Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The trip of the tip: understanding the growth cone machinery

Key Points

  • During axon guidance, the growth cone, which comprises both the 'vehicle' and the 'navigator', progresses through stages of protrusion, engorgement and consolidation to move forward in a spatially directed manner.

  • Growth cone guidance is an integrated process that requires both substrate-bound cues (such as cell adhesion molecules (CAMs), laminin and fibronectin) to provide the 'road' for traction, and chemotropic cues (such as netrins and semaphorins) that present 'road signs' for steering directions.

  • Filamentous (F)-actin retrograde flow, which is driven by myosin II contractility in the transition (T) zone, and F-actin bundle treadmilling keep the growth cone engine idling and thus responsive to directional cues. Growth cone receptor binding to an adhesive substrate leads to the formation of a complex that acts like a molecular 'clutch', which mechanically couples receptors and F-actin to stop retrograde flow and drives actin-based forward growth cone protrusion.

  • Microtubules (MTs) have a role in steering the growth cone vehicle; individual peripheral (P) domain MTs might act as guidance sensors and carry signals to and from receptor binding sites, and bulk central (C) domain MTs steer growth cone advance.

  • Live imaging studies suggest that the function of actin dynamics is to guide and control MTs to steer the growth cone in the right direction, and interactions between actin and MTs are tightly regulated. F-actin bundles regulate the activities of exploratory MTs, whereas F-actin arcs constrain C domain MTs.

  • For spatial discontinuities in the environment to drive growth cone steering and, in particular, to accurately interpret numerous cues simultaneously, the growth cone navigation system integrates and translates the multiple environmental directions to locally modulate the dynamics of the cytoskeletal machinery. The Rho family of GTPases control cytoskeletal dynamics downstream of nearly all guidance signalling pathways, and they are spatially regulated by guanine nucleotide-exchange factors (GEFs) and GTPase-activating proteins (GAPs). Localized control of actin dynamics at the leading edge through actin-binding proteins, and coordination of MT–actin crosslinking, are two key outputs of the navigation system that are required for growth cone steering.

Abstract

The central component in the road trip of axon guidance is the growth cone, a dynamic structure that is located at the tip of the growing axon. During its journey, the growth cone comprises both 'vehicle' and 'navigator'. Whereas the 'vehicle' maintains growth cone movement and contains the cytoskeletal structural elements of its framework, a motor to move forward and a mechanism to provide traction on the 'road', the 'navigator' aspect guides this system with spatial bias to translate environmental signals into directional movement. The understanding of the functions and regulation of the vehicle and navigator provides new insights into the cell biology of growth cone guidance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Directions for the trip.
Figure 2: The growth cone 'vehicle'.
Figure 3: The growth cone as a 'navigator'.

Similar content being viewed by others

References

  1. Maness, P. F. & Schachner, M. Neural recognition molecules of the immunoglobulin superfamily: signaling transducers of axon guidance and neuronal migration. Nature Neurosci. 10, 19–26 (2007).

    CAS  PubMed  Google Scholar 

  2. Evans, A. R. et al. Laminin and fibronectin modulate inner ear spiral ganglion neurite outgrowth in an in vitro alternate choice assay. Dev. Neurobiol. 67, 1721–1730 (2007).

    CAS  PubMed  Google Scholar 

  3. Dickson, B. J. Molecular mechanisms of axon guidance. Science 298, 1959–1964 (2002).

    CAS  PubMed  Google Scholar 

  4. Chilton, J. K. Molecular mechanisms of axon guidance. Dev. Biol. 292, 13–24 (2006).

    CAS  PubMed  Google Scholar 

  5. Zou, Y. & Lyuksyutova, A. I. Morphogens as conserved axon guidance cues. Curr. Opin. Neurobiol. 17, 22–28 (2007).

    CAS  PubMed  Google Scholar 

  6. Brunet, I. et al. The transcription factor Engrailed-2 guides retinal axons. Nature 438, 94–98 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Butler, S. J. & Tear, G. Getting axons onto the right path: the role of transcription factors in axon guidance. Development 134, 439–448 (2007).

    CAS  PubMed  Google Scholar 

  8. Gundersen, R. W. & Barrett, J. N. Neuronal chemotaxis: chick dorsal-root axons turn toward high concentrations of nerve growth factor. Science 206, 1079–1080 (1979).

    CAS  PubMed  Google Scholar 

  9. Sanford, S. D., Gatlin, J. C., Hokfelt, T. & Pfenninger, K. H. Growth cone responses to growth and chemotropic factors. Eur. J. Neurosci. 28, 268–278 (2008).

    PubMed  Google Scholar 

  10. Mattson, M. P., Dou, P. & Kater, S. B. Outgrowth-regulating actions of glutamate in isolated hippocampal pyramidal neurons. J. Neurosci. 8, 2087–2100 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Tojima, T. et al. Attractive axon guidance involves asymmetric membrane transport and exocytosis in the growth cone. Nature Neurosci. 10, 58–66 (2007).

    CAS  PubMed  Google Scholar 

  12. Bonanomi, D. et al. Identification of a developmentally regulated pathway of membrane retrieval in neuronal growth cones. J. Cell Sci. 121, 3757–3769 (2008).

    CAS  PubMed  Google Scholar 

  13. Goldberg, D. J. & Burmeister, D. W. Stages in axon formation: observations of growth of Aplysia axons in culture using video-enhanced contrast-differential interference contrast microscopy. J. Cell Biol. 103, 1921–1931 (1986).

    CAS  PubMed  Google Scholar 

  14. Dent, E. W. & Gertler, F. B. Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron 40, 209–227 (2003).

    CAS  PubMed  Google Scholar 

  15. Marsh, L. & Letourneau, P. C. Growth of neurites without filopodial or lamellipodial activity in the presence of cytochalasin B. J. Cell Biol. 99, 2041–2047 (1984).

    CAS  PubMed  Google Scholar 

  16. Suter, D. M. & Forscher, P. Substrate–cytoskeletal coupling as a mechanism for the regulation of growth cone motility and guidance. J. Neurobiol. 44, 97–113 (2000).

    CAS  PubMed  Google Scholar 

  17. Medeiros, N. A., Burnette, D. T. & Forscher, P. Myosin II functions in actin-bundle turnover in neuronal growth cones. Nature Cell Biol. 8, 215–226 (2006). Provides strong evidence that growth cone F-actin retrograde flow is driven both by contractility of the motor protein myosin II in the T zone, and F-actin bundle treadmilling in the P-domain. Compression across the T zone circumference that is driven by myosin II leads to buckling and severing of F-actin bundles near the proximal ends.

    CAS  PubMed  Google Scholar 

  18. Sarmiere, P. D. & Bamburg, J. R. Regulation of the neuronal actin cytoskeleton by ADF/cofilin. J. Neurobiol. 58, 103–117 (2004).

    CAS  PubMed  Google Scholar 

  19. Haviv, L., Gillo, D., Backouche, F. & Bernheim-Groswasser, A. A cytoskeletal demolition worker: myosin II acts as an actin depolymerization agent. J. Mol. Biol. 375, 325–330 (2008).

    CAS  PubMed  Google Scholar 

  20. Zicha, D. et al. Rapid actin transport during cell protrusion. Science 300, 142–145 (2003).

    CAS  PubMed  Google Scholar 

  21. Mitchison, T. & Kirschner, M. Cytoskeletal dynamics and nerve growth. Neuron 1, 761–772 (1988).

    CAS  PubMed  Google Scholar 

  22. Lin, C. H., Thompson, C. A. & Forscher, P. Cytoskeletal reorganization underlying growth cone motility. Curr. Opin. Neurobiol. 4, 640–647 (1994).

    CAS  PubMed  Google Scholar 

  23. Jay, D. G. The clutch hypothesis revisited: ascribing the roles of actin-associated proteins in filopodial protrusion in the nerve growth cone. J. Neurobiol. 44, 114–125 (2000).

    CAS  PubMed  Google Scholar 

  24. Letourneau, P. C. Cell–substratum adhesion of neurite growth cones, and its role in neurite elongation. Exp. Cell Res. 124, 127–138 (1979).

    CAS  PubMed  Google Scholar 

  25. Bridgman, P. C., Dave, S., Asnes, C. F., Tullio, A. N. & Adelstein, R. S. Myosin IIB is required for growth cone motility. J. Neurosci. 21, 6159–6169 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Mattila, P. K. & Lappalainen, P. Filopodia: molecular architecture and cellular functions. Nature Rev. Mol. Cell Biol. 9, 446–454 (2008).

    CAS  Google Scholar 

  27. Heidemann, S. R., Lamoureux, P. & Buxbaum, R. E. Growth cone behavior and production of traction force. J. Cell Biol. 111, 1949–1957 (1990).

    CAS  PubMed  Google Scholar 

  28. Chan, C. E. & Odde, D. J. Traction dynamics of filopodia on compliant substrates. Science 322, 1687–1691 (2008).

    CAS  PubMed  Google Scholar 

  29. Bentley, D. & Toroian-Raymond, A. Disoriented pathfinding by pioneer neurone growth cones deprived of filopodia by cytochalasin treatment. Nature 323, 712–715 (1986).

    CAS  PubMed  Google Scholar 

  30. Zheng, J. Q., Wan, J. J. & Poo, M. M. Essential role of filopodia in chemotropic turning of nerve growth cone induced by a glutamate gradient. J. Neurosci. 16, 1140–1149 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Dwivedy, A., Gertler, F. B., Miller, J., Holt, C. E. & Lebrand, C. Ena/VASP function in retinal axons is required for terminal arborization but not pathway navigation. Development 134, 2137–2146 (2007).

    CAS  PubMed  Google Scholar 

  32. Keller, F. & Schacher, S. Neuron-specific membrane glycoproteins promoting neurite fasciculation in Aplysia californica. J. Cell Biol. 111, 2637–2650 (1990).

    CAS  PubMed  Google Scholar 

  33. Schaefer, A. W., Kabir, N. & Forscher, P. Filopodia and actin arcs guide the assembly and transport of two populations of microtubules with unique dynamic parameters in neuronal growth cones. J. Cell Biol. 158, 139–152 (2002). One of the first studies to use high-resolution fluorescent speckle microcopy in live growth cones to analyse actin and MT dynamics. This study also provides the first report of the presence of F-actin arc structures.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Suter, D. M. & Forscher, P. Transmission of growth cone traction force through apCAM–cytoskeletal linkages is regulated by Src family tyrosine kinase activity. J. Cell Biol. 155, 427–438 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee, A. C. & Suter, D. M. Quantitative analysis of microtubule dynamics during adhesion-mediated growth cone guidance. Dev. Neurobiol. 68, 1363–1377 (2008). Suggests that guidance cues lead to differential regulation of MT–actin coupling depending on the growth cone region, and, specifically, that dynamic MTs can explore the periphery by increased uncoupling from F-actin retrograde flow.

    PubMed  PubMed Central  Google Scholar 

  36. Hu, K., Ji, L., Applegate, K. T., Danuser, G. & Waterman-Storer, C. M. Differential transmission of actin motion within focal adhesions. Science 315, 111–115 (2007).

    CAS  PubMed  Google Scholar 

  37. Bard, L. et al. A molecular clutch between the actin flow and N-cadherin adhesions drives growth cone migration. J. Neurosci. 28, 5879–5890 (2008). Uses live imaging of primary neurons and optical trapping of N-cadherin-coated microspheres to show a strong correlation between growth cone velocity and the mechanical coupling between N-cadherin receptors and F-actin flow, through catenins, thus further strengthening the clutch model.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Shimada, T. et al. Shootin1 interacts with actin retrograde flow and L1-CAM to promote axon outgrowth. J. Cell Biol. 181, 817–829 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Tanaka, E., Ho, T. & Kirschner, M. W. The role of microtubule dynamics in growth cone motility and axonal growth. J. Cell Biol. 128, 139–155 (1995).

    CAS  PubMed  Google Scholar 

  40. Tanaka, E. M. & Kirschner, M. W. Microtubule behavior in the growth cones of living neurons during axon elongation. J. Cell Biol. 115, 345–363 (1991).

    CAS  PubMed  Google Scholar 

  41. Gordon-Weeks, P. R. Microtubules and growth cone function. J. Neurobiol. 58, 70–83 (2004).

    CAS  PubMed  Google Scholar 

  42. Letourneau, P. C. Differences in the organization of actin in the growth cones compared with the neurites of cultured neurons from chick embryos. J. Cell Biol. 97, 963–973 (1983).

    CAS  PubMed  Google Scholar 

  43. Suter, D. M., Schaefer, A. W. & Forscher, P. Microtubule dynamics are necessary for SRC family kinase-dependent growth cone steering. Curr. Biol. 14, 1194–1199 (2004).

    CAS  PubMed  Google Scholar 

  44. Buck, K. B. & Zheng, J. Q. Growth cone turning induced by direct local modification of microtubule dynamics. J. Neurosci. 22, 9358–9367 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhou, F. Q. & Cohan, C. S. How actin filaments and microtubules steer growth cones to their targets. J. Neurobiol. 58, 84–91 (2004).

    CAS  PubMed  Google Scholar 

  46. Rodriguez, O. C. et al. Conserved microtubule–actin interactions in cell movement and morphogenesis. Nature Cell Biol. 5, 599–609 (2003).

    CAS  PubMed  Google Scholar 

  47. Burnette, D. T., Schaefer, A. W., Ji, L., Danuser, G. & Forscher, P. Filopodial actin bundles are not necessary for microtubule advance into the peripheral domain of Aplysia neuronal growth cones. Nature Cell Biol. 9, 1360–1369 (2007).

    CAS  PubMed  Google Scholar 

  48. Zhou, F. Q., Waterman-Storer, C. M. & Cohan, C. S. Focal loss of actin bundles causes microtubule redistribution and growth cone turning. J. Cell Biol. 157, 839–849 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Schaefer, A. W. et al. Coordination of actin filament and microtubule dynamics during neurite outgrowth. Dev. Cell 15, 146–162 (2008). Shows that C domain MT movement into the growth cone during engorgement, and subsequent consolidation, are regulated by F-actin arcs in the T zone.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Burnette, D. T. et al. Myosin II activity facilitates microtubule bundling in the neuronal growth cone neck. Dev. Cell 15, 163–169 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Bielas, S. L. et al. Spinophilin facilitates dephosphorylation of doublecortin by PP1 to mediate microtubule bundling at the axonal wrist. Cell 129, 579–591 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Loudon, R. P., Silver, L. D., Yee, H. F. Jr & Gallo, G. RhoA-kinase and myosin II are required for the maintenance of growth cone polarity and guidance by nerve growth factor. J. Neurobiol. 66, 847–867 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Turney, S. G. & Bridgman, P. C. Laminin stimulates and guides axonal outgrowth via growth cone myosin II activity. Nature Neurosci. 8, 717–719 (2005).

    CAS  PubMed  Google Scholar 

  54. Wolf, A. M. et al. Phosphatidylinositol-3-kinase-atypical protein kinase C signaling is required for Wnt attraction and anterior–posterior axon guidance. J. Neurosci. 28, 3456–3467 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Robles, E. & Gomez, T. M. Focal adhesion kinase signaling at sites of integrin-mediated adhesion controls axon pathfinding. Nature Neurosci. 9, 1274–1283 (2006).

    CAS  PubMed  Google Scholar 

  56. Ensslen-Craig, S. E. & Brady-Kalnay, S. M. Receptor protein tyrosine phosphatases regulate neural development and axon guidance. Dev. Biol. 275, 12–22 (2004).

    CAS  PubMed  Google Scholar 

  57. Gomez, T. M. & Zheng, J. Q. The molecular basis for calcium-dependent axon pathfinding. Nature Rev. Neurosci. 7, 115–125 (2006).

    CAS  Google Scholar 

  58. Koh, C. G. Rho GTPases and their regulators in neuronal functions and development. Neurosignals 15, 228–237 (2006).

    CAS  PubMed  Google Scholar 

  59. Govek, E. E., Newey, S. E. & Van Aelst, L. The role of the Rho GTPases in neuronal development. Genes Dev. 19, 1–49 (2005).

    CAS  PubMed  Google Scholar 

  60. Mortimer, D., Fothergill, T., Pujic, Z., Richards, L. J. & Goodhill, G. J. Growth cone chemotaxis. Trends Neurosci. 31, 90–98 (2008).

    CAS  PubMed  Google Scholar 

  61. von Philipsborn, A. & Bastmeyer, M. Mechanisms of gradient detection: a comparison of axon pathfinding with eukaryotic cell migration. Int. Rev. Cytol. 263, 1–62 (2007).

    CAS  PubMed  Google Scholar 

  62. Dent, E. W., Tang, F. & Kalil, K. Axon guidance by growth cones and branches: common cytoskeletal and signaling mechanisms. Neuroscientist 9, 343–353 (2003).

    CAS  PubMed  Google Scholar 

  63. Watabe-Uchida, M., Govek, E. E. & Van Aelst, L. Regulators of Rho GTPases in neuronal development. J. Neurosci. 26, 10633–10635 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Wu, K. Y. et al. Local translation of RhoA regulates growth cone collapse. Nature 436, 1020–1024 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Oinuma, I., Katoh, H. & Negishi, M. Molecular dissection of the semaphorin 4D receptor plexin-B1-stimulated R-Ras GTPase-activating protein activity and neurite remodeling in hippocampal neurons. J. Neurosci. 24, 11473–11480 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Iwasato, T. et al. Rac-GAP α-chimerin regulates motor-circuit formation as a key mediator of EphrinB3/EphA4 forward signaling. Cell 130, 742–753 (2007).

    CAS  PubMed  Google Scholar 

  67. Shamah, S. M. et al. EphA receptors regulate growth cone dynamics through the novel guanine nucleotide exchange factor ephexin. Cell 105, 233–244 (2001).

    CAS  PubMed  Google Scholar 

  68. Watari-Goshima, N., Ogura, K., Wolf, F. W., Goshima, Y. & Garriga, G. C. elegans VAB-8 and UNC-73 regulate the SAX-3 receptor to direct cell and growth-cone migrations. Nature Neurosci. 10, 169–176 (2007).

    CAS  PubMed  Google Scholar 

  69. Bateman, J. & Van Vactor, D. The Trio family of guanine-nucleotide-exchange factors: regulators of axon guidance. J. Cell Sci. 114, 1973–1980 (2001).

    CAS  PubMed  Google Scholar 

  70. Heasman, S. J. & Ridley, A. J. Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nature Rev. Mol. Cell Biol. 9, 690–701 (2008).

    CAS  Google Scholar 

  71. Kurokawa, K., Nakamura, T., Aoki, K. & Matsuda, M. Mechanism and role of localized activation of Rho-family GTPases in growth factor-stimulated fibroblasts and neuronal cells. Biochem. Soc. Trans. 33, 631–634 (2005).

    CAS  PubMed  Google Scholar 

  72. Pertz, O. C. et al. Spatial mapping of the neurite and soma proteomes reveals a functional Cdc42/Rac regulatory network. Proc. Natl Acad. Sci. USA 105, 1931–1936 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Gallo, G. RhoA-kinase coordinates F-actin organization and myosin II activity during semaphorin-3A-induced axon retraction. J. Cell Sci. 119, 3413–3423 (2006).

    CAS  PubMed  Google Scholar 

  74. Woo, S. & Gomez, T. M. Rac1 and RhoA promote neurite outgrowth through formation and stabilization of growth cone point contacts. J. Neurosci. 26, 1418–1428 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Wen, Z. et al. BMP gradients steer nerve growth cones by a balancing act of LIM kinase and Slingshot phosphatase on ADF/cofilin. J. Cell Biol. 178, 107–119 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Linseman, D. A. & Loucks, F. A. Diverse roles of Rho family GTPases in neuronal development, survival, and death. Front. Biosci. 13, 657–676 (2008).

    CAS  PubMed  Google Scholar 

  77. Burridge, K. & Wennerberg, K. Rho and Rac take center stage. Cell 116, 167–179 (2004).

    CAS  PubMed  Google Scholar 

  78. Goley, E. D. & Welch, M. D. The ARP2/3 complex: an actin nucleator comes of age. Nature Rev. Mol. Cell Biol. 7, 713–726 (2006).

    CAS  Google Scholar 

  79. Strasser, G. A., Rahim, N. A., VanderWaal, K. E., Gertler, F. B. & Lanier, L. M. Arp2/3 is a negative regulator of growth cone translocation. Neuron 43, 81–94 (2004).

    CAS  PubMed  Google Scholar 

  80. Ng, J. & Luo, L. Rho GTPases regulate axon growth through convergent and divergent signaling pathways. Neuron 44, 779–793 (2004).

    CAS  PubMed  Google Scholar 

  81. Korobova, F. & Svitkina, T. Arp2/3 complex is important for filopodia formation, growth cone motility, and neuritogenesis in neuronal cells. Mol. Biol. Cell 19, 1561–1574 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Mongiu, A. K., Weitzke, E. L., Chaga, O. Y. & Borisy, G. G. Kinetic-structural analysis of neuronal growth cone veil motility. J. Cell Sci. 120, 1113–1125 (2007).

    CAS  PubMed  Google Scholar 

  83. Goode, B. L. & Eck, M. J. Mechanism and function of formins in the control of actin assembly. Annu. Rev. Biochem. 76, 593–627 (2007).

    CAS  PubMed  Google Scholar 

  84. Matusek, T. et al. Formin proteins of the DAAM subfamily play a role during axon growth. J. Neurosci. 28, 13310–13319 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Ahuja, R. et al. Cordon-bleu is an actin nucleation factor and controls neuronal morphology. Cell 131, 337–350 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Drees, F. & Gertler, F. B. Ena/VASP: proteins at the tip of the nervous system. Curr. Opin. Neurobiol. 18, 53–59 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Liebl, E. C. et al. Dosage-sensitive, reciprocal genetic interactions between the Abl tyrosine kinase and the putative GEF trio reveal trio's role in axon pathfinding. Neuron 26, 107–118 (2000).

    CAS  PubMed  Google Scholar 

  88. Jones, S. B., Lu, H. Y. & Lu, Q. Abl tyrosine kinase promotes dendrogenesis by inducing actin cytoskeletal rearrangements in cooperation with Rho family small GTPases in hippocampal neurons. J. Neurosci. 24, 8510–8521 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Sini, P., Cannas, A., Koleske, A. J., Di Fiore, P. P. & Scita, G. Abl-dependent tyrosine phosphorylation of Sos-1 mediates growth-factor-induced Rac activation. Nature Cell Biol. 6, 268–274 (2004).

    CAS  PubMed  Google Scholar 

  90. Zhang, X. F., Schaefer, A. W., Burnette, D. T., Schoonderwoert, V. T. & Forscher, P. Rho-dependent contractile responses in the neuronal growth cone are independent of classical peripheral retrograde actin flow. Neuron 40, 931–944 (2003).

    CAS  PubMed  Google Scholar 

  91. Haas, M. A., Vickers, J. C. & Dickson, T. C. Rho kinase activates ezrin–radixin–moesin (ERM) proteins and mediates their function in cortical neuron growth, morphology and motility in vitro. J. Neurosci. Res. 85, 34–46 (2007).

    CAS  PubMed  Google Scholar 

  92. Schlatter, M. C., Buhusi, M., Wright, A. G. & Maness, P. F. CHL1 promotes Sema3A-induced growth cone collapse and neurite elaboration through a motif required for recruitment of ERM proteins to the plasma membrane. J. Neurochem. 104, 731–744 (2008).

    CAS  PubMed  Google Scholar 

  93. Mintz, C. D. et al. ERM proteins regulate growth cone responses to Sema3A. J. Comp. Neurol. 510, 351–366 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Rogers, S. L., Wiedemann, U., Hacker, U., Turck, C. & Vale, R. D. Drosophila RhoGEF2 associates with microtubule plus ends in an EB1-dependent manner. Curr. Biol. 14, 1827–1833 (2004).

    CAS  PubMed  Google Scholar 

  95. Kwan, K. M. & Kirschner, M. W. A microtubule-binding Rho-GEF controls cell morphology during convergent extension of Xenopus laevis. Development 132, 4599–4610 (2005).

    CAS  PubMed  Google Scholar 

  96. Wittmann, T., Bokoch, G. M. & Waterman-Storer, C. M. Regulation of leading edge microtubule and actin dynamics downstream of Rac1. J. Cell Biol. 161, 845–851 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Akhmanova, A. & Hoogenraad, C. C. Microtubule plus-end-tracking proteins: mechanisms and functions. Curr. Opin. Cell Biol. 17, 47–54 (2005).

    CAS  PubMed  Google Scholar 

  98. Akhmanova, A. & Steinmetz, M. O. Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nature Rev. Mol. Cell Biol. 9, 309–322 (2008).

    CAS  Google Scholar 

  99. Basu, R. & Chang, F. Shaping the actin cytoskeleton using microtubule tips. Curr. Opin. Cell Biol. 19, 88–94 (2007).

    CAS  PubMed  Google Scholar 

  100. Myers, K. A. et al. Antagonistic forces generated by cytoplasmic dynein and myosin-II during growth cone turning and axonal retraction. Traffic 7, 1333–1351 (2006).

    CAS  PubMed  Google Scholar 

  101. Grabham, P. W., Seale, G. E., Bennecib, M., Goldberg, D. J. & Vallee, R. B. Cytoplasmic dynein and LIS1 are required for microtubule advance during growth cone remodeling and fast axonal outgrowth. J. Neurosci. 27, 5823–5834 (2007). Shows that the +TIP member LIS1 cooperates with the MT motor protein dynein to allow uncoupling of dynamic MTs from actin retrograde flow.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Kholmanskikh, S. S. et al. Calcium-dependent interaction of Lis1 with IQGAP1 and Cdc42 promotes neuronal motility. Nature Neurosci. 9, 50–57 (2006).

    CAS  PubMed  Google Scholar 

  103. Kholmanskikh, S. S., Dobrin, J. S., Wynshaw-Boris, A., Letourneau, P. C. & Ross, M. E. Disregulated RhoGTPases and actin cytoskeleton contribute to the migration defect in Lis1-deficient neurons. J. Neurosci. 23, 8673–8681 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Shen, Y. et al. Nudel binds Cdc42GAP to modulate Cdc42 activity at the leading edge of migrating cells. Dev. Cell 14, 342–353 (2008).

    CAS  PubMed  Google Scholar 

  105. Nadar, V. C., Ketschek, A., Myers, K. A., Gallo, G. & Baas, P. W. Kinesin-5 is essential for growth-cone turning. Curr. Biol. 18, 1972–1977 (2008). Shows that the motor protein kinesin 5, working antagonistically with the motor protein dynein, has a key role in controlling MT extension into the P-domain during growth cone turning, and is specifically phosphorylated on the opposite side to the invasion of MTs prior to turning.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Watanabe, T. et al. Interaction with IQGAP1 links APC to Rac1, Cdc42, and actin filaments during cell polarization and migration. Dev. Cell 7, 871–883 (2004).

    CAS  Google Scholar 

  107. Koester, M. P., Muller, O. & Pollerberg, G. E. Adenomatous polyposis coli is differentially distributed in growth cones and modulates their steering. J. Neurosci. 27, 12590–12600 (2007). Provides the first evidence that the +TIP protein APC has a crucial role in growth cone steering based on its differential distribution throughout the growth cone, and is enriched in the direction of growth cone turning.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Purro, S. A. et al. Wnt regulates axon behavior through changes in microtubule growth directionality: a new role for adenomatous polyposis coli. J. Neurosci. 28, 8644–8654 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Lee, H. et al. The microtubule plus end tracking protein Orbit/MAST/CLASP acts downstream of the tyrosine kinase Abl in mediating axon guidance. Neuron 42, 913–926 (2004).

    CAS  PubMed  Google Scholar 

  110. Tsvetkov, A. S., Samsonov, A., Akhmanova, A., Galjart, N. & Popov, S. V. Microtubule-binding proteins CLASP1 and CLASP2 interact with actin filaments. Cell. Motil. Cytoskeleton 64, 519–530 (2007).

    CAS  PubMed  Google Scholar 

  111. Riederer, B. M. Microtubule-associated protein 1B, a growth-associated and phosphorylated scaffold protein. Brain Res. Bull. 71, 541–558 (2007).

    CAS  PubMed  Google Scholar 

  112. Wittmann, T. & Waterman-Storer, C. M. Spatial regulation of CLASP affinity for microtubules by Rac1 and GSK3β in migrating epithelial cells. J. Cell Biol. 169, 929–939 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Bouquet, C., Ravaille-Veron, M., Propst, F. & Nothias, F. MAP1B coordinates microtubule and actin filament remodeling in adult mouse Schwann cell tips and DRG neuron growth cones. Mol. Cell. Neurosci. 36, 235–247 (2007).

    CAS  PubMed  Google Scholar 

  114. Trivedi, N., Marsh, P., Goold, R. G., Wood-Kaczmar, A. & Gordon-Weeks, P. R. Glycogen synthase kinase-3β phosphorylation of MAP1B at Ser1260 and Thr1265 is spatially restricted to growing axons. J. Cell Sci. 118, 993–1005 (2005).

    CAS  PubMed  Google Scholar 

  115. Geraldo, S., Khanzada, U. K., Parsons, M., Chilton, J. K. & Gordon-Weeks, P. R. Targeting of the F-actin-binding protein drebrin by the microtubule plus-tip protein EB3 is required for neuritogenesis. Nature Cell Biol. 10, 1181–1189 (2008). Reports that the interaction between the F-actin-associated protein drebrin and the MT +TIP protein EB3 is important for allowing MT exploration of filopodia.

    CAS  PubMed  Google Scholar 

  116. Lang, S., von Philipsborn, A. C., Bernard, A., Bonhoeffer, F. & Bastmeyer, M. Growth cone response to ephrin gradients produced by microfluidic networks. Anal. Bioanal. Chem. 390, 809–816 (2008).

    CAS  PubMed  Google Scholar 

  117. Wang, C. J. et al. A microfluidics-based turning assay reveals complex growth cone responses to integrated gradients of substrate-bound ECM molecules and diffusible guidance cues. Lab Chip 8, 227–237 (2008).

    CAS  Google Scholar 

  118. Waterman-Storer, C. M., Desai, A., Bulinski, J. C. & Salmon, E. D. Fluorescent speckle microscopy, a method to visualize the dynamics of protein assemblies in living cells. Curr. Biol. 8, 1227–1230 (1998).

    CAS  PubMed  Google Scholar 

  119. Douglass, A. D. & Vale, R. D. in Cell Biology: a Laboratory Handbook (ed. Celis, J. E.) 129–136 (Elsevier Science, USA, 2005).

    Google Scholar 

  120. Ji, L. & Danuser, G. Tracking quasi-stationary flow of weak fluorescent signals by adaptive multi-frame correlation. J. Microsc. 220, 150–167 (2005).

    CAS  PubMed  Google Scholar 

  121. Sasuga, Y. et al. Development of a microscopic platform for real-time monitoring of biomolecular interactions. Genome Res. 16, 132–139 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Tani, T. et al. Trafficking of a ligand-receptor complex on the growth cones as an essential step for the uptake of nerve growth factor at the distal end of the axon: a single-molecule analysis. J. Neurosci. 25, 2181–2191 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Nakamura, T., Aoki, K. & Matsuda, M. FRET imaging in nerve growth cones reveals a high level of RhoA activity within the peripheral domain. Brain Res. Mol. Brain Res. 139, 277–287 (2005).

    CAS  PubMed  Google Scholar 

  124. Mogilner, A. On the edge: modeling protrusion. Curr. Opin. Cell Biol. 18, 32–39 (2006).

    CAS  PubMed  Google Scholar 

  125. Kalil, K., Szebenyi, G. & Dent, E. W. Common mechanisms underlying growth cone guidance and axon branching. J. Neurobiol. 44, 145–158 (2000).

    CAS  PubMed  Google Scholar 

  126. Pak, C. W., Flynn, K. C. & Bamburg, J. R. Actin-binding proteins take the reins in growth cones. Nature Rev. Neurosci. 9, 136–147 (2008).

    CAS  Google Scholar 

  127. Mitchison, T. & Kirschner, M. Dynamic instability of microtubule growth. Nature 312, 237–242 (1984).

    CAS  PubMed  Google Scholar 

  128. Hunter, A. W. & Wordeman, L. How motor proteins influence microtubule polymerization dynamics. J. Cell Sci. 113, 4379–4389 (2000).

    CAS  PubMed  Google Scholar 

  129. Brittis, P. A., Lu, Q. & Flanagan, J. G. Axonal protein synthesis provides a mechanism for localized regulation at an intermediate target. Cell 110, 223–235 (2002).

    CAS  PubMed  Google Scholar 

  130. Lin, A. C. & Holt, C. E. Local translation and directional steering in axons. EMBO J. 26, 3729–3736 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Lin, A. C. & Holt, C. E. Function and regulation of local axonal translation. Curr. Opin. Neurobiol. 18, 60–68 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Leung, K. M. et al. Asymmetrical β-actin mRNA translation in growth cones mediates attractive turning to netrin-1. Nature Neurosci. 9, 1247–1256 (2006). Provides evidence that netrin 1 triggers asymmetric β-actin mRNA translation prior to growth cone turning.

    CAS  PubMed  Google Scholar 

  133. Yao, J., Sasaki, Y., Wen, Z., Bassell, G. J. & Zheng, J. Q. An essential role for β-actin mRNA localization and translation in Ca2+-dependent growth cone guidance. Nature Neurosci. 9, 1265–1273 (2006).

    CAS  PubMed  Google Scholar 

  134. Piper, M. et al. Signaling mechanisms underlying Slit2-induced collapse of Xenopus retinal growth cones. Neuron 49, 215–228 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. van Kesteren, R. E. et al. Local synthesis of actin-binding protein β-thymosin regulates neurite outgrowth. J. Neurosci. 26, 152–157 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Lee, S. et al. The F-actin–microtubule crosslinker Shot is a platform for Krasavietz-mediated translational regulation of midline axon repulsion. Development 134, 1767–1777 (2007).

    CAS  PubMed  Google Scholar 

  137. Mili, S., Moissoglu, K. & Macara, I. G. Genome-wide screen reveals APC-associated RNAs enriched in cell protrusions. Nature 453, 115–119 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Wang, H. R. et al. Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science 302, 1775–1779 (2003).

    CAS  PubMed  Google Scholar 

  139. Bryan, B. et al. Ubiquitination of RhoA by Smurf1 promotes neurite outgrowth. FEBS Lett. 579, 1015–1019 (2005).

    CAS  PubMed  Google Scholar 

  140. van Horck, F. P., Weinl, C. & Holt, C. E. Retinal axon guidance: novel mechanisms for steering. Curr. Opin. Neurobiol. 14, 61–66 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Owing to space limitations, only a selection of relevant papers were referenced. We thank J. Flanagan and C. Dubreuil for helpful suggestions on this manuscript. D.V.V. is supported by NS035909. L.A.L. is supported by a National Institutes of Health (NIH) National Research Service Award (NRSA) postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Van Vactor.

Related links

Related links

FURTHER INFORMATION

David Van Vactor's homepage

Glossary

Chemotropic cue

An external chemical cue, often found in a gradient, that leads to a directional growth in response.

Protrusion

The stage of growth cone progression in which there is extension of filopodia and lamellipodia-like veils.

Engorgement

The stage of growth cone progression in which microtubules further invade into the growth cone, fixing the new axonal growth direction.

Consolidation

The stage of growth cone progression in which actin filaments at the neck of the growth cone depolymerize and the membrane shrinks to form a cylindrical axon shaft around the bundle of microtubules.

Actin treadmilling

The process by which the continual addition of actin subunits at the barbed end of an actin polymer and disassembly of the polymer at the pointed end ensures that the polymer stays of constant length, but individual subunits move along.

Filopodium

A thin, transient actin protrusion that extends from the cell surface and is formed by the elongation of bundled actin filaments in its core.

Lamellipodia-like veil

A thin, sheet-like extension of cytoplasm between filopodia that is formed by branched actin networks.

F-actin bundle

Long actin filaments that are crosslinked together in parallel, forming the core of filopodia.

F-actin arc

An actomyosin contractile structure that is perpendicular to bundles of actin, forming a hemicircumferential ring in the transition zone.

Dynamic instability

The state used to describe microtubule polymer dynamics, in which microtubule polymers cycle through periods of growth, shrinkage and occasional pausing.

Actin network

Actin filaments that are crosslinked in a branched pattern, forming the structure of lamellipodia-like veils.

Neuroblastoma

A tumour derived from primitive ganglion cells that can partially differentiate into cells that have the appearance of immature neurons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lowery, L., Vactor, D. The trip of the tip: understanding the growth cone machinery. Nat Rev Mol Cell Biol 10, 332–343 (2009). https://doi.org/10.1038/nrm2679

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2679

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing