Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neuronal cell-type classification: challenges, opportunities and the path forward

Key Points

  • Classification of neurons into types enables their reproducible identification across times, laboratories and conditions.

  • Classification also facilitates genetic access for functional studies, as well as analyses of development, evolution and disease.

  • Neuronal cell types must be defined by multiple criteria related to their morphological, physiological, molecular and connectional properties.

  • Past efforts at neuronal classification were hindered by severe biases and under-sampling, but newly developed high-throughput techniques allow this limitation to be circumvented.

  • For some regions of the central nervous system, particularly the retina and cerebral cortex, a complete cell census appears within reach.

  • Principles derived from the well-developed field of species taxonomy (systematics) provide common-sense guidelines for cell-type classification.

Abstract

Neurons have diverse molecular, morphological, connectional and functional properties. We believe that the only realistic way to manage this complexity — and thereby pave the way for understanding the structure, function and development of brain circuits — is to group neurons into types, which can then be analysed systematically and reproducibly. However, neuronal classification has been challenging both technically and conceptually. New high-throughput methods have created opportunities to address the technical challenges associated with neuronal classification by collecting comprehensive information about individual cells. Nonetheless, conceptual difficulties persist. Borrowing from the field of species taxonomy, we propose principles to be followed in the cell-type classification effort, including the incorporation of multiple, quantitative features as criteria, the use of discontinuous variation to define types and the creation of a hierarchical system to represent relationships between cells. We review the progress of classifying cell types in the retina and cerebral cortex and propose a staged approach for moving forward with a systematic cell-type classification in the nervous system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Criteria by which neurons can be classified.
Figure 2: Imaging methods for profiling neuronal properties.
Figure 3: Molecular methods for profiling neuronal properties.
Figure 4: Classification of retinal bipolar cells.
Figure 5: Neuronal classes and types found in the cerebral cortex.
Figure 6: Hierarchical classification of neurons.

Similar content being viewed by others

References

  1. Ramón y Cajal, S. Histologie Du Système Nerveux de L'homme & Des Vertébrés (ed. Maloine, A.) (Paris: Maloine, 1909). Translated by Swanson, N. & Swanson, L. W. (Oxford University Press, 1995). The founding document of neurobiology, which was in large part an attempt to classify neuronal types with the best method available at the time, Golgi staining.

    Book  Google Scholar 

  2. Ascoli, G. A. et al. Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat. Rev. Neurosci. 9, 557–568 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Bota, M. & Swanson, L. W. The neuron classification problem. Brain Res. Rev. 56, 79–88 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brenner, S. Sequences and consequences. Phil. Trans. R. Soc. B 365, 207–212 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fishell, G. & Heintz, N. The neuron identity problem: form meets function. Neuron 80, 602–612 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Markram, H. et al. Interneurons of the neocortical inhibitory system. Nat. Rev. Neurosci. 5, 793–807 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Masland, R. H. Neuronal cell types. Curr. Biol. 14, R497–R500 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Migliore, M. & Shepherd, G. M. An integrated approach to classifying neuronal phenotypes. Nat. Rev. Neurosci. 6, 810–818 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Nelson, S. B., Sugino, K. & Hempel, C. M. The problem of neuronal cell types: a physiological genomics approach. Trends Neurosci. 29, 339–345 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Seung, H. S. & Sumbul, U. Neuronal cell types and connectivity: lessons from the retina. Neuron 83, 1262–1272 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Somogyi, P. & Klausberger, T. Defined types of cortical interneurone structure space and spike timing in the hippocampus. J. Physiol. 562, 9–26 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Stevens, C. F. Neuronal diversity: too many cell types for comfort? Curr. Biol. 8, R708–R710 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Korn, H. & Faber, D. S. The Mauthner cell half a century later: a neurobiological model for decision-making? Neuron 47, 13–28 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Crick, F. The impact of molecular biology on neuroscience. Phil. Trans. R. Soc. Lond. B 354, 2021–2025 (1999).

    Article  CAS  Google Scholar 

  15. Huang, Z. J. & Zeng, H. Genetic approaches to neural circuits in the mouse. Annu. Rev. Neurosci. 36, 183–215 (2013). This article summarizes the progress enabled by obtaining genetic access to specific cell types, which relied on molecular classification.

    Article  CAS  PubMed  Google Scholar 

  16. Arendt, D. et al. The origin and evolution of cell types. Nat. Rev. Genet. 17, 744–757 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Taylor, J. P., Brown, R. H. Jr & Cleveland, D. W. Decoding ALS: from genes to mechanism. Nature 539, 197–206 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yonehara, K. et al. Congenital nystagmus gene FRMD7 is necessary for establishing a neuronal circuit asymmetry for direction selectivity. Neuron 89, 177–193 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sanes, J. R. & Masland, R. H. The types of retinal ganglion cells: current status and implications for neuronal classification. Annu. Rev. Neurosci. 38, 221–246 (2015). This article reviews the progress in classifying RGC types in mice. Remarkably, the estimated number has grown from 30 to >50 in the two years since its publication.

    Article  CAS  PubMed  Google Scholar 

  20. Anderson, D. J. The neural crest cell lineage problem: neuropoiesis? Neuron 3, 1–12 (1989).

    Article  CAS  PubMed  Google Scholar 

  21. Boije, H., Rulands, S., Dudczig, S., Simons, B. D. & Harris, W. A. The independent probabilistic firing of transcription factors: a paradigm for clonal variability in the zebrafish retina. Dev. Cell 34, 532–543 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. McLaughlin, T. & O'Leary, D. D. Molecular gradients and development of retinotopic maps. Annu. Rev. Neurosci. 28, 327–355 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Zipursky, S. L. & Sanes, J. R. Chemoaffinity revisited: dscams, protocadherins, and neural circuit assembly. Cell 143, 343–353 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Rowe, M. H. & Stone, J. The interpretation of variation in the classification of nerve cells. Brain Behav. Evol. 17, 123–151 (1980).

    Article  CAS  PubMed  Google Scholar 

  25. Wagner, A., Regev, A. & Yosef, N. Revealing the vectors of cellular identity with single-cell genomics. Nat. Biotechnol. 34, 1145–1160 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Deneris, E. S. & Hobert, O. Maintenance of postmitotic neuronal cell identity. Nat. Neurosci. 17, 899–907 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Waddington, C. H. The strategy of the genes: a discussion of some aspects of theoretical biology (Allen & Unwin, 1957).

    Google Scholar 

  28. Rodieck, R. W. & Brening, R. K. Retinal ganglion cells: properties, types, genera, pathways and trans-species comparisons. Brain Behav. Evol. 23, 121–164 (1983).

    Article  CAS  PubMed  Google Scholar 

  29. Rowe, M. H. & Stone, J. Naming of neurones. Classification and naming of cat retinal ganglion cells. Brain Behav. Evol. 14, 185–216 (1977).

    Article  CAS  PubMed  Google Scholar 

  30. Tyner, C. F. The naming of neurons: applications of taxonomic theory to the study of cellular populations. Brain Behav. Evol. 12, 75–96 (1975). A prescient discussion of how taxonomic principles could be used to improve cell-type classification. Cast in terms of physiological properties (see also Refs 24, 28 and 29 ), it is even more applicable to modern molecular schemes.

    Article  CAS  PubMed  Google Scholar 

  31. Sulston, J. E., Schierenberg, E., White, J. G. & Thomson, J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119 (1983).

    Article  CAS  PubMed  Google Scholar 

  32. Leber, S. M., Breedlove, S. M. & Sanes, J. R. Lineage, arrangement, and death of clonally related motoneurons in chick spinal cord. J. Neurosci. 10, 2451–2462 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Agathocleous, M. & Harris, W. A. From progenitors to differentiated cells in the vertebrate retina. Annu. Rev. Cell Dev. Biol. 25, 45–69 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Ma, Y., Hu, H., Berrebi, A. S., Mathers, P. H. & Agmon, A. Distinct subtypes of somatostatin-containing neocortical interneurons revealed in transgenic mice. J. Neurosci. 26, 5069–5082 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dietzl, G. et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448, 151–156 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Gong, S. et al. Targeting Cre recombinase to specific neuron populations with bacterial artificial chromosome constructs. J. Neurosci. 27, 9817–9823 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim, I. J., Zhang, Y., Yamagata, M., Meister, M. & Sanes, J. R. Molecular identification of a retinal cell type that responds to upward motion. Nature 452, 478–482 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Siegert, S. et al. Genetic address book for retinal cell types. Nat. Neurosci. 12, 1197–1204 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Taniguchi, H. et al. A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex. Neuron 71, 995–1013 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jenett, A. et al. A GAL4-driver line resource for Drosophila neurobiology. Cell Rep. 2, 991–1001 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Manning, L. et al. A resource for manipulating gene expression and analyzing cis-regulatory modules in the Drosophila CNS. Cell Rep. 2, 1002–1013 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gerfen, C. R., Paletzki, R. & Heintz, N. GENSAT BAC cre-recombinase driver lines to study the functional organization of cerebral cortical and basal ganglia circuits. Neuron 80, 1368–1383 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Harris, J. A. et al. Anatomical characterization of Cre driver mice for neural circuit mapping and manipulation. Front. Neural Circuits 8, 76 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chiang, A. S. et al. Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Curr. Biol. 21, 1–11 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Shih, C. T. et al. Connectomics-based analysis of information flow in the Drosophila brain. Curr. Biol. 25, 1249–1258 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Economo, M. N. et al. A platform for brain-wide imaging and reconstruction of individual neurons. eLife 5, e10566 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gong, H. et al. High-throughput dual-colour precision imaging for brain-wide connectome with cytoarchitectonic landmarks at the cellular level. Nat. Commun. 7, 12142 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gong, H. et al. Continuously tracing brain-wide long-distance axonal projections in mice at a one-micron voxel resolution. Neuroimage 74, 87–98 (2013).

    Article  PubMed  Google Scholar 

  49. Markram, H. et al. Reconstruction and simulation of neocortical microcircuitry. Cell 163, 456–492 (2015). This paper reports a large-scale electrophysiological and morphological characterization and classification of neocortical neurons.

    Article  CAS  PubMed  Google Scholar 

  50. Costa, M., Manton, J. D., Ostrovsky, A. D., Prohaska, S. & Jefferis, G. S. NBLAST: rapid, sensitive comparison of neuronal structure and construction of neuron family databases. Neuron 91, 293–311 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Peng, H. et al. BigNeuron: large-scale 3D neuron reconstruction from optical microscopy images. Neuron 87, 252–256 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sumbul, U. et al. A genetic and computational approach to structurally classify neuronal types. Nat. Commun. 5, 3512 (2014).

    Article  PubMed  CAS  Google Scholar 

  53. Ascoli, G. A., Maraver, P., Nanda, S., Polavaram, S. & Armananzas, R. Win-win data sharing in neuroscience. Nat. Methods 14, 112–116 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Phil. Trans. R. Soc. Lond. B 314, 1–340 (1986).

    Article  CAS  Google Scholar 

  55. Denk, W. & Horstmann, H. Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol. 2, e329 (2004). A seminal paper of the modern age of ultrastructural connectomics, this study introduced the high-throughput serial scanning electron microscopy method that remains the most used in research (see Refs 56 and 57 for other methods).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Knott, G., Marchman, H., Wall, D. & Lich, B. Serial section scanning electron microscopy of adult brain tissue using focused ion beam milling. J. Neurosci. 28, 2959–2964 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hayworth, K. J. et al. Imaging ATUM ultrathin section libraries with WaferMapper: a multi-scale approach to EM reconstruction of neural circuits. Front. Neural Circuits 8, 68 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kasthuri, N. et al. Saturated reconstruction of a volume of neocortex. Cell 162, 648–661 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Bock, D. D. et al. Network anatomy and in vivo physiology of visual cortical neurons. Nature 471, 177–182 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Eberle, A. L. et al. High-resolution, high-throughput imaging with a multibeam scanning electron microscope. J. Microsc. 259, 114–120 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Beier, T. et al. Multicut brings automated neurite segmentation closer to human performance. Nat. Methods 14, 101–102 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Greene, M. J., Kim, J. S., Seung, H. S. & The EyeWirers. Analogous convergence of sustained and transient inputs parallel on off pathways retinal motion computation. Cell Rep. 14, 1892–1900 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim, J. S. et al. Space-time wiring specificity supports direction selectivity in the retina. Nature 509, 331–336 (2014). References 62 and 63 used serial block-face imaging (described in Ref 55) and crowd-sourced reconstruction to provide an ultrastructural classification of retinal BCs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Berck, M. E. et al. The wiring diagram of a glomerular olfactory system. eLife 5, e14859 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Takemura, S. Y. et al. A visual motion detection circuit suggested by Drosophila connectomics. Nature 500, 175–181 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Briggman, K. L., Helmstaedter, M. & Denk, W. Wiring specificity in the direction-selectivity circuit of the retina. Nature 471, 183–188 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Helmstaedter, M. et al. Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature 500, 168–174 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Lee, W. C. et al. Anatomy and function of an excitatory network in the visual cortex. Nature 532, 370–374 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Morgan, J. L., Berger, D. R., Wetzel, A. W. & Lichtman, J. W. The fuzzy logic of network connectivity in mouse visual thalamus. Cell 165, 192–206 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Obien, M. E., Deligkaris, K., Bullmann, T., Bakkum, D. J. & Frey, U. Revealing neuronal function through microelectrode array recordings. Front. Neurosci. 8, 423 (2014).

    PubMed  Google Scholar 

  71. Antic, S. D., Empson, R. M. & Knopfel, T. Voltage imaging to understand connections and functions of neuronal circuits. J. Neurophysiol. 116, 135–152 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chen, T. W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Peron, S., Chen, T. W. & Svoboda, K. Comprehensive imaging of cortical networks. Curr. Opin. Neurobiol. 32, 115–123 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Yang, W. & Yuste, R. In vivo imaging of neural activity. Nat. Methods 14, 349–359 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kim, T. H. et al. Long-term optical access to an estimated one million neurons in the live mouse cortex. Cell Rep. 17, 3385–3394 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sofroniew, N. J., Flickinger, D., King, J. & Svoboda, K. A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging. eLife 5, e14472 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Andermann, M. L. et al. Chronic cellular imaging of entire cortical columns in awake mice using microprisms. Neuron 80, 900–913 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Ghosh, K. K. et al. Miniaturized integration of a fluorescence microscope. Nat. Methods 8, 871–878 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lu, R. et al. Video-rate volumetric functional imaging of the brain at synaptic resolution. Nat. Neurosci. 20, 620–628 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ouzounov, D. G. et al. In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain. Nat. Methods 14, 388–390 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ziv, Y. et al. Long-term dynamics of CA1 hippocampal place codes. Nat. Neurosci. 16, 264–266 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ahrens, M. B., Orger, M. B., Robson, D. N., Li, J. M. & Keller, P. J. Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat. Methods 10, 413–420 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Naumann, E. A. et al. From whole-brain data to functional circuit models: the zebrafish optomotor response. Cell 167, 947–960e20 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cox, J., Pinto, L. & Dan, Y. Calcium imaging of sleep-wake related neuronal activity in the dorsal pons. Nat. Commun. 7, 10763 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Resendez, S. L. et al. Visualization of cortical, subcortical and deep brain neural circuit dynamics during naturalistic mammalian behavior with head-mounted microscopes and chronically implanted lenses. Nat. Protoc. 11, 566–597 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Shapiro, E., Biezuner, T. & Linnarsson, S. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat. Rev. Genet. 14, 618–630 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Trapnell, C. Defining cell types and states with single-cell genomics. Genome Res. 25, 1491–1498 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Poulin, J. F., Tasic, B., Hjerling-Leffler, J., Trimarchi, J. M. & Awatramani, R. Disentangling neural cell diversity using single-cell transcriptomics. Nat. Neurosci. 19, 1131–1141 (2016).

    Article  PubMed  CAS  Google Scholar 

  89. Svensson, V. et al. Power analysis of single-cell RNA-sequencing experiments. Nat. Methods 14, 381–387 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Picelli, S. et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods 10, 1096–1098 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Ramskold, D. et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat. Biotechnol. 30, 777–782 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Islam, S. et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res. 21, 1160–1167 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Islam, S. et al. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat. Methods 11, 163–166 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Hashimshony, T. et al. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq. Genome Biol. 17, 77 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Hashimshony, T., Wagner, F., Sher, N. & Yanai, I. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Rep. 2, 666–673 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Pollen, A. A. et al. Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat. Biotechnol. 32, 1053–1058 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015). This paper introduces Drop-seq, one of three similar methods used for microfluidic-based high-throughput scRNA-seq (see also Refs 98 and 99).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zheng, G. X. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sheng, K., Cao, W., Niu, Y., Deng, Q. & Zong, C. Effective detection of variation in single-cell transcriptomes using MATQ-seq. Nat. Methods 14, 267–270 (2017).

    Article  CAS  PubMed  Google Scholar 

  101. Habib, N. et al. Div-Seq: Single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons. Science 353, 925–928 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Krishnaswami, S. R. et al. Using single nuclei for RNA-seq to capture the transcriptome of postmortem neurons. Nat. Protoc. 11, 499–524 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lacar, B. et al. Nuclear RNA-seq of single neurons reveals molecular signatures of activation. Nat. Commun. 7, 11022 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lake, B. B. et al. Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain. Science 352, 1586–1590 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Shekhar, K. et al. Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell 166, 1308–1323e30 (2016). This paper uses high-throughput scRNA-seq (Drop-seq, Ref. 97 ) to provide a molecular classification of retinal BCs; it also shows a 1:1 relationship of molecularly and morphologically defined types.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ziegenhain, C. et al. Comparative analysis of single-cell RNA sequencing methods. Mol. Cell 65, 631–643e4 (2017).

    Article  CAS  PubMed  Google Scholar 

  107. Cadwell, C. R. et al. Electrophysiological, transcriptomic and morphologic profiling of single neurons using Patch-seq. Nat. Biotechnol. 34, 199–203 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. Fuzik, J. et al. Integration of electrophysiological recordings with single-cell RNA-seq data identifies neuronal subtypes. Nat. Biotechnol. 34, 175–183 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Baden, T. et al. The functional diversity of retinal ganglion cells in the mouse. Nature 529, 345–350 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lubeck, E. & Cai, L. Single-cell systems biology by super-resolution imaging and combinatorial labeling. Nat. Methods 9, 743–748 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Shah, S., Lubeck, E., Zhou, W. & Cai, L. In situ transcription profiling of single cells reveals spatial organization of cells in the mouse hippocampus. Neuron 92, 342–357 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015). This paper describes MERFISH, one of several highly multiplexed methods used for in situ hybridization.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Moffitt, J. R. et al. High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization. Proc. Natl Acad. Sci. USA 113, 11046–11051 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Moffitt, J. R. et al. High-performance multiplexed fluorescence in situ hybridization in culture and tissue with matrix imprinting and clearing. Proc. Natl Acad. Sci. USA 113, 14456–14461 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Chen, F. et al. Nanoscale imaging of RNA with expansion microscopy. Nat. Methods 13, 679–684 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lee, J. H. et al. Highly multiplexed subcellular RNA sequencing in situ. Science 343, 1360–1363 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ke, R. et al. In situ sequencing for RNA analysis in preserved tissue and cells. Nat. Methods 10, 857–860 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Larsson, C., Grundberg, I., Soderberg, O. & Nilsson, M. In situ detection and genotyping of individual mRNA molecules. Nat. Methods 7, 395–397 (2010).

    Article  CAS  PubMed  Google Scholar 

  119. Masland, R. H. The neuronal organization of the retina. Neuron 76, 266–280 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sanes, J. R. & Zipursky, S. L. Design principles of insect and vertebrate visual systems. Neuron 66, 15–36 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kay, J. N., Chu, M. W. & Sanes, J. R. MEGF10 and MEGF11 mediate homotypic interactions required for mosaic spacing of retinal neurons. Nature 483, 465–469 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Reese, B. E. & Keeley, P. W. Design principles and developmental mechanisms underlying retinal mosaics. Biol. Rev. Camb. Philos. Soc. 90, 854–876 (2015).

    Article  PubMed  Google Scholar 

  123. Euler, T., Haverkamp, S., Schubert, T. & Baden, T. Retinal bipolar cells: elementary building blocks of vision. Nat. Rev. Neurosci. 15, 507–519 (2014).

    Article  CAS  PubMed  Google Scholar 

  124. Franke, K. et al. Inhibition decorrelates visual feature representations in the inner retina. Nature 542, 439–444 (2017). This paper uses high-throughput calcium imaging to provide a physiological classification of retinal BCs; the types defined here correspond 1:1 with those defined molecularly (Ref. 105 ) and morphologically (Refs 62 and 63).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wassle, H., Puller, C., Muller, F. & Haverkamp, S. Cone contacts, mosaics, and territories of bipolar cells in the mouse retina. J. Neurosci. 29, 106–117 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Della Santina, L. et al. Glutamatergic monopolar interneurons provide a novel pathway of excitation in the mouse retina. Curr. Biol. 26, 2070–2077 (2016).

    Article  CAS  PubMed  Google Scholar 

  127. Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Douglas, R. J. & Martin, K. A. Neuronal circuits of the neocortex. Annu. Rev. Neurosci. 27, 419–451 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Greig, L. C., Woodworth, M. B., Galazo, M. J., Padmanabhan, H. & Macklis, J. D. Molecular logic of neocortical projection neuron specification, development and diversity. Nat. Rev. Neurosci. 14, 755–769 (2013).

    Article  CAS  PubMed  Google Scholar 

  130. Harris, K. D. & Shepherd, G. M. The neocortical circuit: themes and variations. Nat. Neurosci. 18, 170–181 (2015). An updated review of neocortical neuronal types and their patterns of input-output connections, which are repeated across cortical areas.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Molyneaux, B. J., Arlotta, P., Menezes, J. R. & Macklis, J. D. Neuronal subtype specification in the cerebral cortex. Nat. Rev. Neurosci. 8, 427–437 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Kim, E. J., Juavinett, A. L., Kyubwa, E. M., Jacobs, M. W. & Callaway, E. M. Three types of cortical layer 5 neurons that differ in brain-wide connectivity and function. Neuron 88, 1253–1267 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kita, T. & Kita, H. The subthalamic nucleus is one of multiple innervation sites for long-range corticofugal axons: a single-axon tracing study in the rat. J. Neurosci. 32, 5990–5999 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Velez-Fort, M. et al. The stimulus selectivity and connectivity of layer six principal cells reveals cortical microcircuits underlying visual processing. Neuron 83, 1431–1443 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Yamashita, T. et al. Membrane potential dynamics of neocortical projection neurons driving target-specific signals. Neuron 80, 1477–1490 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Tasic, B. et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat. Neurosci. 19, 335–346 (2016). This article reports a comprehensive scRNA-seq characterization and classification of adult neocortical neurons using the Smart-seq method, which resulted in a transcriptomic cell type taxonomy that is supported by genetic (Cre recombinase driver lines), physiological, morphological and projectional evidence.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Fishell, G. & Rudy, B. Mechanisms of inhibition within the telencephalon: “where the wild things are”. Annu. Rev. Neurosci. 34, 535–567 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kepecs, A. & Fishell, G. Interneuron cell types are fit to function. Nature 505, 318–326 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Rudy, B., Fishell, G., Lee, S. & Hjerling-Leffler, J. Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons. Dev. Neurobiol. 71, 45–61 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Tremblay, R., Lee, S. & Rudy, B. GABAergic interneurons in the neocortex: from cellular properties to circuits. Neuron 91, 260–292 (2016). An updated review of neocortical interneuron types, their cellular properties and their potential functions in circuit motifs and network operations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Klausberger, T. & Somogyi, P. Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321, 53–57 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Jiang, X. et al. Principles of connectivity among morphologically defined cell types in adult neocortex. Science 350, aac9462 (2015). Reports a large-scale electrophysiological and morphological characterization of adult neocortical neurons, revealing connectivity patterns among morphologically defined neuronal types.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Ohki, K. & Reid, R. C. Specificity and randomness in the visual cortex. Curr. Opin. Neurobiol. 17, 401–407 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Morrie, R. D. & Feller, M. B. Development of synaptic connectivity in the retinal direction selective circuit. Curr. Opin. Neurobiol. 40, 45–52 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Oyster, C. W. & Barlow, H. B. Direction-selective units in rabbit retina: distribution of preferred directions. Science 155, 841–842 (1967).

    Article  CAS  PubMed  Google Scholar 

  146. Reid, R. C. From functional architecture to functional connectomics. Neuron 75, 209–217 (2012).

    Article  CAS  PubMed  Google Scholar 

  147. Dehorter, N. et al. Tuning of fast-spiking interneuron properties by an activity-dependent transcriptional switch. Science 349, 1216–1220 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Spitzer, N. C. Neurotransmitter switching? No surprise. Neuron 86, 1131–1144 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Gray, K. A., Seal, R. L., Tweedie, S., Wright, M. W. & Bruford, E. A. A review of the new HGNC gene family resource. Hum. Genom. 10, 6 (2016).

    Article  CAS  Google Scholar 

  150. McDonald, A. G., Boyce, S. & Tipton, K. F. ExplorEnz: the primary source of the IUBMB enzyme list. Nucleic Acids Res. 37, D593–D597 (2009).

    Article  CAS  PubMed  Google Scholar 

  151. Hamann, J. et al. International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G protein-coupled receptors. Pharmacol. Rev. 67, 338–367 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Usoskin, D. et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat. Neurosci. 18, 145–153 (2015).

    Article  CAS  PubMed  Google Scholar 

  153. Zeisel, A. et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138–1142 (2015).

    Article  CAS  PubMed  Google Scholar 

  154. Darmanis, S. et al. A survey of human brain transcriptome diversity at the single cell level. Proc. Natl Acad. Sci. USA 112, 7285–7290 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Pollen, A. A. et al. Molecular identity of human outer radial glia during cortical development. Cell 163, 55–67 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Romanov, R. A. et al. Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes. Nat. Neurosci. 20, 176–188 (2017).

    Article  CAS  PubMed  Google Scholar 

  157. Li, C. L. et al. Somatosensory neuron types identified by high-coverage single-cell RNA-sequencing and functional heterogeneity. Cell Res. 26, 83–102 (2016).

    Article  CAS  PubMed  Google Scholar 

  158. Kee, N. et al. Single-cell analysis reveals a close relationship between differentiating dopamine and subthalamic nucleus neuronal lineages. Cell Stem Cell 20, 29–40 (2017).

    Article  CAS  PubMed  Google Scholar 

  159. Campbell, J. N. et al. A molecular census of arcuate hypothalamus and median eminence cell types. Nat. Neurosci. 20, 484–496 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Wallace, M. L. et al. Genetically distinct parallel pathways in the entopeduncular nucleus for limbic and sensorimotor output of the basal ganglia. Neuron 94, 138–152e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Quadrato, G. et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature 545, 48–53 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank our colleagues K. Shekhar, L. Zipursky, E. Lein, C. Reid, M. Hawrylycz, B. Tasic, S. Sorensen, J. Berg and C. Koch for their valuable comments. This work was funded by National Institutes of Health grants R37NS029169 and U01MH105960 to J.R.S. and U01MH105982 to H.Z. H.Z. would like to thank the Allen Institute founder, Paul G. Allen, for his vision, encouragement and support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongkui Zeng or Joshua R. Sanes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, H., Sanes, J. Neuronal cell-type classification: challenges, opportunities and the path forward. Nat Rev Neurosci 18, 530–546 (2017). https://doi.org/10.1038/nrn.2017.85

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn.2017.85

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing