Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Exploring the consequences of the previous trial

Key Points

  • In tasks that are designed to explore some facet of cognitive functioning, the participant's response on each trial is influenced by the specific combination of conditions occurring on that trial and the trial that preceded it. This residual influence from the previous trial indicates that information presented during, or the actions required by, the previous trial leaves an imprint on the brain. We provide four examples of previous trial effects and we show how these imprints are manifest in the activity of single neurons that participate in producing the response.

  • The frontal eye fields and superior colliculi function like the 'salience map' used in computational models of visual attention. A salience map is a two-dimensional, topographically organized map that represents the distinctiveness of objects in the visual scene. Likewise, neurons in the frontal eye fields and the superior colliculi represent the salience of visual objects through the overall level of activity elicited by the presentation of the object and how quickly the sensory response discriminates between different objects. In all of the examples presented, the previous trial exerts its influence by changing the salience of the target on the next trial.

  • When performing a simple two-alternative choice saccade task (in which a target appears to the left or right, and a monkey initiates saccade to the target's location), monkeys respond faster when the target appears in the same location across consecutive trials. This repetition advantage arises because increased pre-target activity of neurons in the superior colliculus enhances the relative salience of that region on the superior colliculus map and of the target when it appears at that location on the next trial.

  • In visual search, an array of objects is presented to an observer who initiates a saccade to the odd one (defined by colour). Monkeys respond faster when the colour of the target remains the same across consecutive trials and they produce more competing responses when the colour changes. Viewing these previous trial effects as changes in the salience of the distractor provides a succinct way to explain both phenomena. When the colour remains the same, the salience of the target is high and the salience of the distractors is low, allowing selection to be completed easily. When the colour changes, the salience of the target is low and the salience of the distractors is high, causing the distractors to compete more for selection.

  • Inhibition of return describes the tendency of observers to be slower to reorient to a previously attended location, and is observed in visual search and the cue–target model. In both tasks, the previous trial (or event) decreases the salience of the target.

Abstract

In tasks that are designed to explore cognitive functioning, the response on each trial is a function of the combination of experimental conditions that occurred on that and the previous trial. Because the previous trial influences performance, the event presented during or the action required by the previous trial must leave an imprint on the brain's activity that carries through to the next trial. These imprints are manifest in the activity of single neurons that participate in producing the response. Previous trial effects address disparate cognitive phenomena, such as response priming, task switching and inhibition of return, and the neural bases of previous trial effects can be envisioned as changes in salience of the target or the goal of the action on a spatial map.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The two-alternative choice saccade task.
Figure 2: The oddball localization task.
Figure 3: Competing motor plans.
Figure 4: Effects of target location in a visual search task.
Figure 5: Inhibition of return.

Similar content being viewed by others

References

  1. Cattell, J. M. The time taken up by cerebral operations, parts 1 & 2. Mind 11, 220–242 (1886).

    Article  Google Scholar 

  2. Cattell, J. M. The time taken up by cerebral operations, part 3. Mind 11, 377–392 (1886).

    Article  Google Scholar 

  3. Cattell, J. M. The time taken up by cerebral operations, part 4. Mind 11, 524–538 (1887). References 1–3 are classic articles that describe Cattell's systematic and clever attempts to dissociate the components of reaction time.

    Google Scholar 

  4. Posner, M. J. & Mitchell, R. F. Chronometric analysis of classification. Psychol. Rev. 74, 392–409 (1967).

    Article  CAS  PubMed  Google Scholar 

  5. Luce, R. D. Response Times: Their Role in Inferring Elementary Mental Organization (Oxford Univ. Press, Oxford, 1986).

    Google Scholar 

  6. Bertelson, P. Sequential redundancy and speed in a serial two-choice responding task. Q. J. Exp. Psychol. 13, 90–102 (1961).

    Article  Google Scholar 

  7. Bravo, M. J. & Nakayama, K. The role of attention in different visual-search tasks. Percept. Psychophys. 51, 465–472 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Gupta, P. & Cohen, N. J. Theoretical and computational analysis of skill learning, repetition priming, and procedural memory. Psychol. Rev. 109, 401–448 (2002).

    Article  PubMed  Google Scholar 

  9. May, C. P., Kane, M. I. & Hasher, L. Determinants of negative priming. Psychol. Bull. 118, 35–54 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Maljkovic, V. & Nakayama, K. Priming of pop-out I. Role of features. Mem. Cogn. 22, 657–672 (1994).

    Article  CAS  Google Scholar 

  11. Maljkovic, V. & Nakayama, K. Priming of pop-out II. Role of position. Percept. Psychophys. 58, 977–991 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Maljkovic, V. & Nakayama, K. Priming of pop-out III. A short-term implicit memory system beneficial for target selection. Vis. Cogn. 7, 571–595 (2000).

    Article  Google Scholar 

  13. Remington, R. J. Analysis of sequential effects in choice reaction times. J. Exp. Psychol. 82, 250–257 (1969).

    Article  CAS  PubMed  Google Scholar 

  14. Tipper, S. P. The negative priming effect: inhibitory priming by ignored objects. Q. J. Exp. Psychol. A 37, 571–590 (1985).

    Article  CAS  PubMed  Google Scholar 

  15. Tipper, S. P. Does negative priming reflect inhibitory mechanisms: a review and integration of conflicting views. Q. J. Exp. Psychol. A 54, 321–343 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Willingham, D. B., Nissen, M. J. & Bullemer, P. On the development of procedural knowledge. J. Exp. Psychol. Learn. Mem. Cogn. 15, 1047–1060 (1989). This paper elegantly demonstrates the development and the role of unconscious processes in sequence learning.

    Article  CAS  PubMed  Google Scholar 

  17. Allport, A. & Wylie, G. in Control of Cognitive Processes: Attention and Performance XVIII (eds Monsell, S. & Driver, J. S.) 35–70 (MIT Press, Cambridge, Massachusetts, 2000).

    Google Scholar 

  18. Gilbert, S. J. & Shallice, T. Task switching: a PDP model. Cognition 44, 297–337 (2002). This paper provides a simple computational model of task switching and a comprehensive review of the task-switching literature.

    Google Scholar 

  19. Pashler, H. in Control of Cognitive Processes: Attention and Performance XVIII (eds Monsell, S. & Driver, J. S.) 277–307 (MIT Press, Cambridge, Massachusetts, 2000).

    Google Scholar 

  20. Rogers, R. D. & Monsell, S. Costs of a predictable switch between simple cognitive tasks. J. Exp. Psychol. Gen. 124, 207–231 (1995).

    Article  Google Scholar 

  21. Kim, N., Ivry, R. B. & Robertson, L. C. Sequential priming in hierarchically organized figures: effects of target level and target resolution. J. Exp. Psychol. Hum. Percept. Perform. 25, 715–729 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Robertson, L. C. Attentional persistence for features of hierarchical patterns. J. Exp. Psychol. Gen. 125, 227–249 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Tanaka, Y. & Shimojo, S. Location vs feature: reaction time reveals dissociation between two visual functions. Vision Res. 36, 2125–2140 (1996). This paper shows how two different modes of response (responding to the location of the target or a feature of the target) reverse the influence of the previous trial.

    Article  CAS  PubMed  Google Scholar 

  24. Tanaka, Y. & Shimojo, S. Repetition priming reveals sustained facilitation and transient inhibition in reaction time. J. Exp. Psychol. Hum. Percept. Perform. 26, 1421–1435 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Taylor, T. L. & Donnelly, M. P. Inhibition of return for target discriminations: the effect of repeating discriminated and irrelevant stimulus dimensions. Percept. Psychophys. 64, 292–317 (2002).

    Article  PubMed  Google Scholar 

  26. Kirby, N. H. Sequential effects in two-choice reaction time: automatic facilitation or subjective expectancy? J. Exp. Psychol. Hum. Percept. Perform. 2, 567–577 (1976).

    Article  CAS  PubMed  Google Scholar 

  27. Soetens, E. Localizing sequential effects in serial choice reaction time with the information reduction procedure. J. Exp. Psychol. Hum. Percept. Perform. 24, 547–568 (1998).

    Article  Google Scholar 

  28. McPeek, R. M., Skavenski, A. A. & Nakayama, K. Concurrent processing of saccades in visual search. Vision Res. 40, 2499–2516 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Dorris, M. C., Taylor, T. L., Klein, R. M. & Munoz, D. P. Influence of previous visual stimulus or saccade on saccadic reaction times in monkey. J. Neurophysiol. 81, 2429–2436 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Dorris, M. C., Pare, M. & Munoz, D. P. Immediate neural plasticity shapes motor performance. J. Neurosci. 20, RC52 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gore, J. L., Dorris, M. C. & Munoz, D. P. Time course of a repetition effect on saccadic reaction time in non-human primates. Arch. Ital. Biol. 140, 203–210 (2002).

    CAS  PubMed  Google Scholar 

  32. Glimcher, P. W. & Sparks, D. L. Movement selection in advance of action in the superior colliculus. Nature 355, 542–545 (1992). This paper was the first to show that low-frequency pre-movement activity in the superior colliculus correlates with the decision to select a saccade of a specific metric.

    Article  CAS  PubMed  Google Scholar 

  33. Basso, M. A. & Wurtz, R. H. Modulation of neuronal activity by target uncertainty. Nature 389, 66–69 (1997). This paper shows that pre-target activity in the superior colliculus is modulated by the likelihood that a target will appear in its response field.

    Article  CAS  PubMed  Google Scholar 

  34. Munoz, D. P., Au, C. S. & Dorris, M. C. Effects of previous history on saccadic reaction times. Soc. Neurosci. Abstr. 27, 575.8 (2001).

    Google Scholar 

  35. Soetens, E., Boer, L. C & Hueting, J. E. Expectancy or automatic facilitation? Separating sequential effects in two-choice reaction time. J. Exp. Psychol. Hum. Percept. Perform. 11, 598–616 (1985).

    Article  Google Scholar 

  36. Bichot, N. P. & Schall, J. D. Effects of similarity and history on neural mechanisms of visual selection. Nature Neurosci. 2, 549–554 (1999). This paper was the first to show the neural correlate of conjunction search.

    Article  CAS  PubMed  Google Scholar 

  37. Bichot, N. P. & Schall, J. D. Priming in macaque frontal cortex during popout visual search: feature-based facilitation and location-based inhibition of return. J. Neurosci. 22, 4675–4685 (2002). This paper describes the neurophysiological correlates of priming of pop-out in the frontal eye fields.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Keller, E. L. & McPeek, R. M. Neural discharge in the superior colliculus during target search paradigms. Ann. NY Acad. Sci. 956, 130–142 (2002).

    Article  PubMed  Google Scholar 

  39. McPeek, R. M. & Keller, E. L. Short-term priming, concurrent processing, and saccade curvature during a target selection task in the monkey. Vision Res. 41, 785–800 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. McPeek, R. M. & Keller, E. L. Superior colliculus activity related to concurrent processing of saccade goals in a visual search task. J. Neurophysiol. 87, 1805–1815 (2002). This paper shows that evidence of concurrent motor programming in behaviour is associated with competing motor plans in the activity of superior colliculus neurons.

    Article  PubMed  Google Scholar 

  41. McPeek, R. M. & Keller, E. L. Saccade target selection in the superior colliculus during a visual search task. J. Neurophysiol. 88, 2019–2034 (2002).

    Article  PubMed  Google Scholar 

  42. McPeek, R. M., Maljokovic, V. & Nakayama, K. Saccades require focal attention and are facilitated by a short-term memory system. Vision Res. 39, 1555–1566 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Schall, J. D. & Hanes, D. P. Neural basis of saccade target selection in frontal eye field during visual search. Nature 366, 467–469 (1993). The first paper to show the correlate of target selection and how competing objects interact in the salience map of the frontal eye fields.

    Article  CAS  PubMed  Google Scholar 

  44. Schall, J. D. & Thompson, K. G. Neural selection and control of visually guided eye movements. Annu. Rev. Neurosci. 22, 241–259 (1999). An excellent review article describing target selection and visual masking.

    Article  CAS  PubMed  Google Scholar 

  45. Schall, J. D., Hanes, D. P., Thompson, K. G. & King, D. J. Saccade target selection in frontal eye field of macaque. I. Visual and premovement activation. J. Neurosci. 15, 6905–6918 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Becker, W. & Jurgens, R. An analysis of the saccadic system by means of double step stimuli. Vision Res. 19, 967–983 (1979).

    Article  CAS  PubMed  Google Scholar 

  47. Theeuwes, J., Kramer, A. F., Hahn, S., Irwin, D. E. & Zelinsky, G. J. Influence of attentional capture on oculomotor control. J. Exp. Psychol. Hum. Percept. Perform. 25, 1595–1608 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Theeuwes, J., Kramer, A. F., Hahn, S. & Irwin, D. E. Our eyes do not always go where we want them to go: capture of the eyes by new objects. Psychol. Sci. 9, 379–385 (1998).

    Article  Google Scholar 

  49. Mc Peek, R. M., Han, J. H. & Keller, E. L. Competition between saccade goals in the superior colliculus produces saccade curvature. J. Neurophysiol. (in the press). This paper shows that competing motor plans in the superior colliculus are associated with saccadic curvature in spontaneous behaviour and demonstrates that artificially providing a competing motor plan also produces curvature.

  50. Aizawa, H. & Wurtz, R. H. Reversible inactivation of monkey superior colliculus. I. Curvature of saccadic trajectory. J. Neurophysiol. 79, 2082–2096 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Doyle, M. & Walker, R. Curved saccade trajectories: voluntary and reflexive saccades curve away from irrelevant distractors. Exp. Brain Res. 139, 333–344 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Godijn, R. & Theeuwes, J. Oculomotor capture and inhibition of return: evidence for an oculomotor suppression account of IOR. Psychol. Res. 66, 234–246 (2002).

    Article  PubMed  Google Scholar 

  53. Sheliga, B. M., Riggo, L. & Rizzolatti, G. Orienting of attention and eye movements. Exp. Brain Res. 98, 507–522 (1994).

    Article  CAS  PubMed  Google Scholar 

  54. Caputo, G. & Guerra, S. Attentional selection by distractor suppression. Vision Res. 38, 669–689 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Klein, R. Inhibitory tagging system facilitates visual search. Nature 334, 430–431 (1988).

    Article  CAS  PubMed  Google Scholar 

  56. Klein, R. M. Inhibition of return. Trends Cogn. Sci. 4, 138–147 (2000). An excellent review describing inhibition of return.

    Article  CAS  PubMed  Google Scholar 

  57. Shore, D. I. & Klein, R. M. On the manifestations of memory in visual search. Spat. Vis. 14, 59–75 (2000).

    CAS  PubMed  Google Scholar 

  58. Posner, M. I. & Cohen, Y. in Attention and Performance X (eds Bouma, H. & Bouwhuis, D. G.) 531–556 (Earlbaum, Hillsdale, New Jersey, 1984). This was the first paper to describe inhibition of return.

    Google Scholar 

  59. Posner, M. I., Rafal, R. D., Choate, L. S. & Vaughan, J. Inhibition of return: neural basis and function. Cogn. Neuropsychol. 2, 211–228 (1985).

    Article  Google Scholar 

  60. Maylor, E. A. in Mechanisms of Attention: Attention and Performance XI (eds Posner, M. I. & Marin, O. S. M.) 189–204 (Earlbaum, Hillsdale, New Jersey, 1985).

    Google Scholar 

  61. Pratt, J., Kingstone, A. & Khoe, W. Inhibition of return in location-based and identity-based choice decision tasks. Percept. Psychophys. 59, 964–971 (1997).

    Article  CAS  PubMed  Google Scholar 

  62. Wright, R. D. & Ward, L. M. in Visual Attention (ed. Wright, R. D.) 132–186 (Oxford Univ. Press, New York, 1998) An excellent review describing the characteristics orienting spatial attention.

    Google Scholar 

  63. Basso, M. A. & Wurtz, R. H. Modulation of neuronal activity in superior colliculus by changes in target probability. J. Neurosci. 18, 7519–7534 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Robinson, D. L. & Kertzman, C. Covert orienting of attention in macaques. III. Contributions of the superior colliculus. J. Neurophysiol. 74, 713–721 (1995).

    Article  CAS  PubMed  Google Scholar 

  65. Robinson, D. L., Bowman, E. M. & Kertzman, C. Covert orienting of attention in macaques. II. Contributions of the parietal cortex. J. Neurophysiol. 74, 698–712 (1995).

    Article  CAS  PubMed  Google Scholar 

  66. Dorris, M. C., Klein, R. M., Everling, S. & Munoz, D. P. Contribution of the primate superior colliculus to inhibition of return. J. Cogn. Neurosci. 14, 1256–1263 (2002). This paper was the first to show that inhibition of return results from reduced target-related activity in the superior colliculus.

    Article  PubMed  Google Scholar 

  67. Fecteau, J. H. & Munoz, D. P. Neurophysiological correlates of covert orienting to uninformative and informative cues in the primate superior colliculus. Cogn. Neurosci. Soc. Abstr. A11 (2003).

  68. Briand, K. A., Larrison, A. L. & Sereno, A. B. Inhibition of return in manual and saccadic response systems. Percept. Psychophys. 62, 1512–1524 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Abrams, R. A. & Pratt, J. Oculocentric coding of inhibited eye movements to recently attended locations. J. Exp. Psychol. Hum. Percept. Perform. 26, 776–788 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Behrmann, M. & Tipper, S. P. Attention accesses multiple reference frames: evidence from visual neglect. J. Exp. Psychol. Hum. Percept. Perform. 25, 83–101 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Tipper, S. P., Jordan, H. & Weaver, B. Scene-based and object-centered inhibition of return: evidence for dual orienting mechanisms. Percept. Psychophys. 61, 50–60 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Tipper, S. P., Weaver, B., Jerreat, L. M. & Burak, A. L. Object-based and environment-based inhibition of return of visual attention. J. Exp. Psychol. Hum. Percept. Perform. 20, 478–499 (1994).

    Article  CAS  PubMed  Google Scholar 

  73. Taylor, T. L. & Klein, R. M. Visual and motor effects in inhibition of return. J. Exp. Psychol. Hum. Percept. Perform. 26, 1639–1656 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Rafal, R. D., Calabresi, P. A., Brennan, C. W. & Sciolto, T. K. Saccade preparation inhibits reorienting to recently attended locations. J. Exp. Psychol. Hum. Percept. Perform. 15, 673–685 (1989).

    Article  CAS  PubMed  Google Scholar 

  75. Lupianez, J., Milliken, B., Solano, C., Weaver, B. & Tipper, S. P. On the strategic modulation of the time course of facilitation and inhibition of return. Q. J. Exp. Psychol. A 54, 753–773 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Taylor, T. L. & Klein, R. M. On the causes and effects of inhibition of return. Psychon. Bull. Rev. 5, 625–643 (1998).

    Article  Google Scholar 

  77. Koch, C. & Ullman, S. Shifts in selective visual attention: towards the underlying neural circuitry. Hum. Neurobiol. 4, 219–227 (1985).

    CAS  PubMed  Google Scholar 

  78. Itti, L. & Koch, C. Computational modelling of visual attention. Nature Rev. Neurosci. 2, 194–203 (2001). This paper provides an excellent review of different computational models of visual attention and the role of the salience map in guiding spatial attention.

    Article  CAS  Google Scholar 

  79. Itti, L. & Koch, C. A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Res. 40, 1489–1506 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Brown, M. W., Wilson, F. A. & Riches, I. P. Neuronal evidence that inferomedial temporal cortex is more important than hippocampus in certain processes underlying recognition memory. Brain Res. 409, 158–162 (1987).

    Article  CAS  PubMed  Google Scholar 

  81. Baylis, G. C. & Rolls, E. T. Responses of neurons in the inferior temporal cortex in short term and serial recognition memory tasks. Exp. Brain Res. 65, 614–622 (1987).

    Article  CAS  PubMed  Google Scholar 

  82. Desimone, R. Neural mechanisms for visual memory and their role in attention. Proc. Natl Acad. Sci. USA 93, 13494–13499 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Miller, E. K., Li, L. & Desimone, R. A neural mechanism for working and recognition memory in inferior temporal cortex. Science 254, 1377–1379 (1991). This was the first study to consider that attenuated object-related processing in visual areas was linked to repetition priming.

    Article  CAS  PubMed  Google Scholar 

  84. Buckner, R. L. et al. Functional-anatomic correlates of object priming in humans revealed by rapid presentation event-related fMRI. Neuron 20, 285–296 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Henson, R. N. & Rugg, M. D. Neural response suppression, haemodynamic repetition effects, and behavioural priming. Neuropsychologia 41, 263–270 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Henson, R., Shallice, T. & Dolan, R. Neuroimaging evidence for dissociable forms of repetition priming. Science 287, 1269–1272 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Graf, P. & Schacter, D. L. Implicit and explicit memory for new associations in normal and amnesic subjects. J. Exp. Psychol. Learn. Mem. Cogn. 11, 501–518 (1985).

    Article  CAS  PubMed  Google Scholar 

  88. Tulving, E. & Schacter, D. L. Priming and human memory systems. Science 247, 301–306 (1990).

    Article  CAS  PubMed  Google Scholar 

  89. Walsh, V., Le Mare, C., Blaimire, A. & Cowey, A. Normal discrimination performance accompanied by priming deficits in monkeys with V4 and TEO lesions. Neuroreport 11, 1459–1462 (2000).

    CAS  PubMed  Google Scholar 

  90. Hikosaka, O., Takikawa, Y. & Kawagoe, R. Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol. Rev. 80, 953–978 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Leigh, R. J. & Zee, D. S. The Neurology of Eye Movements 3rd edn (Davis, Philadelphia, 1999).

    Google Scholar 

  92. Moschovakis, A. K., Scudder, C. A. & Highstein, S. M. The microscopic anatomy and physiology of the mammalian saccadic system. Prog. Neurobiol. 50, 133–254 (1996).

    Article  CAS  PubMed  Google Scholar 

  93. Munoz, D. P., Dorris, M. C., Paré, M. & Everling, S. On your mark, get set: brainstem circuitry underlying saccadic initiation. Can. J. Physiol. Pharmacol. 78, 934–944 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Scudder, C. A., Kaneko, C. R. S. & Fuchs, A. F. The brainstem burst generator for saccadic eye movments. Exp. Brain Res. 142, 439–462 (2002).

    Article  PubMed  Google Scholar 

  95. Schall, J. D. in Cerebral Cortex Vol. 12 (eds Rockland, K., Peters, A. & Kaas, J.) 527–628 (Plenum, New York, 1997).

    Google Scholar 

  96. Sparks, D. L. The brainstem control of saccadic eye movements. Nature Rev. Neurosci. 3, 952–964 (2002).

    Article  CAS  Google Scholar 

  97. Sparks, D. L. & Mays, L. E. Signal transformations required for the generation of saccadic eye movements. Annu. Rev. Neurosci. 13, 309–336 (1990).

    Article  CAS  PubMed  Google Scholar 

  98. Wurtz, R. H. & Goldberg, M. E. The Neurobiology of Saccadic Eye Movements (Amsterdam, New York, 1989).

    Google Scholar 

  99. Goldberg, M. E. & Wurtz, R. H. Activity of superior colliculus in behaving monkey. I. Visual receptive fields of single neurons. J. Neurophysiol. 35, 542–559 (1972).

    Article  CAS  PubMed  Google Scholar 

  100. Wurtz, R. H. & Goldberg, M. E. Activity of superior colliculus in behaving monkey. III. Cells discharging before eye movements. J. Neurophysiol. 35, 575–586 (1972).

    Article  CAS  PubMed  Google Scholar 

  101. Sparks, D. L. Functional properties of neurons in the monkey superior colliculus: coupling of neuronal activity and saccade onset. Brain Res. 156, 1–16 (1978).

    Article  CAS  PubMed  Google Scholar 

  102. Munoz, D. P. & Wurtz, R. H. Saccade-related activity in monkey superior colliculus I. Characteristics of burst and buildup cells. J. Neurophysiol. 73, 2313–2333 (1995).

    Article  CAS  PubMed  Google Scholar 

  103. Stanford, T. R. & Sparks, D. L. Systematic errors for saccades to remembered targets: evidence for a dissociation between saccade metrics and activity in the superior colliculus. Vision Res. 34, 93–106 (1994).

    Article  CAS  PubMed  Google Scholar 

  104. Munoz, D. P., Guitton, D. & Pelisson, D. Control of orienting gaze shifts by the tectoreticulospinal system in the head-free cat. III. Spatiotemporal characteristics of phasic motor discharges. J. Neurophysiol. 66, 1642–1666 (1991).

    Article  CAS  PubMed  Google Scholar 

  105. Kustov, A. A. & Robinson, D. L. Shared neural control of attentional shifts and eye movements. Nature 384, 74–77 (1996). This paper was the first to show that endogenous, covert shifts of attention are linked to oculomotor programming in the superior colliculus.

    Article  CAS  PubMed  Google Scholar 

  106. Horwitz, G. D. & Newsome, W. T. Target selection for saccadic eye movements: prelude activity in the superior colliculus during a direction-discrimination task. J. Neurophysiol. 86, 2543–2558 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Sato, T., Murthy, A., Thompson, K. G. & Schall, J. D. Effect of search efficiency but not response interference on visual selection in frontal eye field. Neuron 30, 583–591 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Gottlieb, J. P., Kusunoki, M. & Goldberg, M. E. The representation of visual salience in monkey parietal cortex. Nature 391, 481–484 (1998).

    Article  CAS  PubMed  Google Scholar 

  109. Colby, C. L. & Goldberg, M. E. Space and attention in parietal cortex. Annu. Rev. Neurosci. 22, 319–349 (1999).

    Article  CAS  PubMed  Google Scholar 

  110. Robinson, D. L. & Petersen, S. E. The pulvinar and visual salience. Trends Neurosci. 15, 127–132 (1992).

    Article  CAS  PubMed  Google Scholar 

  111. Ikeda, T., Takikawa, Y. & Hikosaka, O. Visuo-motor and anticipatory activities of monkey superior colliculus neurons are modulated by reward. Soc. Neurosci. Abstr. 27, 59.1 (2001).

    Google Scholar 

  112. Thompson, K. G., Bichot, N. P. & Schall, J. D. in Visual Attention and Cortical Circuits (eds Braun, J., Koch, C. & Davis, J.) 137–157 (MIT Press, Cambridge, Massachusetts, 2000).

    Google Scholar 

  113. Coe, B., Tomihara, K., Matsuzawa, M. & Hikosaka, O. Visual and anticipatory bias in three cortical eye fields of the monkey during an adaptive decision-making task. J. Neurosci. 22, 5081–5080 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Murthy, A., Thompson, K. G. & Schall, J. D. Dynamic dissociation of visual selection from saccade programming in frontal eye field. J. Neurophysiol. 86, 2634–2637 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Hanes, D. P. & Schall, J. D. Neural control of voluntary movement initiation. Science 274, 427–430 (1996). This study tests different models of reaction time and shows that the variable rise-to-threshold model best fits the neurophysiological data.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate helpful comments from R. McPeek on an earlier version of this article. J.F. is supported by a postdoctoral fellowship from the Natural Sciences and Engineering Research Council of Canada. D.M. is supported by the Canada Research Chair Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas P. Munoz.

Glossary

TASK SET

The same stimulus (for example, a ringing phone) can produce different responses (lift versus do not lift receiver) depending on the situation (your office versus someone else's). Task set refers to the way of responding that is adopted in a given situation. Task-switching experiments measure the costs involved when switching between sets.

SACCADE

A rapid eye movement (with speeds of up to 800° s−1) that brings the point of maximal visual acuity — the fovea — to the image of interest.

SPATIAL REFERENCE FRAMES

A reference frame describes a set of coordinates that is used to define where an object is located in space. In a retinocentric reference frame objects are mapped in retinal coordinates. In an environmental based (or allocentric) reference frame objects are mapped in world-based coordinates.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fecteau, J., Munoz, D. Exploring the consequences of the previous trial. Nat Rev Neurosci 4, 435–443 (2003). https://doi.org/10.1038/nrn1114

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1114

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing