Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Multiparametric corticofugal modulation and plasticity in the auditory system

Key Points

  • The auditory system has the potential for reorganization as a function of experience. In particular, corticofugal projections can affect the properties of subcortical neurons in response to sound.

  • Corticofugal modulation in awake animals has been found across the different domains that comprise an acoustic signal: frequency, amplitude, time and threshold. In general terms, two forms of reorganization have been documented — expanded and compressed reorganizations.

  • Expanded reorganization results from an increase in the number of neurons that respond with properties equal to that of the stimulated corticofugal neuron — a 'centripetal shift'. By contrast, compressed reorganization results from 'centrifugal shifts'; that is, shifts away from the properties of the cortical neuron. Whereas expanded reorganization has been found in several species, compressed reorganization has been found only in the auditory system of the moustached bat, which is specialized for echolocation.

  • Experimentally, corticofugal modulation is commonly elicited by electrical or pharmacological stimulation. However, there is evidence that similar changes occur in response to auditory stimuli. In particular, the study of auditory fear conditioning has disclosed subcortical reorganization in the bat. These studies have also identified a key role of the cholinergic forebrain system in subcortical reorganization.

Abstract

The auditory systems of adult animals can be reorganized by auditory experience. The auditory cortex, the corticofugal system and the cholinergic basal forebrain are crucial for this reorganization. The auditory system can undergo two different forms of reorganization — expansion and compression. Whereas expanded reorganization has been found in different species and different sensory systems, compressed reorganization has only been found in the auditory system of the moustached bat, which is highly specialized for echolocation. Here, we review recent progress in our understanding of the corticofugal system and the reorganization of the auditory system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Corticofugal modulation of the auditory responses, frequency-response curves of collicular neurons, and time courses of collicular and cortical best-frequency shifts.
Figure 2: Facilitation of matched neurons, and centripetal or centrifugal best-frequency shifts of unmatched neurons, evoked by electrical stimulation of cortical neurons.
Figure 3: Shifts in best frequency evoked by electrical stimulation of cortical auditory neurons.
Figure 4: Expanded and compressed reorganizations in the auditory cortices of three species of mammal.
Figure 5: Corticofugal modulation of duration-tuned collicular neurons evoked by electrical stimulation of cortical duration-tuned neurons.
Figure 6: Corticofugal modulation of best delays and minimum thresholds.
Figure 7: Working models for the changes in auditory processing during auditory fear conditioning (associative learning).

Similar content being viewed by others

References

  1. Suga, N. in Dynamic Aspects of Neocortical Function (eds Edelman, G. M., Gall, W. E. & Cowan, W. M.) 315–373 (John Wiley and Sons, New York, 1984).

    Google Scholar 

  2. Suga, N. in Auditory Function (eds Edelman, G. M., Gall, W. E. & Cowan, W. M.) 679–720 (John Wiley & Sons, New York, 1988).

    Google Scholar 

  3. Covey, E. & Casseday, J. H. Timing in the auditory system of the bat. Annu. Rev. Physiol. 61, 457–476 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Saldana, E., Feliciano, M. & Mugnaini, E. Distribution of descending projections from primary auditory neocortex to inferior colliculus mimics the topography of intracollicular projections. J. Comp. Neurol. 371, 15–40 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Ma, X. & Suga, N. Plasticity of bat's central auditory system evoked by focal electric stimulation of auditory and/or somatosensory cortices. J. Neurophysiol. 85, 1078–1087 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Feliciano, M., Saldana, E. & Mugnaini, E. Direct projections from the rat primary auditory neocortex to nucleus sagulum, paralemniscal regions, superior olivary complex and cochlear nuclei. Aud. Neurosci. 1, 287–308 (1995).

    Google Scholar 

  7. Xiao, Z. & Suga, N. Modulation of cochlear hair cells by the auditory cortex in the mustached bat. Nature Neurosci. 5, 57–63 (2002). Experimental evidence for systematic corticofugal modulation of the frequency tuning of cochlear hair cells.

    Article  CAS  PubMed  Google Scholar 

  8. Kelly, J. P. & Wong, D. Laminar connections of the cat's auditory cortex. Brain Res. 212, 1–15 (1981).

    Article  CAS  PubMed  Google Scholar 

  9. Ojima, H. Terminal morphology and distribution of corticothalamic fibers originating from layers 5 and 6 of cat primary auditory cortex. Cereb. Cortex. 4, 646–663 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Huffman, R. F. & Henson, O. W. Jr. The descending auditory pathway and acousticomotor systems: connections with the inferior colliculus. Brain Res. Brain Res. Rev. 15, 295–323 (1990). A comprehensive review of the anatomy and physiology of the corticofugal auditory system. Our current article only reviews the recent progress in physiological research of corticofugal modulation and plasticity. Reference 10 complements our review because it describes what was known about the corticofugal system before 1990.

    Article  CAS  PubMed  Google Scholar 

  11. Massopust, L. C. Jr & Ordy, J. M. Auditory organization of the inferior colliculus in the cat. Exp. Neurol. 6, 465–477 (1962).

    Article  PubMed  Google Scholar 

  12. Watanabe, T., Yanagisawa, K., Kanzaki, J. & Katsuki, Y. Cortical efferent flow influencing unit responses of medial geniculate body to sound stimulation. Exp. Brain Res. 2, 302–317 (1966).

    Article  CAS  PubMed  Google Scholar 

  13. Amato, G., La Grutta, V. & Enia, F. The control exerted by the auditory cortex on the activity of the medial geniculate body and inferior colliculus. Arch. Sci. Biol. (Bologna) 53, 291–313 (1969).

    CAS  Google Scholar 

  14. Sun, X., Chen, Q. C. & Jen, P. H. Corticofugal control of central auditory sensitivity in the big brown bat, Eptesicus fuscus. Neurosci. Lett. 212, 131–134 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Andersen, P., Junge, K. & Sveen, O. Cortico-fugal facilitation of thalamic transmission. Brain Behav. Evol. 6, 170–184 (1972).

    Article  CAS  PubMed  Google Scholar 

  16. Orman, S. S. & Humphrey, G. L. Effects of changes in cortical arousal and of auditory cortex cooling on neuronal activity in the medial geniculate body. Exp. Brain Res. 42, 475–482 (1981).

    CAS  PubMed  Google Scholar 

  17. Villa, A. E. et al. Corticofugal modulation of the information processing in the auditory thalamus of the cat. Exp. Brain Res. 86, 506–517 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Ryugo, D. K. & Weinberger, N. M. Corticofugal modulation of the medial geniculate body. Exp. Neurol. 51, 377–391 (1976).

    Article  CAS  PubMed  Google Scholar 

  19. Syka, J. & Popelar, J. Inferior colliculus in the rat: neuronal responses to stimulation of the auditory cortex. Neurosci. Lett. 51, 235–240 (1984).

    Article  CAS  PubMed  Google Scholar 

  20. Jen, P. H., Chen, Q. C. & Sun, X. D. Corticofugal regulation of auditory sensitivity in the bat inferior colliculus. J. Comp. Physiol. A 183, 683–697 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Suga, N. Biosonar and neural computation in bats. Sci. Am. 262, 60–68 (1990).

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, Y. & Suga, N. Corticofugal amplification of subcortical responses to single tone stimuli in the mustached bat. J. Neurophysiol. 78, 3489–3492 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Yan, W. & Suga, N. Corticofugal modulation of the midbrain frequency map in the bat auditory system. Nature Neurosci. 1, 54–58 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, Y. & Suga, N. Modulation of responses and frequency tuning of thalamic and collicular neurons by cortical activation in mustached bat. J. Neurophysiol. 84, 325–333 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Chowdhury, S. A. & Suga, N. Reorganization of the frequency map of the auditory cortex evoked by cortical electrical stimulation in the big brown bat. J. Neurophysiol. 83, 1856–1863 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Sakai, M. & Suga, N. Plasticity of the cochleotopic (frequency) map in specialized and nonspecialized auditory cortices. Proc. Natl Acad. Sci. USA 98, 3507–3512 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Sakai, M. & Suga, N. Centripetal and centrifugal reorganizations of frequency map of the auditory cortex in gerbils. Proc. Natl Acad. Sci. USA 99, 7108–7112 (2002). This paper reports that the reorganization of the frequency map evoked by focal cortical electrical stimulation consists of a central area for centripetal shifts and a surrounding zone for centrifugal shifts.

    Article  CAS  PubMed  Google Scholar 

  28. Yan, J. & Suga, N. Corticofugal modulation of time-domain processing of biosonar information in bats. Science 273, 1100–1103 (1996). This paper reports that specific and systematic corticofugal modulation evokes centrifugal shifts of the delay-tuning curves of thalamic and collicular neurons.

    Article  CAS  PubMed  Google Scholar 

  29. Murphy, P. C., Duckett, S. G. & Sillito, A. M. Feedback connections to the lateral geniculate nucleus and cortical response properties. Science 286, 1552–1554 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Ma, X. & Suga, N. Augmentation of plasticity of the central auditory system by the basal forebrain and/or somatosensory cortex. J. Neurophysiol. 89, 90–103 (2003).

    Article  PubMed  Google Scholar 

  31. Gao, E. & Suga, N. Experience-dependent plasticity in the auditory cortex and the inferior colliculus of bats: role of the corticofugal system. Proc. Natl Acad. Sci. USA 97, 8081–8086 (2000). Experimental evidence that the collicular plasticity caused by auditory fear conditioning is evoked by corticofugal feedback, that the somatosensory cortex has an important role in the development of collicular plasticity, and that collicular plasticity is evoked not only by conditioning, but also by repetitive acoustic stimuli.

    Article  CAS  PubMed  Google Scholar 

  32. Ji, W., Gao E. & Suga, N. Effects of acetylcholine and atropine on plasticity of central auditory neurons caused by conditioning in bats. J. Neurophysiol. 86, 211–225 (2001). Together with reference 31, this paper provides experimental evidence that the short-term collicular plasticity evoked by corticofugal feedback contributes to the production of the long-term cortical plasticity caused by conditioning.

    Article  CAS  PubMed  Google Scholar 

  33. Gao, E. & Suga, N. Plasticity of midbrain auditory frequency map mediated by the corticofugal system in bat. Proc. Natl Acad. Sci. USA 95, 12663–12670 (1998). This paper reports the time courses of collicular and cortical plasticity caused by conditioning or cortical electrical stimulation. It also reports that inactivation of the somatosensory cortex abolishes both collicular and cortical plasticity caused by conditioning.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, Y., Suga, N. & Yan, J. Corticofugal modulation of frequency processing in bat auditory system. Nature 387, 900–903 (1997). This paper reports that specific and systematic corticofugal modulation evokes centrifugal shifts of frequency-tuning curves of thalamic and collicular neurons in a part of the auditory system specialized for fine frequency analysis.

    Article  CAS  PubMed  Google Scholar 

  35. Xiao, Z. & Suga, N. Reorganization of the cochleotopic map in the bat's auditory system by inhibition. Proc. Natl Acad. Sci. USA 99, 15743–15748 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Yan, J. & Ehret, G. Corticofugal modulation of midbrain sound processing in the house mouse. Eur. J. Neurosci. 16, 1–11 (2002).

    Article  Google Scholar 

  37. Suga, N., Gao, E., Zhang, Y., Ma, X. & Olsen, J. F. The corticofugal system for hearing: recent progress. Proc. Natl Acad. Sci. USA 97, 11807–11814 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Suga, N, Xiao, Z., Ma, X. & Ji, W. Plasticity and corticofugal modulation for hearing in adult animals. Neuron 36, 9–18 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Kilgard, M. P. & Merzenich, M. M. Cortical map reorganization enabled by nucleus basalis activity. Science 279, 1714–1718 (1998). This paper reports the massive reorganization of the auditory cortex that is evoked by acoustic and electrical stimulation of the nucleus basalis.

    Article  CAS  PubMed  Google Scholar 

  40. Weinberger, N. M, & Bakin, J. S. Learning-induced physiological memory in adult primary auditory cortex: receptive fields plasticity, model, and mechanisms. Audiol. Neurootol. 3, 145–167 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Buonomano, D. V. & Merzenich, M. M. Cortial plasticity; from synapses to maps. Ann. Rev. Neurosci. 21, 149–186 (1998). This is a comprehensive review of cortical plasticity. This reference is complementary to our current article.

    Article  CAS  PubMed  Google Scholar 

  42. Rasmusson, D. D. The role of acetylcholine in cortical synaptic plasticity. Behav. Brain Res. 115, 205–218 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Godde, B., Leonhardt, R., Cords, S. M. & Dinse, H. R. Plasticity of orientation preference maps in the visual cortex of adult cats. Proc. Natl Acad. Sci. USA 99, 6352–6357 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Sillito, A. M., Jone, H. E., Gerstein, G. L. & West, D. C. Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex. Nature 20, 1–2 (1994).

    Google Scholar 

  45. Singer, W. Synchronization of cortical activity and its putative role in information processing and learning. Annu. Rev. Physiol. 55, 349–374 (1993).

    Article  CAS  PubMed  Google Scholar 

  46. Ergenzinger, E. R., Glasier, M. M., Hahm, J. O. & Pons, T. P. Cortically induced thalamic plasticity in the primate somatosensory system. Nature Neurosci. 1, 226–229 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Krupa, D. J., Ghazanfar, A. A. & Nicolelis, M. A. Immediate thalamic sensory plasticity depends on corticothalamic feedback. Proc. Natl Acad. Sci. USA 96, 8200–8205 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Suga, N. in The Cognitive Neurosciences (ed. Gazzaniga, M. S.) 295–318 (MIT Press, Cambridge, Massachusetts, 1994).

    Google Scholar 

  49. Zhou, X. & Jen, P. H. Brief and short-term corticofugal modulation of subcortical auditory responses in the big brown bat, Eptesicus fuscus. J. Neurophysiol. 84, 3083–3087 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Nwabueze-Ogbo, F. C., Popelar, J. & Syka, J. Changes in the acoustically evoked activity in the inferior colliculus of the rat after functional ablation of the auditory cortex. Physiol. Res. 51, S95–S104 (2002).

    PubMed  Google Scholar 

  51. Yan, J. & Suga, N. Corticofugal amplification of facilitative auditory responses of subcortical combination-sensitive neurons in the mustached bat. J. Neurophysiol. 81, 817–824 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Jen, P. H., Zhou, X. & Wu, C. H. Temporally patterned sound pulse trains affect intensity and frequency sensitivity of inferior collicular neurons of the big brown bat, Eptesicus fuscus. J. Comp. Physiol. A 187, 605–616 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Goldberg, R. L. & Henson, O. W. Jr. Changes in cochlear mechanics during vocalization: evidence for a phasic medial efferent effect. Hear. Res. 122, 71–81 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Rauschecker, J. P. & Tian, B. Mechanisms and streams for processing of 'what' and 'where' in auditory cortex. Proc. Natl Acad. Sci. USA 97, 11800–11806 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Ma, X. & Suga, N. Corticofugal modulation of duration-tuned neurons in the midbrain auditory nucleus in bats. Proc. Natl Acad. Sci. USA 98, 14060–14065 (2001). The best example of multiparametic corticofugal modulation for hearing.

    Article  CAS  PubMed  Google Scholar 

  56. Pinheiro, A. D., Wu, M. & Jen, P. H. Encoding repetition rate and duration in the inferior colliculus of the big brown bat, Eptesicus fuscus. J. Comp. Physiol. A 169, 69–85 (1991).

    Article  CAS  PubMed  Google Scholar 

  57. Casseday, J. H., Ehrlich, D. & Covey, E. Neural tuning for sound duration: role of inhibitory mechanisms in the inferior colliculus. Science 264, 847–850 (1994).

    Article  CAS  PubMed  Google Scholar 

  58. Ehrlich, D., Casseday, J. H. & Covey, E. Neural tuning to sound duration in the inferior colliculus of the big brown bat, Eptesicus fuscus. J. Neurophysiol. 77, 2360–2372 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Galazyuk, A. V. & Feng, A. S. Encoding of sound duration by neurons in the auditory cortex of the little brown bat, Myotis lucifugus. J. Comp. Physiol. A 180, 301–311 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Weinberger, N. M., Ashe, J. H., Metherate, R., Diamond, D. M. & Bakin, J. Retuning auditory cortex by learning: a preliminary model of receptive field plasticity. Concepts Neurosci. 1, 91–123 (1990).

    Google Scholar 

  61. Weinberger, N. M. Physiological memory in primary auditory cortex: characteristics and mechanisms. Neurobiol. Learn. Mem. 70, 226–251 (1998). Together with reference 40, this is a comprehensive review of plasticity of the auditory cortex caused by auditory fear conditioning. As our review discusses Weinberger's model only in relation to corticofugal modulation, this reference is complementary to our current article.

    Article  CAS  PubMed  Google Scholar 

  62. Bakin, J. S. & Weinberger, N. M. Induction of physiological memory in the cerebral cortex by stimulation of the nucleus basalis. Proc. Natl Acad. Sci. USA 93, 11219–11224 (1996).

    Article  CAS  PubMed  Google Scholar 

  63. Bjordahl, T. S., Dimyan, M. A. & Weinberger, N. M. Induction of long-term receptive field plasticity in the auditory cortex of the waking guinea pig by stimulation of the nucleus basalis. Behav. Neurosci. 112, 467–479 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Edeline, J. M. & Weinberger, N. M. Thalamic short-term plasticity in the auditory system: associative returning of receptive fields in the ventral medial geniculate body. Behav. Neurosci. 105, 618–639 (1991).

    Article  CAS  PubMed  Google Scholar 

  65. Aitkin, L. M. Medial geniculate body of the cat: responses to tonal stimuli of neurons in medial division. J. Neurophysiol. 36, 275–283 (1973).

    Article  CAS  PubMed  Google Scholar 

  66. Calford, M. B. The parcellation of the medial geniculate body of the cat defined by the auditory response properties of single units. J. Neurosci. 3, 2350–2364 (1983).

    Article  CAS  PubMed  Google Scholar 

  67. LeDoux, J. E. Emotion circuits in the brain. Annu. Rev. Neurosci. 23, 155–184 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Levey, A. I., Hallanger, A. E. & Wainer, B. H. Cholinergic nucleus basalis neurons may influence the cortex via the thalamus. Neurosci. Lett. 74, 7–13 (1987).

    Article  CAS  PubMed  Google Scholar 

  69. Steriade, M., Parent, A., Pare, D. & Smith, Y. Cholinergic and non-cholinergic neurons of cat basal forebrain project to reticular and mediodorsal thalamic nuclei. Brain Res. 408, 372–376 (1987).

    Article  CAS  PubMed  Google Scholar 

  70. Bao, S., Chan, V. T. & Merzenich, M. M. Cortical remodeling induced by activity of ventral tegmental dopamine neurons. Nature. 412, 79–83 (2001). This paper reports reorganization of the auditory cortex evoked by auditory and electrical stimulation of dopaminergic neurons. Differences between cholinergic and dopaminergic modulation are discussed.

    Article  CAS  PubMed  Google Scholar 

  71. Kilgard, M. P. & Merzenich, M. M. Plasticity of temporal information processing in the primary auditory cortex. Nature Neurosci. 1, 727–731 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Kilgard, M. P. & Merzenich, M. M. Order-sensitive plasticity in adult primary auditory cortex. Proc. Natl Acad. Sci. USA 99, 3205–3209 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. O'Neill, W. E. & Suga, N. Encoding of target range and its representation in the auditory cortex of the mustached bat. J. Neurosci. 2, 17–31 (1982).

    Article  CAS  PubMed  Google Scholar 

  74. Suga, N., O'Neill, W. E., Kujirai, K. & Manabe, T. Specificity of combination-sensitive neurons for processing of complex biosonar signals in auditory cortex of the mustached bat. J. Neurophysiol. 49, 1573–1626 (1983).

    Article  CAS  PubMed  Google Scholar 

  75. Marsh, R. A., Fuzessery, Z. M., Grose, C. D. & Wenstrup, J. J. Projection to the inferior colliculus from the basal nucleus of the amygdala. J. Neurosci. 22, 10449–10460 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. McDonald, A. J. Glutamate and aspartate immunoreactive neurons of the rat basolateral amygdala: colocalization of excitatory amino acids and projections to the limbic circuit. J. Comp. Neurol. 365, 367–379 (1996).

    Article  CAS  PubMed  Google Scholar 

  77. Aigner, T. G. Pharmacology of memory: cholinergic–glutamatergic interactions. Curr. Opin. Neurobiol. 5, 155–160 (1995).

    Article  CAS  PubMed  Google Scholar 

  78. Khalfa, S. et al. Evidence of peripheral auditory activity modulation by the auditory cortex in humans. Neuroscience 104, 347–358 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Nieder, P. & Nieder, I. Antimasking effect of crossed olivocochlear bundle stimulation with loud clicks in guinea pig. Exp. Neurol. 28, 179–188 (1970).

    Article  CAS  PubMed  Google Scholar 

  80. Dolan, D. F. & Nuttall, A. L. Inner hair cell responses to tonal stimulation in the presence of broadband noise. J. Acoust. Soc. Am. 86, 1007–1012 (1989).

    Article  CAS  PubMed  Google Scholar 

  81. Kawase, T., Delgutte, B. & Liberman, M. C. Antimasking effects of the olivocochlear reflex. II. Enhancement of auditory-nerve response to masked tones. J. Neurophysiol. 70, 2533–2549 (1993).

    Article  CAS  PubMed  Google Scholar 

  82. Dewson, J. H. Efferent olivocochlear bundle: some relationships to stimulus discrimination in noise. J. Neurophysiol. 31, 122–130 (1968).

    Article  PubMed  Google Scholar 

  83. Tsumoto, T., Creutzfeldt, O. D. & Legendy, C. R. Functional organization of the corticofugal system from visual cortex to lateral geniculate nucleus in the cat (with an appendix on geniculo-cortical mono-synaptic connections). Exp. Brain Res. 32, 345–364 (1978).

    Article  CAS  PubMed  Google Scholar 

  84. Sillito, A. M., Cudeiro, J. & Murphy, P. C. Orientation sensitive elements in the corticofugal influence on centre-surround interactions in the dorsal lateral geniculate nucleus. Exp. Brain Res. 93, 6–16 (1993).

    Article  CAS  PubMed  Google Scholar 

  85. Galuske, R. A., Schmidt, K. E., Goebel, R., Lomber, S. G. & Payne, B. R. The role of feedback in shaping neural representations in cat visual cortex. Proc. Natl Acad. Sci. USA 99, 17083–17088 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Hernandez-Peon, R., Scherrer, H. & Jouvet, M. Modification of electric activity in cochlear nucleus during attention in unanesthetized cats. Science 123, 331–332 (1956).

    Article  CAS  PubMed  Google Scholar 

  87. Oatman, L. C. Role of visual attention on auditory evoked potentials in unanesthetized cats. Exp. Neurol. 32, 341–356 (1971).

    Article  CAS  PubMed  Google Scholar 

  88. Oatman, L. C. & Anderson, B. W. Effects of visual attention on tone burst evoked auditory potentials. Exp. Neurol. 57, 200–211 (1977).

    Article  CAS  PubMed  Google Scholar 

  89. Lukas, J. H. Human auditory attention: the olivocochlear bundle may function as a peripheral filter. Psychophysiology 17, 444–452 (1980).

    Article  CAS  PubMed  Google Scholar 

  90. Puel, J. L., Bonfils, P. & Pujol, R. Selective attention modifies the active micromechanical properties of the cochlea. Brain Res. 447, 380–383 (1988).

    Article  CAS  PubMed  Google Scholar 

  91. Brown, M. C. & Nuttall, A. L. Efferent control of cochlear inner hair cell responses in the guinea-pig. J. Physiol. (Lond.) 354, 625–646 (1984).

    Article  CAS  Google Scholar 

  92. Wiederhold, M. L. Variations in the effects of electric stimulation of the crossed olivocochlear bundle on cat single auditory-nerve-fiber responses to tone bursts. J. Acoust. Soc. Am. 48, 966–977 (1970).

    Article  CAS  PubMed  Google Scholar 

  93. Geisler, C. D. Model of crossed olivocochlear bundle effects. J. Acoust. Soc. Am. 56, 1910–1912 (1974).

    Article  CAS  PubMed  Google Scholar 

  94. Steriade, M. Coherent oscillations and short-term plasticity in corticothalamic networks. Trends Neurosci. 22, 337–345 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our work has been supported by a research grant from the National Institute on Deafness and Other Communication Disorders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuo Suga.

Glossary

FEAR CONDITIONING

A form of Pavlovian (classical) conditioning in which an animal learns that an innocuous stimulus (for example, an auditory tone — the conditioned stimulus, CS) comes to reliably predict the occurrence of a noxious stimulus (for example, foot shock — the unconditioned stimulus, US) following their repeated paired presentation. As a result of this procedure, presentation of the CS alone elicits conditioned fear responses previously associated with the US only.

DOPPLER SHIFT

The Austrian physicist C. J. Doppler discovered that a light or sound wave measured by a moving observer will be shifted as a direct function of the speed of the observer and as an inverse function of the speed of the wave. A prototypical example of the Doppler shift is the sound of a train's horn as we stand at a station; the sound is shifted to a higher pitch as the train approaches, and then abruptly to a lower pitch as it passes by.

MICROPHONIC RESPONSE

The summated auditory response of the cochlear hair cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suga, N., Ma, X. Multiparametric corticofugal modulation and plasticity in the auditory system. Nat Rev Neurosci 4, 783–794 (2003). https://doi.org/10.1038/nrn1222

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1222

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing