Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Functional consequences of neuropeptide and small-molecule co-transmission

Key Points

  • The fundamental variables of small-molecule–neuropeptide co-transmission, including the potential degrees of freedom at particular presynaptic and postsynaptic profiles, and the impact of presynaptic neuron firing rate, modulatory state and extracellular peptidase activity, act to increase the complexity of synaptic transmission.

  • There is considerable diversity in the consequences for synaptic transmission resulting from small-molecule–neuropeptide co-transmission at identified synapses, and their impact on behaviour. One highlight is that the various mechanisms by which this co-transmission influences synapses (for example, convergent or divergent co-transmission, firing rate-dependent co-transmitter release, and so on) are shared across invertebrate and vertebrate species.

  • Using exogenously applied neuropeptides has provided many insights into their modulatory actions, but this approach also has limitations and can lead to erroneous conclusions, as illustrated by studies in the crustacean stomatogastric ganglion that compare the influence of exogenous versus neuronally released neuropeptides from identified neurons.

  • Extending small-molecule–neuropeptide co-transmission studies from individual synapses to their impact on microcircuits, results from the crustacean stomatogastric system are presented to elucidate the impact of convergent versus divergent co-transmission, to separate regulation of co-transmitters and to show the distinct influence on the same microcircuits of different neurons with shared co-transmitters.

  • Work from the stomatogastric system is also used to provide insight regarding the imperfect match between the influence of apparently equivalent, small-molecule–neuropeptide co-transmitting neurons on the same microcircuits in different species.

Abstract

Colocalization of small-molecule and neuropeptide transmitters is common throughout the nervous system of all animals. The resulting co-transmission, which provides conjoint ionotropic ('classical') and metabotropic ('modulatory') actions, includes neuropeptide- specific aspects that are qualitatively different from those that result from metabotropic actions of small-molecule transmitter release. Here, we focus on the flexibility afforded to microcircuits by such co-transmission, using examples from various nervous systems. Insights from such studies indicate that co-transmission mediated even by a single neuron can configure microcircuit activity via an array of contributing mechanisms, operating on multiple timescales, to enhance both behavioural flexibility and robustness.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Co-transmission of small molecules and neuropeptides provides many degrees of freedom to microcircuit output.
Figure 2: The crab Cancer borealis stomatogastric nervous system.
Figure 3: The microcircuit response to peptidergic neuron activity is not necessarily mimicked by bath application of that neuropeptide.
Figure 4: Peptide co-transmitters can have complementary actions on microcircuit output.
Figure 5: The response of a microcircuit to co-transmission can be sculpted by feedback to the co-transmitting neuron.
Figure 6: The muscle stretch-sensitive GPR neuron causes a state-dependent prolongation of the gastric mill retractor phase by selectively inhibiting CabTRP Ia release from MCN1.

Similar content being viewed by others

References

  1. Lingueglia, E., Champigny, G., Lazdunski, M. & Barbry, P. Cloning of the amiloride-sensitive FMRFamide peptide-gated sodium channel. Nature 378, 730–733 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Durrnagel, S. et al. Three homologous subunits form a high affinity peptide-gated ion channel in Hydra. J. Biol. Chem. 285, 11958–11965 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Grunder, S. & Assmann, M. Peptide-gated ion channels and the simple nervous system of Hydra. J. Exp. Biol. 218, 551–561 (2015).

    Article  PubMed  Google Scholar 

  4. Trudeau, L. E. et al. The multilingual nature of dopamine neurons. Prog. Brain Res. 211, 141–164 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tritsch, N. X., Granger, A. J. & Sabatini, B. L. Mechanisms and functions of GABA co-release. Nat. Rev. Neurosci. 17, 139–145 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vaaga, C. E., Borisovska, M. & Westbrook, G. L. Dual-transmitter neurons: functional implications of co-release and co-transmission. Curr. Opin. Neurobiol. 29, 25–32 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Kennedy, C. ATP as a cotransmitter in the autonomic nervous system. Auton. Neurosci. 191, 2–15 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Barker, D. J., Root, D. H., Zhang, S. & Morales, M. Multiplexed neurochemical signaling by neurons of the ventral tegmental area. J. Chem. Neuroanat. 73, 33–42 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Granger, A. J., Mulder, N., Saunders, A. & Sabatini, B. L. Cotransmission of acetylcholine and GABA. Neuropharmacology 100, 40–46 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Hnasko, T. S. & Edwards, R. H. Neurotransmitter corelease: mechanism and physiological role. Annu. Rev. Physiol. 74, 225–243 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Nusbaum, M. P., Blitz, D. M., Swensen, A. M., Wood, D. & Marder, E. The roles of co-transmission in neural network modulation. Trends Neurosci. 24, 146–154 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Sámano, C., Cifuentes, F. & Morales, M. A. Neurotransmitter segregation: functional and plastic implications. Prog. Neurobiol. 97, 277–287 (2012).

    Article  PubMed  CAS  Google Scholar 

  13. Schöne, C. & Burdakov, D. Glutamate and GABA as rapid effectors of hypothalamic “peptidergic” neurons. Front. Behav. Neurosci. 6, 81 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Zhang, S. et al. Dopaminergic and glutamatergic microdomains in a subset of rodent mesoaccumbens axons. Nat. Neurosci. 18, 386–392 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jan, L. Y. & Jan, Y. N. Peptidergic transmission in sympathetic ganglia of the frog. J. Physiol. 327, 219–246 (1982). This seminal paper was among the first to determine that neuronally released peptides are transmitters, are co-released with a small-molecule transmitter (thereby establishing the concept of co-transmission) and can influence target neurons at a distance (that is, with no direct synaptic contacts).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sigvardt, K. A., Rothman, B. S., Brown, R. O. & Mayeri, E. The bag cells of Aplysia as a multitransmitter system: identification of alpha bag cell peptide as a second neurotransmitter. J. Neurosci. 6, 803–813 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kupfermann, I. Functional studies of cotransmission. Physiol. Rev. 71, 683–732 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Whim, M. D. & Lloyd, P. E. Frequency-dependent release of peptide cotransmitters from identified cholinergic motor neurons in Aplysia. Proc. Natl Acad. Sci. USA 86, 9034–9038 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Whim, M. D. & Lloyd, P. E. Neuropeptide cotransmitters released from identified cholinergic motor neurons in Aplysia. J. Neurosci. 10, 3313–3322 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Peng, Y.-Y. & Horn, J. P. Continuous repetitive stimuli are more effective than bursts for evoking LHRH release in bullfrog sympathetic ganglia. J. Neurosci. 11, 85–95 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vilim, F. S., Cropper, E. C., Price, D. A., Kupfermann, I. & Weiss, K. R. Release of peptide cotransmitters in Aplysia: regulation and functional implications. J. Neurosci. 16, 8105–8014 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vilim, F. S., Cropper, E. C., Price, D. A., Kupfermann, I. & Weiss, K. R. Peptide cotransmitter release from motorneuron B16 in Aplysia californica: costorage, corelease, and functional implications. J. Neurosci. 20, 2036–2042 (2000). This work reported that neuropeptide release can occur within the natural range of a neuron firing frequency, that co-released peptides with antagonist actions can be co-stored in the same dense-core vesicles (see also references 84 and 91) and that co-released peptides can have complementary actions on their shared target cells, even when their individual actions seem to be antagonistic.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vilim, F. S., Price, D. A., Lesser, W., Kupfermann, I. & Weiss, K. R. Costorage and corelease of modulatory peptide cotransmitters with partially antagonistic actions on the accessory radula closer muscle of Aplysia californica. J. Neurosci. 16, 8092–8104 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kirby, M. S. & Nusbaum, M. P. Peptide hormone modulation of a neuronally modulated motor circuit. J. Neurophysiol. 98, 3206–3220 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Ludwig, M. & Leng, G. Dendritic peptide release and peptide-dependent behaviours. Nat. Rev. Neurosci. 7, 126–136 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Whim, M. D. Near simultaneous release of classical and peptide cotransmitters from chromaffin cells. J. Neurosci. 26, 6637–6642 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nusbaum, M. P. & Blitz, D. M. Neuropeptide modulation of microcircuits. Curr. Opin. Neurobiol. 22, 592–601 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. van den Pol, A. N. Neuropeptide transmission in brain circuits. Neuron 76, 98–115 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nässel, D. R. & Winther, A. M. Drosophila neuropeptides in regulation of physiology and behavior. Prog. Neurobiol. 92, 42–104 (2010).

    Article  PubMed  CAS  Google Scholar 

  30. Nässel, D. R. Neuropeptide signaling near and far: how localized and timed is the action of neuropeptides in brain circuits? Invert. Neurosci. 9, 57–75 (2009).

    Article  PubMed  CAS  Google Scholar 

  31. Taghert, P. H. & Nitabach, M. N. Peptide neuromodulation in invertebrate model systems. Neuron 76, 82–97 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ma, M., Szabo, T. M., Jia, C., Marder, E. & Li, L. Mass spectrometric characterization and physiological actions of novel crustacean C-type allatostatins. Peptides 30, 1660–1668 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ma, M., Wang, J., Chen, R. & Li, L. Expanding the crustacean neuropeptidome using a multifaceted mass spectrometric approach. J. Proteome Res. 8, 2426–2437 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Winther, A. M., Siviter, R. J., Isaac, R. E., Predel, R. & Nässel, D. R. Neuronal expression of tachykinin-related peptides and gene transcript during postembryonic development of Drosophila. J. Comp. Neurol. 464, 180–196 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Chen, R., Hui, L., Sturm, R. M. & Li, L. Three dimensional mapping of neuropeptides and lipids in crustacean brain by mass spectral imaging. J. Am. Soc. Mass Spectrom. 20, 1068–1077 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dickinson, P. S. et al. Molecular, mass spectral, and physiological analyses of orcokinins and orcokinin precursor-related peptides in the lobster Homarus americanus and the crayfish Procambarus clarkii. Peptides 30, 297–317 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Stemmler, E. A., Peguero, B., Bruns, E. A., Dickinson, P. S. & Christie, A. E. Identification, physiological actions, and distribution of TPSGFLGMRamide: a novel tachykinin-related peptide from the midgut and stomatogastric nervous system of Cancer crabs. J. Neurochem. 101, 1351–1366 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Szabo, T. M. et al. Distribution and physiological effects of B-type allatostatins (myoinhibitory peptides, MIPs) in the stomatogastric nervous system of the crab Cancer borealis. J. Comp. Neurol. 519, 2658–2676 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hui, L. et al. Discovery and functional study of a novel crustacean tachykinin neuropeptide. ACS Chem. Neurosci. 2, 711–722 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dickinson, P. S. et al. Distinct or shared actions of peptide family isoforms: II. Multiple pyrokinins exert similar effects in the lobster stomatogastric nervous system. J. Exp. Biol. 218, 2905–2917 (2015).

    PubMed  PubMed Central  Google Scholar 

  41. Skiebe, P. & Schneider, H. Allatostatin peptides in the crab stomatogastric nervous system: inhibition of the pyloric motor pattern and distribution of allatostatin-like immunoreactivity. J. Exp. Biol. 194, 195–208 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. Nusbaum, M. P. & Marder, E. A neuronal role for a crustacean red pigment concentrating hormone-like peptide: neuromodulation of the pyloric rhythm in the crab, Cancer borealis. J. Exp. Biol. 135, 165–181 (1988).

    Article  CAS  Google Scholar 

  43. Dickinson, P. S., Sreekrishnan, A., Kwiatkowski, M. A. & Christie, A. E. Distinct or shared actions of peptide family isoforms: I. Peptide-specific actions of pyrokinins in the lobster cardiac neuromuscular system. J. Exp. Biol. 218, 2892–2904 (2015).

    PubMed  PubMed Central  Google Scholar 

  44. Poels, J. et al. Pharmacology of stomoxytachykinin receptor depends on second messenger system. Peptides 26, 109–114 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Poels, J. et al. Functional comparison of two evolutionary conserved insect neurokinin-like receptors. Peptides 28, 103–108 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Poels, J. et al. Characterization and distribution of NKD, a receptor for Drosophila tachykinin-related peptide 6. Peptides 30, 545–556 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Poels, J. et al. Myoinhibiting peptides are the ancestral ligands of the promiscuous Drosophila sex peptide receptor. Cell. Mol. Life Sci. 67, 3511–3522 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Fan, W., Boston, B. A., Kesterson, R. A., Hruby, V. J. & Cone, R. D. Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature 385, 165–168 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Ollmann, M. M. et al. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 278, 135–138 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Kombian, S. B., Mouginot, D. & Pittman, Q. J. Dendritically released peptides act as retrograde modulators of afferent excitation in the supraoptic nucleus in vitro. Neuron 19, 903–912 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Isaac, R. E., Bland, N. D. & Shirras, A. D. Neuropeptidases and the metabolic inactivation of insect neuropeptides. Gen. Comp. Endocrinol. 162, 8–17 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Nusbaum, M. P. Regulating peptidergic modulation of rhythmically active neural circuits. Brain Behav. Evol. 60, 378–387 (2002).

    Article  PubMed  Google Scholar 

  53. Duzzi, B. et al. [des-Arg1]-proctolin: a novel NEP-like enzyme inhibitor identified in Tityus serrulatus venom. Peptides 80, 18–24 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Chalasani, S. H. et al. Neuropeptide feedback modifies odor-evoked dynamics in Caenorhabditis elegans olfactory neurons. Nat. Neurosci. 13, 615–621 (2010). This work established that divergent co-transmission can both elicit (via fast synaptic transmission) a complex behaviour and regulate its duration (via slow, peptidergic transmission), the latter via a peptidergic negative feedback loop.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mills, H. et al. Opiates modulate noxious chemical nociception through a complex monoaminergic/peptidergic cascade. J. Neurosci. 36, 5498–5508 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Leinwand, S. G. & Chalasani, S. H. Neuropeptide signaling remodels chemosensory circuit composition in Caenorhabditis elegans. Nat. Neurosci. 16, 1461–1467 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Harris, G. et al. The monoaminergic modulation of sensory-mediated aversive responses in Caenorhabditis elegans requires glutamatergic/peptidergic cotransmission. J. Neurosci. 30, 7889–7899 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hapiak, V. et al. Neuropeptides amplify and focus the monoaminergic inhibition of nociception in Caenorhabditis elegans. J. Neurosci. 33, 14107–14116 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. DeLong, N. D., Beenhakker, M. P. & Nusbaum, M. P. Presynaptic inhibition selectively weakens peptidergic cotransmission in a small motor system. J. Neurophysiol. 102, 3492–3504 (2009). This paper demonstrated that neuropeptide co-release (with GABA) from an identified modulatory projection neuron is selectively inhibited (by an identified sensory feedback pathway, acting via its own divergent co-transmitter action), altering the motor pattern generated by the target microcircuit.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Iremonger, K. J., Kuzmiski, J. B., Baimoukhametova, D. V. & Bains, J. S. Dual regulation of anterograde and retrograde transmission by endocannabinoids. J. Neurosci. 31, 12011–12020 (2011). This study revealed the complexity of co-transmission by showing that, in the hypothalamus, dendritic release of eCB can regulate, via its actions on the presynaptic neuron, release of its retrograde peptide co-transmitters (VP and DYN).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ignell, R. et al. Presynaptic peptidergic modulation of olfactory receptor neurons in Drosophila. Proc. Natl Acad. Sci. USA 106, 13070–13075 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Barnstedt, O. et al. Memory-relevant mushroom body output synapses are cholinergic. Neuron 89, 1237–1247 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Root, C. M., Ko, K. I., Jafari, A. & Wang, J. W. Presynaptic facilitation by neuropeptide signaling mediates odor-driven food search. Cell 145, 133–144 (2011). This study showed that, during a particular behavioural state (starvation), a neuropeptide is released, binds to autoreceptors on identified olfactory neuron terminals and strengthens the co-release of that peptide and its small-molecule transmitter, thus driving increased food search behaviour.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang, J. W. Presynaptic modulation of early olfactory processing in Drosophila. Dev. Neurobiol. 72, 87–99 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kahsai, L., Kapan, N., Dircksen, H., Winther, A. M. & Nässel, D. R. Metabolic stress responses in Drosophila are modulated by brain neurosecretory cells that produce multiple neuropeptides. PLoS ONE 5, e11480 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Kapan, N., Lushchak, O. V., Luo, J. & Nässel, D. R. Identified peptidergic neurons in the Drosophila brain regulate insulin-producing cells, stress responses and metabolism by coexpressed short neuropeptide F and corazonin. Cell. Mol. Life Sci. 69, 4051–4066 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Choi, C. et al. Autoreceptor control of peptide/neurotransmitter corelease from PDF neurons determines allocation of circadian activity in Drosophila. Cell Rep. 2, 332–344 (2012). This study demonstrated that a neuropeptide that is released and binds to autoreceptors on circadian clock neurons facilitates its own release and that of its small-molecule co-transmitter, in this case shifting more of the fly's circadian-regulated activity from evening to morning.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kahsai, L., Kapan, N., Dircksen, H., Winther, A. M. & Nassel, D. R. Metabolic stress responses in Drosophila are modulated by brain neurosecretory cells that produce multiple neuropeptides. PLoS ONE 5, e11480 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Pulst, S. M., Rothman, B. S. & Mayeri, E. Presence of immunoreactive alpha-bag cell peptide[1-8] in bag cell neurons of Aplysia suggests novel carboxypeptidase processing of neuropeptides. Neuropeptides 10, 249–259 (1987).

    Article  CAS  PubMed  Google Scholar 

  70. Koh, H. Y., Vilim, F. S., Jing, J. & Weiss, K. R. Two neuropeptides colocalized in a command-like neuron use distinct mechanisms to enhance its fast synaptic connection. J. Neurophysiol. 90, 2074–2079 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Koh, H. Y. & Weiss, K. R. Activity-dependent peptidergic modulation of the plateau-generating neuron B64 in the feeding network of Aplysia. J. Neurophysiol. 97, 1862–1867 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Friedman, A. K. & Weiss, K. R. Repetition priming of motoneuronal activity in a small motor network: intercellular and intracellular signaling. J. Neurosci. 30, 8906–8919 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sun, Q. Q., Baraban, S. C., Prince, D. A. & Huguenard, J. R. Target-specific neuropeptide Y-ergic synaptic inhibition and its network consequences within the mammalian thalamus. J. Neurosci. 23, 9639–9649 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ptak, K. et al. Raphe neurons stimulate respiratory circuit activity by multiple mechanisms via endogenously released serotonin and substance P. J. Neurosci. 29, 3720–3737 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Atasoy, D., Betley, J. N., Su, H. H. & Sternson, S. M. Deconstruction of a neural circuit for hunger. Nature 488, 172–177 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jego, S. et al. Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus. Nat. Neurosci. 16, 1637–1643 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chee, M. J., Arrigoni, E. & Maratos-Flier, E. Melanin-concentrating hormone neurons release glutamate for feedforward inhibition of the lateral septum. J. Neurosci. 35, 3644–3651 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Qiu, J. et al. High-frequency stimulation-induced peptide release synchronizes arcuate kisspeptin neurons and excites GnRH neurons. eLife 5, e16246 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Brown, C. H., Scott, V., Ludwig, M., Leng, G. & Bourque, C. W. Somatodendritic dynorphin release: orchestrating activity patterns of vasopressin neurons. Biochem. Soc. Trans. 35, 1236–1242 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Israel, J. M., Poulain, D. A. & Oliet, S. H. Oxytocin-induced postinhibitory rebound firing facilitates bursting activity in oxytocin neurons. J. Neurosci. 28, 385–394 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Oliet, S. H., Baimoukhametova, D. V., Piet, R. & Bains, J. S. Retrograde regulation of GABA transmission by the tonic release of oxytocin and endocannabinoids governs postsynaptic firing. J. Neurosci. 27, 1325–1333 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sabatier, N. et al. Alpha-melanocyte-stimulating hormone stimulates oxytocin release from the dendrites of hypothalamic neurons while inhibiting oxytocin release from their terminals in the neurohypophysis. J. Neurosci. 23, 10351–10358 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sabatier, N. α-Melanocyte-stimulating hormone and oxytocin: a peptide signalling cascade in the hypothalamus. J. Neuroendocrinol. 18, 703–710 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Whitnall, M. H., Gainer, H., Cox, B. M. & Molineaux, C. J. Dynorphin-A-(1–8) is contained within vasopressin neurosecretory vesicles in rat pituitary. Science 222, 1137–1139 (1983).

    Article  CAS  PubMed  Google Scholar 

  85. Shuster, S. J., Riedl, M., Li, X., Vulchanova, L. & Elde, R. Stimulus-dependent translocation of κ opioid receptors to the plasma membrane. J. Neurosci. 19, 2658–2664 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hurbin, A., Orcel, H., Alonso, G., Moos, F. & Rabie, A. The vasopressin receptors colocalize with vasopressin in the magnocellular neurons of the rat supraoptic nucleus and are modulated by water balance. Endocrinology 143, 456–466 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Wang, L. & Armstrong, W. E. Tonic regulation of GABAergic synaptic activity on vasopressin neurones by cannabinoids. J. Neuroendocrinol. 24, 664–673 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Iremonger, K. J. & Bains, J. S. Retrograde opioid signaling regulates glutamatergic transmission in the hypothalamus. J. Neurosci. 29, 7349–7358 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Apergis-Schoute, J. et al. Optogenetic evidence for inhibitory signaling from orexin to MCH neurons via local microcircuits. J. Neurosci. 35, 5435–5441 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Li, Y. & van den Pol, A. N. Differential target-dependent actions of coexpressed inhibitory dynorphin and excitatory hypocretin/orexin neuropeptides. J. Neurosci. 26, 13037–13047 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Muschamp, J. W. et al. Hypocretin (orexin) facilitates reward by attenuating the antireward effects of its cotransmitter dynorphin in ventral tegmental area. Proc. Natl Acad. Sci. USA 111, E1648–E1655 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Li, X., Marchant, N. J. & Shaham, Y. Opposing roles of cotransmission of dynorphin and hypocretin on reward and motivation. Proc. Natl Acad. Sci. USA 111, 5765–5766 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Schöne, C., Apergis-Schoute, J., Sakurai, T., Adamantidis, A. & Burdakov, D. Coreleased orexin and glutamate evoke nonredundant spike outputs and computations in histamine neurons. Cell Rep. 7, 697–704 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Cape, S. S., Rehm, K. J., Ma, M., Marder, E. & Li, L. Mass spectral comparison of the neuropeptide complement of the stomatogastric ganglion and brain in the adult and embryonic lobster, Homarus americanus. J. Neurochem. 105, 690–702 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Rehm, K. J., Deeg, K. E. & Marder, E. Developmental regulation of neuromodulator function in the stomatogastric ganglion of the lobster, Homarus americanus. J. Neurosci. 28, 9828–9839 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sandvik, G. K., Hodne, K., Haug, T. M., Okubo, K. & Weltzien, F. A. RFamide peptides in early vertebrate development. Front. Endocrinol. (Lausanne) 5, 203 (2014).

    Article  Google Scholar 

  97. Sillar, K. T., Combes, D. & Simmers, J. Neuromodulation in developing motor microcircuits. Curr. Opin. Neurobiol. 29, 73–81 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Dulcis, D., Jamshidi, P., Leutgeb, S. & Spitzer, N. C. Neurotransmitter switching in the adult brain regulates behavior. Science 340, 449–453 (2013). This paper established that environmental conditions (short versus long photoperiods) can trigger a switch in the balance of co-transmitters (dopamine and somatostatin) and their receptors in rodent hypothalamic neurons, altering behaviours associated with these neurons.

    Article  CAS  PubMed  Google Scholar 

  99. Spitzer, N. C. Neurotransmitter switching? No surprise. Neuron 86, 1131–1144 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Marder, E., Hooper, S. L. & Siwicki, K. K. Modulatory action and distribution of the neuropeptide proctolin in the crustacean stomatogastric nervous system. J. Comp. Neurol. 243, 454–467 (1986).

    Article  CAS  PubMed  Google Scholar 

  101. Coleman, M. J., Nusbaum, M. P., Cournil, I. & Claiborne, B. J. Distribution of modulatory inputs to the stomatogastric ganglion of the crab, Cancer borealis. J. Comp. Neurol. 325, 581–594 (1992).

    Article  CAS  PubMed  Google Scholar 

  102. Nusbaum, M. P. & Marder, E. A modulatory proctolin-containing neuron (MPN). I. Identification and characterization. J. Neurosci. 9, 1591–1599 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Nusbaum, M. P. & Marder, E. A modulatory proctolin-containing neuron (MPN). II. State-dependent modulation of rhythmic motor activity. J. Neurosci. 9, 1600–1607 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Coleman, M. J. & Nusbaum, M. P. Functional consequences of compartmentalization of synaptic input. J. Neurosci. 14, 6544–6552 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Blitz, D. M. et al. Different proctolin neurons elicit distinct motor patterns from a multifunctional neuronal network. J. Neurosci. 19, 5449–5463 (1999). This study established that different identified neurons containing the same peptide co-transmitter and influencing the same microcircuits can elicit different motor patterns from these circuits.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Christie, A. E., Baldwin, D. H., Marder, E. & Graubard, K. Organization of the stomatogastric neuropil of the crab, Cancer borealis, as revealed by modulator immunocytochemistry. Cell Tissue Res. 288, 135–148 (1997).

    Article  CAS  PubMed  Google Scholar 

  107. Nusbaum, M. P., Weimann, J. M., Golowasch, J. & Marder, E. Presynaptic control of modulatory fibers by their neural network targets. J. Neurosci. 12, 2706–2714 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Swensen, A. M. et al. GABA and responses to GABA in the stomatogastric ganglion of the crab Cancer borealis. J. Exp. Biol. 203, 2075–2092 (2000).

    Article  CAS  PubMed  Google Scholar 

  109. Hooper, S. L. & Marder, E. Modulation of the lobster pyloric rhythm by the peptide proctolin. J. Neurosci. 7, 2097–2112 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Marder, E. & Bucher, D. Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. Annu. Rev. Physiol. 69, 291–316 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Marder, E. Neuromodulation of neuronal circuits: back to the future. Neuron 76, 1–11 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Fénelon, V. S., Kilman, V., Meyrand, P. & Marder, E. Sequential developmental acquisition of neuromodulatory inputs to a central pattern-generating network. J. Comp. Neurol. 408, 335–351 (1999).

    Article  PubMed  Google Scholar 

  113. Thirumalai, V. & Marder, E. Colocalized neuropeptides activate a central pattern generator by acting on different circuit targets. J. Neurosci. 22, 1874–1882 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wood, D. E., Stein, W. & Nusbaum, M. P. Projection neurons with shared cotransmitters elicit different motor patterns from the same neuronal circuit. J. Neurosci. 20, 8943–8953 (2000). This paper showed that two different identified projection neurons use the same two co-transmitters (GABA and proctolin) to elicit different motor patterns from the same microcircuit.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wood, D. E. & Nusbaum, M. P. Extracellular peptidase activity tunes motor pattern modulation. J. Neurosci. 22, 4185–4195 (2002). This paper showed that the same extracellular peptidase activity differentially influences how different identified projection neurons using the same neuropeptide co-transmitter modulate the same microcircuit.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Swensen, A. M. & Marder, E. Modulators with convergent cellular actions elicit distinct circuit outputs. J. Neurosci. 21, 4050–4058 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Stein, W., DeLong, N. D., Wood, D. E. & Nusbaum, M. P. Divergent co-transmitter actions underlie motor pattern activation by a modulatory projection neuron. Eur. J. Neurosci. 26, 1148–1165 (2007).

    Article  PubMed  Google Scholar 

  118. Bartos, M. & Nusbaum, M. P. Intercircuit control of motor pattern modulation by presynaptic inhibition. J. Neurosci. 17, 2247–2256 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bartos, M., Manor, Y., Nadim, F., Marder, E. & Nusbaum, M. P. Coordination of fast and slow rhythmic neuronal circuits. J. Neurosci. 19, 6650–6660 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Nadim, F., Manor, Y., Nusbaum, M. P. & Marder, E. Frequency regulation of a slow rhythm by a fast periodic input. J. Neurosci. 18, 5053–5067 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Golowasch, J. & Marder, E. Proctolin activates an inward current whose voltage dependence is modified by extracellular Ca2+. J. Neurosci. 12, 810–817 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Swensen, A. M. & Marder, E. Multiple peptides converge to activate the same voltage-dependent current in a central pattern-generating circuit. J. Neurosci. 20, 6752–6759 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Garcia, V. J., Daur, N., Temporal, S., Schulz, D. J. & Bucher, D. Neuropeptide receptor transcript expression levels and magnitude of ionic current responses show cell type-specific differences in a small motor circuit. J. Neurosci. 35, 6786–6800 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Saleh, T. M., Kombian, S. B., Zidichouski, J. A. & Pittman, Q. J. Peptidergic modulation of synaptic transmission in the parabrachial nucleus in vitro: importance of degradative enzymes in regulating synaptic efficacy. J. Neurosci. 16, 6046–6055 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Turner, A. J., Isaac, R. E. & Coates, D. The neprilysin (NEP) family of zinc metalloendopeptidases: genomics and function. Bioessays 23, 261–269 (2001).

    Article  CAS  PubMed  Google Scholar 

  126. Blitz, D. M. et al. A newly identified extrinsic input triggers a distinct gastric mill rhythm via activation of modulatory projection neurons. J. Exp. Biol. 211, 1000–1011 (2008).

    Article  PubMed  Google Scholar 

  127. Coleman, M. J., Konstant, P. H., Rothman, B. S. & Nusbaum, M. P. Neuropeptide degradation produces functional inactivation in the crustacean nervous system. J. Neurosci. 14, 6205–6216 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Katz, P. S. & Harris-Warrick, R. M. Neuromodulation of the crab pyloric central pattern generator by serotonergic/cholinergic proprioceptive afferents. J. Neurosci. 10, 1495–1512 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Katz, P. S. & Harris-Warrick, R. M. Recruitment of crab gastric mill neurons into the pyloric motor pattern by mechanosensory afferent stimulation. J. Neurophysiol. 65, 1442–1451 (1991).

    Article  CAS  PubMed  Google Scholar 

  130. Blitz, D. M. & Nusbaum, M. P. Distinct functions for cotransmitters mediating motor pattern selection. J. Neurosci. 19, 6774–6783 (1999). This study demonstrated that a single projection neuron uses spatially segregated actions of different co-transmitters to regulate separate microcircuits.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Christie, A. E. et al. Actions of a histaminergic/peptidergic projection neuron on rhythmic motor patterns in the stomatogastric nervous system of the crab Cancer borealis. J. Comp. Neurol. 469, 153–169 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kwiatkowski, M. A. et al. Coordination of distinct but interacting rhythmic motor programs by a modulatory projection neuron using different co-transmitters in different ganglia. J. Exp. Biol. 216, 1827–1836 (2013).

    PubMed  PubMed Central  Google Scholar 

  133. Ostroumov, A. et al. Stress increases ethanol self-administration via a shift toward excitatory GABA signaling in the ventral tegmental area. Neuron 92, 493–504 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Coleman, M. J., Meyrand, P. & Nusbaum, M. P. A switch between two modes of synaptic transmission mediated by presynaptic inhibition. Nature 378, 502–505 (1995).

    Article  CAS  PubMed  Google Scholar 

  135. Beenhakker, M. P., Blitz, D. M. & Nusbaum, M. P. Long-lasting activation of rhythmic neuronal activity by a novel mechanosensory system in the crustacean stomatogastric nervous system. J. Neurophysiol. 91, 78–91 (2004).

    Article  PubMed  Google Scholar 

  136. Diehl, F., White, R. S., Stein, W. & Nusbaum, M. P. Motor circuit-specific burst patterns drive different muscle and behavior patterns. J. Neurosci. 33, 12013–12029 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Beenhakker, M. P. & Nusbaum, M. P. Mechanosensory activation of a motor circuit by coactivation of two projection neurons. J. Neurosci. 24, 6741–6750 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. DeLong, N. D., Kirby, M. S., Blitz, D. M. & Nusbaum, M. P. Parallel regulation of a modulator-activated current via distinct dynamics underlies comodulation of motor circuit output. J. Neurosci. 29, 12355–12367 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Marder, E., Manor, Y., Nadim, F., Bartos, M. & Nusbaum, M. P. in Neuronal Mechanisms for Generating Locomotory Activity (eds Kiehn, O., Harris-Warrick, R. M., Jordan, L. M., Hultborn, H. & Kudo, N.) 226–237 (Ann. NY Acad. Sci., 1998).

    Google Scholar 

  140. Blitz, D. M. & Nusbaum, M. P. Motor pattern selection via inhibition of parallel pathways. J. Neurosci. 17, 4965–4975 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Beenhakker, M. P., DeLong, N. D., Saideman, S. R., Nadim, F. & Nusbaum, M. P. Proprioceptor regulation of motor circuit activity by presynaptic inhibition of a modulatory projection neuron. J. Neurosci. 25, 8794–8806 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. DeLong, N. D. & Nusbaum, M. P. Hormonal modulation of sensorimotor integration. J. Neurosci. 30, 2418–2427 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Katz, P. S., Eigg, M. H. & Harris-Warrick, R. M. Serotonergic/cholinergic muscle receptor cells in the crab stomatogastric nervous system. I. Identification and characterization of the gastropyloric receptor cells. J. Neurophysiol. 62, 558–570 (1989).

    Article  CAS  PubMed  Google Scholar 

  144. Birmingham, J. T., Szuts, Z., Abbott, L. F. & Marder, E. Encoding of muscle movement on two time scales by a sensory neuron that switches between spiking and burst modes. J. Neurophysiol. 82, 2786–2797 (1999).

    Article  CAS  PubMed  Google Scholar 

  145. Beltz, B. et al. Serotonergic innervation and modulation of the stomatogastric ganglion of three decapod crustaceans (Panulirus interruptus, Homarus americanus and Cancer irroratus). J. Exp. Biol. 109, 35–54 (1984).

    Article  CAS  PubMed  Google Scholar 

  146. Katz, P. S. & Harris-Warrick, R. M. Serotonergic/cholinergic muscle receptor cells in the crab stomatogastric nervous system. II. Rapid nicotinic and prolonged modulatory effects on neurons in the stomatogastric ganglion. J. Neurophysiol. 62, 571–581 (1989).

    Article  CAS  PubMed  Google Scholar 

  147. Beenhakker, M. P., Kirby, M. S. & Nusbaum, M. P. Mechanosensory gating of proprioceptor input to modulatory projection neurons. J. Neurosci. 27, 14308–14316 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Meyrand, P., Faumont, S., Simmers, J., Christie, A. E. & Nusbaum, M. P. Species-specific modulation of pattern-generating circuits. Eur. J. Neurosci. 12, 2585–2596 (2000). This study showed that likely-equivalent projection neurons in different species share a co-transmitter phenotype (small-molecule plus peptide co-transmitters) but exhibit some distinct actions on their shared target microcircuits.

    Article  CAS  PubMed  Google Scholar 

  149. Bucher, D., Taylor, A. L. & Marder, E. Central pattern generating neurons simultaneously express fast and slow rhythmic activities in the stomatogastric ganglion. J. Neurophysiol. 95, 3617–3632 (2006).

    Article  PubMed  Google Scholar 

  150. Cournil, I., Meyrand, P. & Moulins, M. Identification of all GABA-immunoreactive neurons projecting to the lobster stomatogastric ganglion. J. Neurocytol. 19, 478–493 (1990).

    Article  CAS  PubMed  Google Scholar 

  151. Marder, E. & Eisen, J. S. Electrically coupled pacemaker neurons respond differently to the same physiological inputs and neurotransmitters. J. Neurophysiol. 51, 1362–1374 (1984).

    Article  CAS  PubMed  Google Scholar 

  152. Russell, D. F. & Hartline, D. K. A multiaction synapse evoking both EPSPs and enhancement of endogenous bursting. Brain Res. 223, 19–38 (1981).

    Article  CAS  PubMed  Google Scholar 

  153. Sigvardt, K. A. & Mulloney, B. Properties of synapses made by IVN command-interneurones in the stomatogastric ganglion of the spiny lobster Panulirus interruptus. J. Exp. Biol. 97, 153–168 (1982).

    Article  CAS  PubMed  Google Scholar 

  154. Claiborne, B. J. & Selverston, A. I. Histamine as a neurotransmitter in the stomatogastric nervous system of the spiny lobster. J. Neurosci. 4, 708–721 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Bargmann, C. I. Beyond the connectome: how neuromodulators shape neural circuits. Bioessays 34, 458–465 (2012).

    Article  CAS  PubMed  Google Scholar 

  156. Bargmann, C. I. & Marder, E. From the connectome to brain function. Nat. Methods 10, 483–490 (2013).

    Article  CAS  PubMed  Google Scholar 

  157. Saideman, S. R. et al. Modulation of rhythmic motor activity by pyrokinin peptides. J. Neurophysiol. 97, 579–595 (2007).

    Article  CAS  PubMed  Google Scholar 

  158. Nusbaum, M. P. & Beenhakker, M. P. A small systems approach to motor pattern generation. Nature 417, 343–350 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. White, R. S. & Nusbaum, M. P. The same core rhythm generator underlies different rhythmic motor patterns. J. Neurosci. 31, 11484–11494 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research in the authors' laboratories is funded by the US National Institutes of Health (NIH) grant NS-29436 (MPN), NSF grant IOS-1153417 (D.M.B.) and NIH grant NS17813 (E.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Nusbaum.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Biogenic amines

Amine-containing neurotransmitters (dopamine, histamine, 5-hydroxytryptamine (vertebrates and invertebrates), noradrenaline (vertebrates) and octopamine (invertebrates)) that commonly, but not exclusively, act via G protein- coupled receptors to evoke metabotropic responses.

Stomatogastric ganglion

(STG). A small, well-defined ganglion in the decapod crustacean (for example, crabs and lobsters) stomatogastric nervous system containing 25–30 neurons (depending on species), nearly all of which contribute to one or both microcircuits (gastric mill circuit (chewing), pyloric circuit (pumping and filtering of chewed food)) located therein.

Postsynaptic convergence (of co-transmitters)

Multiple neurotransmitters released from the same neuron that bind to their respective receptors on the same postsynaptic neuron to regulate neuronal activity.

Presynaptic convergence (of co-transmitters)

Multiple neurotransmitters released from the same neuron that bind to their respective receptors on the same presynaptic terminal (or terminals) to regulate neurotransmitter release from said terminal (or terminals).

Retraction

Defines the phase of chewing when the teeth move apart; during the crab or lobster gastric mill rhythm, retraction defines the phase of neuronal activity in the sole interneuron (Int1) and the motor neurons (for example, DG neuron) that drive contraction of the 'retractor' muscles, which cause the teeth to move away from midline in the intact animal.

Protraction

Defines the phase of chewing when the teeth come together; during the crab or lobster gastric mill rhythm, protraction defines the phase of neuronal activity in the motor neurons (for example, LG neuron) that drive contraction of the 'protractor' muscles, which cause the teeth to come together at the midline in the intact animal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nusbaum, M., Blitz, D. & Marder, E. Functional consequences of neuropeptide and small-molecule co-transmission. Nat Rev Neurosci 18, 389–403 (2017). https://doi.org/10.1038/nrn.2017.56

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn.2017.56

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing