Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mitochondria and cell death: outer membrane permeabilization and beyond

Key Points

  • Mitochondrial outer membrane permeabilization (MOMP) is a crucial event for most apoptotic pathways. MOMP leads to the release of mitochondrial intermembrane space (IMS) proteins, such as cytochrome c, that promote caspase activation and apoptosis.

  • Mitochondrial outer membrane integrity is dynamically regulated through interactions between pro- and anti-apoptotic members of the B cell lymphoma 2 (BCL-2) protein family.

  • The pro-apoptotic BCL-2 proteins BCL-2-associated X protein (BAX) and BCL-2 antagonist or killer (BAK) are required for MOMP, although how they permeabilize the mitochondrial outer membrane remains unresolved.

  • Following MOMP, the mitochondrial release of certain IMS proteins can be further regulated.

  • Caspase activity can also be regulated post-MOMP by many different means, both at the level of apoptosome formation and at caspase 9 and executioner caspase activity.

  • MOMP generally commits a cell to death, irrespective of caspase activity, through a process termed caspase-independent cell death (CICD). Exactly how CICD occurs is unclear, but it involves the loss of mitochondrial function.

  • Under some circumstances, cells can survive following MOMP. Cell survival under these conditions requires a pool of mitochondria that remain intact following MOMP. Survival is promoted by glycolysis and autophagy.

Abstract

Mitochondrial outer membrane permeabilization (MOMP) is often required for activation of the caspase proteases that cause apoptotic cell death. Various intermembrane space (IMS) proteins, such as cytochrome c, promote caspase activation following their mitochondrial release. As a consequence, mitochondrial outer membrane integrity is highly controlled, primarily through interactions between pro- and anti-apoptotic members of the B cell lymphoma 2 (BCL-2) protein family. Following MOMP by pro-apoptotic BCL-2-associated X protein (BAX) or BCL-2 antagonist or killer (BAK), additional regulatory mechanisms govern the mitochondrial release of IMS proteins and caspase activity. MOMP typically leads to cell death irrespective of caspase activity by causing a progressive decline in mitochondrial function, although cells can survive this under certain circumstances, which may have pathophysiological consequences.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intrinsic and extrinsic pathways of apoptosis.
Figure 2: BAX and BAK activation and pore formation.
Figure 3: Post-MOMP regulation of caspase activity.
Figure 4: Cellular effects of MOMP.

Similar content being viewed by others

References

  1. Kerr, J. F., Wyllie, A. H. & Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257 (1972). A landmark study that introduced the term apoptosis and described in detail the morphological changes that are associated with this process.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Taylor, R. C., Cullen, S. P. & Martin, S. J. Apoptosis: controlled demolition at the cellular level. Nature Rev. Mol. Cell Biol. 9, 231–241 (2008).

    Article  CAS  Google Scholar 

  3. Yin, X. M. et al. Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 400, 886–891 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Jost, P. J. et al. XIAP discriminates between type I and type II FAS-induced apoptosis. Nature 460, 1035–1039 (2009). Showed that FAS-induced apoptosis in type II cells requires MOMP in order to block XIAP-mediated inhibition of caspase activity. This occurs through mitochondrial release of XIAP antagonists such as SMAC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Oberst, A., Bender, C. & Green, D. R. Living with death: the evolution of the mitochondrial pathway of apoptosis in animals. Cell Death Differ. 15, 1139–1146 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Abdelwahid, E. et al. Mitochondrial disruption in Drosophila apoptosis. Dev. Cell 12, 793–806 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Jagasia, R., Grote, P., Westermann, B. & Conradt, B. DRP-1-mediated mitochondrial fragmentation during EGL-1-induced cell death in C. elegans. Nature 433, 754–760 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Haraguchi, M. et al. Apoptotic protease activating factor 1 (Apaf-1)-independent cell death suppression by Bcl-2. J. Exp. Med. 191, 1709–1720 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chipuk, J. E., Moldoveanu, T., Llambi, F., Parsons, M. J. & Green, D. R. The BCL-2 family reunion. Mol. Cell 37, 299–310 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Youle, R. J. & Strasser, A. The BCL-2 protein family: opposing activities that mediate cell death. Nature Rev. Mol. Cell Biol. 9, 47–59 (2008).

    CAS  Google Scholar 

  11. Wei, M. C. et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292, 727–730 (2001). Describes the effect of knocking out both BAX and BAK in mice and reveals an absolute requirement for BAX and BAK in MOMP.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Eskes, R., Desagher, S., Antonsson, B. & Martinou, J. C. Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol. Cell Biol. 20, 929–935 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wei, M. C. et al. tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev. 14, 2060–2071 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hsu, Y. T., Wolter, K. G. & Youle, R. J. Cytosol-to-membrane redistribution of Bax and Bcl-X(L) during apoptosis. Proc. Natl Acad. Sci. USA 94, 3668–3672 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. George, N. M., Evans, J. J. & Luo, X. A three-helix homo-oligomerization domain containing BH3 and BH1 is responsible for the apoptotic activity of Bax. Genes Dev. 21, 1937–1948 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dewson, G. et al. To trigger apoptosis, Bak exposes its BH3 domain and homodimerizes via BH3:groove interactions. Mol. Cell 30, 369–380 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Lovell, J. F. et al. Membrane binding by tBid initiates an ordered series of events culminating in membrane permeabilization by Bax. Cell 135, 1074–1084 (2008). Elegant biophysical study showing a step-wise recruitment of tBID to the mitochondrial membrane and an interaction of tBID with BAX, followed by BAX activation and membrane permeabilization.

    Article  CAS  PubMed  Google Scholar 

  18. Gavathiotis, E. et al. BAX activation is initiated at a novel interaction site. Nature 455, 1076–1081 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Moldoveanu, T. et al. The X-ray structure of a BAK homodimer reveals an inhibitory zinc binding site. Mol. Cell 24, 677–688 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Dewson, G. et al. Bak activation for apoptosis involves oligomerization of dimers via their α6 helices. Mol. Cell 36, 696–703 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Saito, M., Korsmeyer, S. J. & Schlesinger, P. H. BAX-dependent transport of cytochrome c reconstituted in pure liposomes. Nature Cell Biol. 2, 553–555 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Nechushtan, A., Smith, C. L., Lamensdorf, I., Yoon, S. H. & Youle, R. J. Bax and Bak coalesce into novel mitochondria-associated clusters during apoptosis. J. Cell Biol. 153, 1265–1276 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhou, L. & Chang, D. C. Dynamics and structure of the Bax–Bak complex responsible for releasing mitochondrial proteins during apoptosis. J. Cell Sci. 121, 2186–2196 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Dussmann, H. et al. Single-cell quantification of Bax activation and mathematical modelling suggest pore formation on minimal mitochondrial Bax accumulation. Cell Death Differ. 17, 278–290 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Goldstein, J. C., Waterhouse, N. J., Juin, P., Evan, G. I. & Green, D. R. The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nature Cell Biol. 2, 156–162 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Lartigue, L. et al. An intracellular wave of cytochrome c propagates and precedes Bax redistribution during apoptosis. J. Cell Sci. 121, 3515–3523 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Rehm, M. et al. Dynamics of outer mitochondrial membrane permeabilization during apoptosis. Cell Death Differ. 16, 613–623 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Bhola, P. D., Mattheyses, A. L. & Simon, S. M. Spatial and temporal dynamics of mitochondrial membrane permeability waves during apoptosis. Biophys. J. 97, 2222–2231 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kuwana, T. et al. Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111, 331–342 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Rehm, M., Dussmann, H. & Prehn, J. H. Real-time single cell analysis of Smac/DIABLO release during apoptosis. J. Cell Biol. 162, 1031–1043 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Munoz-Pinedo, C. et al. Different mitochondrial intermembrane space proteins are released during apoptosis in a manner that is coordinately initiated but can vary in duration. Proc. Natl Acad. Sci. USA 103, 11573–11578 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Estaquier, J. & Arnoult, D. Inhibiting Drp1-mediated mitochondrial fission selectively prevents the release of cytochrome c during apoptosis. Cell Death Differ. 14, 1086–1094 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Ishihara, N. et al. Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nature Cell Biol. 11, 958–966 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Parone, P. A. et al. Inhibiting the mitochondrial fission machinery does not prevent Bax/Bak-dependent apoptosis. Mol. Cell Biol. 26, 7397–7408 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Muchmore, S. W. et al. X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381, 335–341 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Suzuki, M., Youle, R. J. & Tjandra, N. Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 103, 645–654 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Antonsson, B. et al. Inhibition of Bax channel-forming activity by Bcl-2. Science 277, 370–372 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Martinez-Caballero, S. et al. Assembly of the mitochondrial apoptosis-induced channel, MAC. J. Biol. Chem. 284, 12235–12245 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Peixoto, P. M., Ryu, S. Y., Bombrun, A., Antonsson, B. & Kinnally, K. W. MAC inhibitors suppress mitochondrial apoptosis. Biochem. J. 423, 381–387 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Schinzel, A. C. et al. Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc. Natl Acad. Sci. USA 102, 12005–12010 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nakagawa, T. et al. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434, 652–658 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Baines, C. P. et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434, 658–662 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Baines, C. P., Kaiser, R. A., Sheiko, T., Craigen, W. J. & Molkentin, J. D. Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nature Cell Biol. 9, 550–555 (2007). References 40–43 effectively rule out roles for permeability transition and VDAC function in MOMP.

    Article  CAS  PubMed  Google Scholar 

  44. Cheng, E. H., Sheiko, T. V., Fisher, J. K., Craigen, W. J. & Korsmeyer, S. J. VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science 301, 513–517 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Roy, S. S., Ehrlich, A. M., Craigen, W. J. & Hajnoczky, G. VDAC2 is required for truncated BID-induced mitochondrial apoptosis by recruiting BAK to the mitochondria. EMBO Rep. 10, 1341–1347 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Basanez, G. et al. Bax, but not Bcl-xL, decreases the lifetime of planar phospholipid bilayer membranes at subnanomolar concentrations. Proc. Natl Acad. Sci. USA 96, 5492–5497 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Basanez, G. et al. Bax-type apoptotic proteins porate pure lipid bilayers through a mechanism sensitive to intrinsic monolayer curvature. J. Biol. Chem. 277, 49360–49365 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Hardwick, J. M. & Polster, B. M. Bax, along with lipid conspirators, allows cytochrome c to escape mitochondria. Mol. Cell 10, 963–965 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Schafer, B. et al. Mitochondrial outer membrane proteins assist Bid in Bax-mediated lipidic pore formation. Mol. Biol. Cell 20, 2276–2285 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tilley, S. J., Orlova, E. V., Gilbert, R. J., Andrew, P. W. & Saibil, H. R. Structural basis of pore formation by the bacterial toxin pneumolysin. Cell 121, 247–256 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Polster, B. M., Basanez, G., Etxebarria, A., Hardwick, J. M. & Nicholls, D. G. Calpain I induces cleavage and release of apoptosis-inducing factor from isolated mitochondria. J. Biol. Chem. 280, 6447–6454 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Ott, M., Robertson, J. D., Gogvadze, V., Zhivotovsky, B. & Orrenius, S. Cytochrome c release from mitochondria proceeds by a two-step process. Proc. Natl Acad. Sci. USA 99, 1259–1263 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Uren, R. T. et al. Mitochondrial release of pro-apoptotic proteins: electrostatic interactions can hold cytochrome c but not Smac/DIABLO to mitochondrial membranes. J. Biol. Chem. 280, 2266–2274 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Yamaguchi, R. et al. Opa1-mediated cristae opening is Bax/Bak and BH3 dependent, required for apoptosis, and independent of Bak oligomerization. Mol. Cell 31, 557–569 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Scorrano, L. et al. A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev. Cell 2, 55–67 (2002). Describes changes in mitochondrial cristae structure during apoptosis and suggests that these changes are required for cytochrome c release.

    Article  CAS  PubMed  Google Scholar 

  56. Germain, M., Mathai, J. P., McBride, H. M. & Shore, G. C. Endoplasmic reticulum BIK initiates DRP1-regulated remodelling of mitochondrial cristae during apoptosis. EMBO J. 24, 1546–1556 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Landes, T. et al. The BH3-only Bnip3 binds to the dynamin Opa1 to promote mitochondrial fragmentation and apoptosis by distinct mechanisms. EMBO Rep. 11, 459–465.

  58. Cipolat, S. et al. Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell 126, 163–175 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Frezza, C. et al. OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126, 177–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Sun, M. G. et al. Correlated three-dimensional light and electron microscopy reveals transformation of mitochondria during apoptosis. Nature Cell Biol. 9, 1057–1065 (2007). This study found that gross changes in mitochondrial cristae structure were a consequence rather than a cause of MOMP.

    Article  CAS  PubMed  Google Scholar 

  61. Bernardi, P. & Azzone, G. F. Cytochrome c as an electron shuttle between the outer and inner mitochondrial membranes. J. Biol. Chem. 256, 7187–7192 (1981).

    CAS  PubMed  Google Scholar 

  62. Gillick, K. & Crompton, M. Evaluating cytochrome c diffusion in the intermembrane spaces of mitochondria during cytochrome c release. J. Cell Sci. 121, 618–626 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Brustugun, O. T., Fladmark, K. E., Doskeland, S. O., Orrenius, S. & Zhivotovsky, B. Apoptosis induced by microinjection of cytochrome c is caspase-dependent and is inhibited by Bcl-2. Cell Death Differ. 5, 660–668 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Slee, E. A., Keogh, S. A. & Martin, S. J. Cleavage of BID during cytotoxic drug and UV radiation-induced apoptosis occurs downstream of the point of Bcl-2 action and is catalysed by caspase-3: a potential feedback loop for amplification of apoptosis-associated mitochondrial cytochrome c release. Cell Death Differ. 7, 556–565 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Cheng, E. H. et al. Conversion of Bcl-2 to a Bax-like death effector by caspases. Science 278, 1966–1968 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Kim, H. E., Du, F., Fang, M. & Wang, X. Formation of apoptosome is initiated by cytochrome c-induced dATP hydrolysis and subsequent nucleotide exchange on Apaf-1. Proc. Natl Acad. Sci. USA 102, 17545–17550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chandra, D. et al. Intracellular nucleotides act as critical prosurvival factors by binding to cytochrome c and inhibiting apoptosome. Cell 125, 1333–1346 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Mei, Y. et al. tRNA binds to cytochrome c and inhibits caspase activation. Mol. Cell 37, 668–678 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Borutaite, V. & Brown, G. C. Mitochondrial regulation of caspase activation by cytochrome oxidase and tetramethylphenylenediamine via cytosolic cytochrome c redox state. J. Biol. Chem. 282, 31124–31130 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Pan, Z., Voehringer, D. W. & Meyn, R. E. Analysis of redox regulation of cytochrome c-induced apoptosis in a cell-free system. Cell Death Differ. 6, 683–688 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Kluck, R. M. et al. Cytochrome c activation of CPP32-like proteolysis plays a critical role in a Xenopus cell-free apoptosis system. EMBO J. 16, 4639–4649 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hampton, M. B., Zhivotovsky, B., Slater, A. F., Burgess, D. H. & Orrenius, S. Importance of the redox state of cytochrome c during caspase activation in cytosolic extracts. Biochem. J. 329, 95–99 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yang, J. et al. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275, 1129–1132 (1997).

    Article  CAS  PubMed  Google Scholar 

  74. Schonhoff, C. M., Gaston, B. & Mannick, J. B. Nitrosylation of cytochrome c during apoptosis. J. Biol. Chem. 278, 18265–18270 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Godoy, L. C. et al. Disruption of the M80-Fe ligation stimulates the translocation of cytochrome c to the cytoplasm and nucleus in nonapoptotic cells. Proc. Natl Acad. Sci. USA 106, 2653–2658 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Cain, K., Langlais, C., Sun, X. M., Brown, D. G. & Cohen, G. M. Physiological concentrations of K+ inhibit cytochrome c-dependent formation of the apoptosome. J. Biol. Chem. 276, 41985–41990 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Bao, Q., Lu, W., Rabinowitz, J. D. & Shi, Y. Calcium blocks formation of apoptosome by preventing nucleotide exchange in Apaf-1. Mol. Cell 25, 181–192 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Beere, H. M. et al. Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nature Cell Biol. 2, 469–475 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Saleh, A., Srinivasula, S. M., Balkir, L., Robbins, P. D. & Alnemri, E. S. Negative regulation of the Apaf-1 apoptosome by Hsp70. Nature Cell Biol. 2, 476–483 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Pandey, P. et al. Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J. 19, 4310–4322 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Schafer, Z. T. & Kornbluth, S. The apoptosome: physiological, developmental, and pathological modes of regulation. Dev. Cell 10, 549–561 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Jiang, X. et al. Distinctive roles of PHAP proteins and prothymosin-α in a death regulatory pathway. Science 299, 223–226 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Kim, H. E., Jiang, X., Du, F. & Wang, X. PHAPI, CAS, and Hsp70 promote apoptosome formation by preventing Apaf-1 aggregation and enhancing nucleotide exchange on Apaf-1. Mol. Cell 30, 239–247 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Hoffarth, S. et al. pp32/PHAPI determines the apoptosis response of non-small-cell lung cancer. Cell Death Differ. 15, 161–170 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Zermati, Y. et al. Nonapoptotic role for Apaf-1 in the DNA damage checkpoint. Mol. Cell 28, 624–637 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Allan, L. A. & Clarke, P. R. Apoptosis and autophagy: Regulation of caspase-9 by phosphorylation. FEBS J. 276, 6063–6073 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Allan, L. A. & Clarke, P. R. Phosphorylation of caspase-9 by CDK1/cyclin B1 protects mitotic cells against apoptosis. Mol. Cell 26, 301–310 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Allan, L. A. et al. Inhibition of caspase-9 through phosphorylation at Thr125 by ERK MAPK. Nature Cell Biol. 5, 647–654 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Malladi, S., Challa-Malladi, M., Fearnhead, H. O. & Bratton, S. B. The Apaf-1•procaspase-9 apoptosome complex functions as a proteolytic-based molecular timer. EMBO J. 28, 1916–1925 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chew, S. K. et al. Genome-wide silencing in Drosophila captures conserved apoptotic effectors. Nature 460, 123–127 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jones, S. et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321, 1801–1806 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hakem, R. et al. Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 94, 339–352 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Cecconi, F., Alvarez-Bolado, G., Meyer, B. I., Roth, K. A. & Gruss, P. Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell 94, 727–737 (1998).

    Article  CAS  PubMed  Google Scholar 

  94. Yoshida, H. et al. Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94, 739–750 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. Tait, S. W. & Green, D. R. Caspase-independent cell death: leaving the set without the final cut. Oncogene 27, 6452–6461 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lartigue, L. et al. Caspase-independent mitochondrial cell death results from loss of respiration, not cytotoxic protein release. Mol. Biol. Cell 20, 4871–4884 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Frank, S. et al. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev. Cell 1, 515–525 (2001). The first study to show that extensive mitochondrial fission occurs at the point of MOMP, in a process that requires the dynamin-like protein DRP1.

    Article  CAS  PubMed  Google Scholar 

  98. Sheridan, C., Delivani, P., Cullen, S. P. & Martin, S. J. Bax- or Bak-induced mitochondrial fission can be uncoupled from cytochrome c release. Mol. Cell 31, 570–585 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Arnoult, D., Grodet, A., Lee, Y. J., Estaquier, J. & Blackstone, C. Release of OPA1 during apoptosis participates in the rapid and complete release of cytochrome c and subsequent mitochondrial fragmentation. J. Biol. Chem. 280, 35742–35750 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Delivani, P., Adrain, C., Taylor, R. C., Duriez, P. J. & Martin, S. J. Role for CED-9 and Egl-1 as regulators of mitochondrial fission and fusion dynamics. Mol. Cell 21, 761–773 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Karbowski, M., Norris, K. L., Cleland, M. M., Jeong, S. Y. & Youle, R. J. Role of Bax and Bak in mitochondrial morphogenesis. Nature 443, 658–662 (2006). References 100 and 101 show roles for BCL-2 family proteins in regulating mitochondrial morphology under non-apoptotic conditions.

    Article  CAS  PubMed  Google Scholar 

  102. Cassidy-Stone, A. et al. Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev. Cell 14, 193–204 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wakabayashi, J. et al. The dynamin-related GTPase Drp1 is required for embryonic and brain development in mice. J. Cell Biol. 186, 805–816 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mootha, V. K. et al. A reversible component of mitochondrial respiratory dysfunction in apoptosis can be rescued by exogenous cytochrome c. EMBO J. 20, 661–671 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Waterhouse, N. J. et al. Cytochrome c maintains mitochondrial transmembrane potential and ATP generation after outer mitochondrial membrane permeabilization during the apoptotic process. J. Cell Biol. 153, 319–328 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ricci, J. E. et al. Disruption of mitochondrial function during apoptosis is mediated by caspase cleavage of the p75 subunit of complex I of the electron transport chain. Cell 117, 773–786 (2004). Shows that caspase-dependent disruption of mitochondrial function is partly mediated by caspase-mediated cleavage of a complex I protein in the electron transport chain.

    Article  CAS  PubMed  Google Scholar 

  107. Kazama, H. et al. Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein. Immunity 29, 21–32 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ricci, J. E., Gottlieb, R. A. & Green, D. R. Caspase-mediated loss of mitochondrial function and generation of reactive oxygen species during apoptosis. J. Cell Biol. 160, 65–75 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Colell, A. et al. GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell 129, 983–997 (2007). The first study to show that cells can recover and proliferate following MOMP. This recovery is mediated, in part, through upregulation of glycolysis and autophagy.

    Article  CAS  PubMed  Google Scholar 

  110. Ferraro, E. et al. Apoptosome-deficient cells lose cytochrome c through proteasomal degradation but survive by autophagy-dependent glycolysis. Mol. Biol. Cell 19, 3576–3588 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Goemans, C. G., Boya, P., Skirrow, C. J. & Tolkovsky, A. M. Intra-mitochondrial degradation of Tim23 curtails the survival of cells rescued from apoptosis by caspase inhibitors. Cell Death Differ. 15, 545–554 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Rodriguez-Enriquez, S., Kai, Y., Maldonado, E., Currin, R. T. & Lemasters, J. J. Roles of mitophagy and the mitochondrial permeability transition in remodeling of cultured rat hepatocytes. Autophagy 5, 1099–1106 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Twig, G. et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27, 433–446 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Narendra, D., Tanaka, A., Suen, D. F. & Youle, R. J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183, 795–803 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Xue, L., Fletcher, G. C. & Tolkovsky, A. M. Mitochondria are selectively eliminated from eukaryotic cells after blockade of caspases during apoptosis. Curr. Biol. 11, 361–365 (2001). References 112–115 describe various pathways that can invoke mitophagy, a process that allows selective clearance of mitochondria from a cell.

    Article  CAS  PubMed  Google Scholar 

  116. Khodjakov, A., Rieder, C., Mannella, C. A. & Kinnally, K. W. Laser micro-irradiation of mitochondria: is there an amplified mitochondrial death signal in neural cells? Mitochondrion 3, 217–227 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Deshmukh, M. & Johnson, E. M. Evidence of a novel event during neuronal death: development of competence-to-die in response to cytoplasmic cytochrome c. Neuron 21, 695–705 (1998).

    Article  CAS  PubMed  Google Scholar 

  118. Martinou, I. et al. The release of cytochrome c from mitochondria during apoptosis of NGF-deprived sympathetic neurons is a reversible event. J. Cell Biol. 144, 883–889 (1999). References 117 and 118 were the first to show that MOMP does not necessarily commit a cell to death.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Potts, M. B., Vaughn, A. E., McDonough, H., Patterson, C. & Deshmukh, M. Reduced Apaf-1 levels in cardiomyocytes engage strict regulation of apoptosis by endogenous XIAP. J. Cell Biol. 171, 925–930 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wright, K. M., Linhoff, M. W., Potts, P. R. & Deshmukh, M. Decreased apoptosome activity with neuronal differentiation sets the threshold for strict IAP regulation of apoptosis. J. Cell Biol. 167, 303–313 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Potts, P. R., Singh, S., Knezek, M., Thompson, C. B. & Deshmukh, M. Critical function of endogenous XIAP in regulating caspase activation during sympathetic neuronal apoptosis. J. Cell Biol. 163, 789–799 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sanchis, D., Mayorga, M., Ballester, M. & Comella, J. X. Lack of Apaf-1 expression confers resistance to cytochrome c-driven apoptosis in cardiomyocytes. Cell Death Differ. 10, 977–986 (2003).

    Article  CAS  PubMed  Google Scholar 

  123. Vaughn, A. E. & Deshmukh, M. Glucose metabolism inhibits apoptosis in neurons and cancer cells by redox inactivation of cytochrome c. Nature Cell Biol. 10, 1477–1483 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Soengas, M. S. et al. Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science 284, 156–159 (1999).

    Article  CAS  PubMed  Google Scholar 

  125. Schmitt, C. A. et al. Dissecting p53 tumor suppressor functions in vivo. Cancer Cell 1, 289–298 (2002).

    Article  CAS  PubMed  Google Scholar 

  126. Lavallard, V. J. et al. Modulation of caspase-independent cell death leads to resensitization of imatinib mesylate-resistant cells. Cancer Res. 69, 3013–3020 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. Tait, S. W. et al. Resistance to caspase independent cell death requires persistence of intact mitochondria. Dev. Cell. 15, 802–813 (2010).

    Article  CAS  Google Scholar 

  128. Li, Z. et al. Caspase-3 activation via mitochondria is required for long-term depression and AMPA receptor internalization. Cell 141, 859–871 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Salmena, L. et al. Essential role for caspase 8 in T-cell homeostasis and T-cell-mediated immunity. Genes Dev. 17, 883–895 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Murray, T. V. et al. A non-apoptotic role for caspase-9 in muscle differentiation. J. Cell Sci. 121, 3786–3793 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Boatright, K. M. et al. A unified model for apical caspase activation. Mol. Cell 11, 529–541 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Oberst, A. et al. Inducible dimerization and inducible cleavage reveal a requirement for both processes in caspase-8 activation. J. Biol. Chem. 285, 16632–16642 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Hughes, M. A. et al. Reconstitution of the death-inducing signaling complex reveals a substrate switch that determines CD95-mediated death or survival. Mol. Cell 35, 265–279 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Pop, C., Timmer, J., Sperandio, S. & Salvesen, G. S. The apoptosome activates caspase-9 by dimerization. Mol. Cell 22, 269–275 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Li, K. et al. Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis. Cell 101, 389–399 (2000).

    Article  CAS  PubMed  Google Scholar 

  136. Hao, Z. et al. Specific ablation of the apoptotic functions of cytochrome c reveals a differential requirement for cytochrome c and Apaf-1 in apoptosis. Cell 121, 579–591 (2005). Revealed the in vivo importance of cytochrome c in apoptosis by generating a cytochrome c -knock-in mouse that retained respiratory function but lacked apoptotic activity.

    Article  CAS  PubMed  Google Scholar 

  137. Rathmell, J. C., Lindsten, T., Zong, W. X., Cinalli, R. M. & Thompson, C. B. Deficiency in Bak and Bax perturbs thymic selection and lymphoid homeostasis. Nature Immunol. 3, 932–939 (2002).

    Article  CAS  Google Scholar 

  138. Abdullaev, Z. K. et al. A cytochrome c mutant with high electron transfer and antioxidant activities but devoid of apoptogenic effect. Biochem. J. 362, 749–754 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Eckelman, B. P., Salvesen, G. S. & Scott, F. L. Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep. 7, 988–994 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Suzuki, Y. et al. A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol. Cell 8, 613–621 (2001).

    Article  CAS  PubMed  Google Scholar 

  141. Verhagen, A. M. et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102, 43–53 (2000).

    Article  CAS  PubMed  Google Scholar 

  142. Du, C., Fang, M., Li, Y., Li, L. & Wang, X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33–42 (2000).

    Article  CAS  PubMed  Google Scholar 

  143. Okada, H. et al. Generation and characterization of Smac/DIABLO-deficient mice. Mol. Cell. Biol. 22, 3509–3517 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Vince, J. E. et al. IAP antagonists target cIAP1 to induce TNFα-dependent apoptosis. Cell 131, 682–693 (2007).

    Article  CAS  PubMed  Google Scholar 

  145. Petersen, S. L. et al. Autocrine TNFα signaling renders human cancer cells susceptible to Smac-mimetic-induced apoptosis. Cancer Cell 12, 445–456 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Varfolomeev, E. et al. IAP antagonists induce autoubiquitination of c-IAPs, NF-κB activation, and TNFα-dependent apoptosis. Cell 131, 669–681 (2007).

    Article  CAS  PubMed  Google Scholar 

  147. Arnoult, D. et al. Mitochondrial release of AIF and EndoG requires caspase activation downstream of Bax/Bak-mediated permeabilization. EMBO J. 22, 4385–4399 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Li, L. Y., Luo, X. & Wang, X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412, 95–99 (2001).

    Article  CAS  PubMed  Google Scholar 

  149. Irvine, R. A. et al. Generation and characterization of endonuclease G null mice. Mol. Cell. Biol. 25, 294–302 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Letai, A. et al. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2, 183–192 (2002).

    Article  CAS  PubMed  Google Scholar 

  151. Willis, S. N. et al. Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev. 19, 1294–1305 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Oberst, F. Llambi and J. Tait-Mulder for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas R. Green.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

FURTHER INFORMATION

Douglas R. Green's homepage

Deathbase

Glossary

Tubular mitochondrial network

Multiple fused mitochondria forming filamentous, elongated structures. These networks are highly dynamic owing to constant rounds of mitochondrial fission and fusion.

FRET

(Förster resonance energy transfer). The non-radiative transfer of energy from a donor fluorophore to an acceptor fluorophore that is typically <80 Å away. FRET will only occur between fluorophores in which the emission spectrum of the donor has a significant overlap with the excitation of the acceptor.

Liposome

A vesicle made of lipid bilayer in an aqueous environment. Membrane proteins can be incorporated in the bilayer.

Patch clamping

An electrophysiological technique used for measuring ion channel activity over membranes. Typically, a small diameter (1μm) micropipette serves as the electrode and is applied to a small area of membrane (the 'patch'), allowing the activity of one or a few ion channels to be measured.

Micelle

An aggregate (typically spherical) of varying size comprised of lipids. In aqueous environments, the hydrophobic lipid tails orientate to the centre of the micelle and the hydrophilic head groups are on the surface.

Cristae junction

A connection between the mitochondrial cristae and the mitochondrial IMS. The diameter of cristae junctions can be altered, thereby regulating the accessibility of mitochondrial cristae to the IMS.

Nitrosylation

A post-translational protein modification involving the addition of a nitrosyl group to the Cys residue of a target protein, potentially altering target protein function.

Transmembrane potential

The voltage (or electrical potential) difference between one side of a membrane and the other.

Post-mitotic cell

A cell that is neither preparing to nor undergoing cell division.

Pentose–phosphate shunt

A metabolic pathway that generates NADPH and pentose sugars from glucose-6-phosphate. Indirectly, NADPH serves as an important antioxidant by reducing glutathione.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tait, S., Green, D. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11, 621–632 (2010). https://doi.org/10.1038/nrm2952

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2952

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing