaging studies. Nat Rev Neurosci 5, 24–34 (2004). https://doi.org/10.1038/nrn1300

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1300

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing