Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Alternative splicing as a regulator of development and tissue identity

Key Points

  • Alternative splicing explains how a single gene can generate more than one mRNA transcript, thus expanding the complexity of the proteome.

  • During normal development, a large number of alternative splicing changes occur, and it is now apparent that these transitions between alternatively spliced isoforms contribute to the acquisition of adult tissue functions and identity.

  • Individual splicing changes are coordinated during development, establishing splicing networks.

  • As a result of recent progress, we now better understand the mechanisms that coordinate alternative splicing networks and the roles of these networks in cell differentiation, organ development and tissue homeostasis.

Abstract

Alternative splicing of eukaryotic transcripts is a mechanism that enables cells to generate vast protein diversity from a limited number of genes. The mechanisms and outcomes of alternative splicing of individual transcripts are relatively well understood, and recent efforts have been directed towards studying splicing networks. It has become apparent that coordinated splicing networks regulate tissue and organ development, and that alternative splicing has important physiological functions in different developmental processes in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Alternative splicing functions in brain development.
Figure 2: Alternative splicing in heart development.
Figure 3: Interplay between splicing and epigenetic modifications in spermatogenesis and regulatory feedback loops involving splicing in T cell activation.

Similar content being viewed by others

References

  1. Pan, Q., Shai, O., Lee, L. J., Frey, B. J. & Blencowe, B. J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 40, 1413–1415 (2008).

    CAS  PubMed  Google Scholar 

  2. Wang, E. T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kim, M.-S. et al. A draft map of the human proteome. Nature 509, 575–581 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Scotti, M. M. & Swanson, M. S. RNA mis-splicing in disease. Nat. Rev. Genet. 17, 19–32 (2016).

    CAS  PubMed  Google Scholar 

  5. Kalsotra, A. et al. A postnatal switch of CELF and MBNL proteins reprograms alternative splicing in the developing heart. Proc. Natl Acad. Sci. USA 105, 20333–20338 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Bebee, T. W., Cieply, B. W. & Carstens, R. P. Genome-wide activities of RNA binding proteins that regulate cellular changes in the epithelial to mesenchymal transition (EMT). Adv. Exp. Med. Biol. 825, 267–302 (2014).

    CAS  PubMed  Google Scholar 

  7. Pradella, D., Naro, C., Sette, C. & Ghigna, C. EMT and stemness: flexible processes tuned by alternative splicing in development and cancer progression. Mol. Cancer 16, 8 (2017).

    PubMed  PubMed Central  Google Scholar 

  8. Chabot, B. & Shkreta, L. Defective control of pre-messenger RNA splicing in human disease. J. Cell Biol. 212, 13–27 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Singh, R. K. & Cooper, T. A. Pre-mRNA splicing in disease and therapeutics. Trends Mol. Med. 18, 472–482 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Martinez, N. M. et al. Alternative splicing networks regulated by signaling in human T cells. RNA 18, 1029–1040 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Giudice, J. et al. Alternative splicing regulates vesicular trafficking genes in cardiomyocytes during postnatal heart development. Nat. Commun. 5, 3603 (2014).

    CAS  PubMed  Google Scholar 

  12. Bhate, A. et al. ESRP2 controls an adult splicing programme in hepatocytes to support postnatal liver maturation. Nat. Commun. 6, 8768 (2015).

    PubMed  Google Scholar 

  13. Dillman, A. A. et al. mRNA expression, splicing and editing in the embryonic and adult mouse cerebral cortex. Nat. Neurosci. 16, 499–506 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Singh, R. K. et al. Rbfox2-coordinated alternative splicing of Mef2d and Rock2 controls myoblast fusion during myogenesis. Mol. Cell 55, 592–603 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Llorian, M. et al. The alternative splicing program of differentiated smooth muscle cells involves concerted non-productive splicing of post-transcriptional regulators. Nucleic Acids Res. 44, 8933–8950 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Fu, X. D. Towards a splicing code. Cell 119, 736–738 (2004).

    CAS  PubMed  Google Scholar 

  17. Barash, Y. et al. Deciphering the splicing code. Nature 465, 53–59 (2010).

    CAS  PubMed  Google Scholar 

  18. Fu, X.-D. & Ares, M. Context-dependent control of alternative splicing by RNA-binding proteins. Nat. Rev. Genet. 15, 689–701 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Tilgner, H. et al. Deep sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human genome but inefficient for lncRNAs. Genome Res. 22, 1616–1625 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Vargas, D. Y. et al. Single-molecule imaging of transcriptionally coupled and uncoupled splicing. Cell 147, 1054–1065 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kornblihtt, A. R. et al. Alternative splicing: a pivotal step between eukaryotic transcription and translation. Nat. Rev. Mol. Cell Biol. 14, 153–165 (2013).

    CAS  PubMed  Google Scholar 

  22. Perales, R. & Bentley, D. 'Cotranscriptionality': the transcription elongation complex as a nexus for nuclear transactions. Mol. Cell 36, 178–191 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Neugebauer, K. M. On the importance of being co-transcriptional. J. Cell Sci. 115, 3865–3871 (2002).

    CAS  PubMed  Google Scholar 

  24. Fiszbein, A. et al. Alternative splicing of G9a regulates neuronal differentiation. Cell Rep. 14, 2797–2808 (2016).

    CAS  PubMed  Google Scholar 

  25. Luco, R. F., Allo, M., Schor, I. E., Kornblihtt, A. R. & Misteli, T. Epigenetics in alternative pre-mRNA splicing. Cell 144, 16–26 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ip, J. Y. et al. Global impact of RNA polymerase II elongation inhibition on alternative splicing regulation. Genome Res. 21, 390–401 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Li, Q. et al. The splicing regulator PTBP2 controls a program of embryonic splicing required for neuronal maturation. eLife 3, e01201 (2014).

    PubMed  PubMed Central  Google Scholar 

  28. Licatalosi, D. D. et al. Ptbp2 represses adult-specific splicing to regulate the generation of neuronal precursors in the embryonic brain. Genes Dev. 26, 1626–1642 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Quesnel-Vallières, M., Irimia, M., Cordes, S. P. & Blencowe, B. J. Essential roles for the splicing regulator nSR100/SRRM4 during nervous system development. Genes Dev. 29, 746–759 (2015).

    PubMed  PubMed Central  Google Scholar 

  30. Raj, B. et al. Cross-regulation between an alternative splicing activator and a transcription repressor controls neurogenesis. Mol. Cell 43, 843–850 (2011).

    CAS  PubMed  Google Scholar 

  31. Zhang, X. et al. Cell-type-specific alternative splicing governs cell fate in the developing cerebral cortex. Cell 166, 1147–1162 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Makeyev, E. V., Zhang, J., Carrasco, M. A. & Maniatis, T. The microRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol. Cell 27, 435–448 (2007). This mechanistic study shows that the regulation of a microRNA controls PTBP1 expression, which in turns regulates the splicing of exon 10 in PTBP2. The inclusion of exon 10 allows PTBP2 protein expression and consequently the non-neuronal to neuronal-specific splicing transition.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Boutz, P. L. et al. A post-transcriptional regulatory switch in polypyrimidine tract-binding proteins reprograms alternative splicing in developing neurons. Genes Dev. 21, 1636–1652 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Spellman, R., Llorian, M. & Smith, C. W. J. Crossregulation and functional redundancy between the splicing regulator PTB and its paralogs nPTB and ROD1. Mol. Cell 27, 420–434 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Raj, B. et al. A global regulatory mechanism for activating an exon network required for neurogenesis. Mol. Cell 56, 90–103 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Fogel, B. L. et al. RBFOX1 regulates both splicing and transcriptional networks in human neuronal development. Hum. Mol. Genet. 21, 4171–4186 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Gehman, L. T. et al. The splicing regulator Rbfox1 (A2BP1) controls neuronal excitation in the mammalian brain. Nat. Genet. 43, 706–711 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee, J. A. et al. Cytoplasmic Rbfox1 regulates the expression of synaptic and autism-related genes. Neuron 89, 113–128 (2016).

    CAS  PubMed  Google Scholar 

  39. Jensen, K. B. et al. Nova-1 regulates neuron-specific alternative splicing and is essential for neuronal viability. Neuron 25, 359–371 (2000).

    CAS  PubMed  Google Scholar 

  40. Yano, M., Hayakawa-Yano, Y., Mele, A. & Darnell, R. B. Nova2 regulates neuronal migration through an RNA switch in Disabled-1 signaling. Neuron 66, 848–858 (2010). This work shows that in the brain, the balance between DAB1 splicing isoforms is developmentally controlled by NOVA2 and that this regulates neuronal migration.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Giampietro, C. et al. The alternative splicing factor Nova2 regulates vascular development and lumen formation. Nat. Commun. 6, 8479 (2015).

    CAS  PubMed  Google Scholar 

  42. Forster, E. et al. Emerging topics in Reelin function. Eur. J. Neurosci. 31, 1511–1518 (2010).

    PubMed  PubMed Central  Google Scholar 

  43. Beffert, U. et al. Reelin-mediated signaling locally regulates protein kinase B/Akt and glycogen synthase kinase 3beta. J. Biol. Chem. 277, 49958–49964 (2002).

    CAS  PubMed  Google Scholar 

  44. Kim, K., Nam, J., Mukouyama, Y. & Kawamoto, S. Rbfox3-regulated alternative splicing of Numb promotes neuronal differentiation during development. J. Cell Biol. 200, 443–458 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Traunmuller, L., Gomez, A. M., Nguyen, T.-M. & Scheiffele, P. Control of neuronal synapse specification by a highly dedicated alternative splicing program. Science 352, 982–986 (2016). This study demonstrates in vivo that the RBP SLM2 controls the specification of synapses through alternative splicing of Nrxn1.

    PubMed  Google Scholar 

  46. Iijima, T. et al. SAM68 regulates neuronal activity-dependent alternative splicing of neurexin-1. Cell 147, 1601–1614 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zibetti, C. et al. Alternative splicing of the histone demethylase LSD1/KDM1 contributes to the modulation of neurite morphogenesis in the mammalian nervous system. J. Neurosci. 30, 2521–2532 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Mauger, O. et al. Alternative splicing regulates the expression of G9A and SUV39H2 methyltransferases, and dramatically changes SUV39H2 functions. Nucleic Acids Res. 43, 1869–1882 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Laurent, B. et al. A specific LSD1/KDM1A isoform regulates neuronal differentiation through H3K9 demethylation. Mol. Cell 57, 957–970 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315–322 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hodges, E. et al. High definition profiling of mammalian DNA methylation by array capture and single molecule bisulfite sequencing. Genome Res. 19, 1593–1605 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Choi, J. K. Contrasting chromatin organization of CpG islands and exons in the human genome. Genome Biol. 11, R70 (2010).

    PubMed  PubMed Central  Google Scholar 

  53. Oberdoerffer, S. A conserved role for intragenic DNA methylation in alternative pre-mRNA splicing. Transcription 3, 106–109 (2012).

    PubMed  PubMed Central  Google Scholar 

  54. Amit, M. et al. Differential GC content between exons and introns establishes distinct strategies of splice-site recognition. Cell Rep. 1, 543–556 (2012).

    CAS  PubMed  Google Scholar 

  55. Gelfman, S., Cohen, N., Yearim, A. & Ast, G. DNA-methylation effect on cotranscriptional splicing is dependent on GC architecture of the exon-intron structure. Genome Res. 23, 789–799 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Gelfman, S. et al. Changes in exon-intron structure during vertebrate evolution affect the splicing pattern of exons. Genome Res. 22, 35–50 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kucharski, R., Maleszka, J., Foret, S. & Maleszka, R. Nutritional control of reproductive status in honeybees via DNA methylation. Science 319, 1827–1830 (2008).

    CAS  PubMed  Google Scholar 

  58. Lyko, F. et al. The honey bee epigenomes: differential methylation of brain DNA in queens and workers. PLoS Biol. 8, e1000506 (2010).

    PubMed  PubMed Central  Google Scholar 

  59. Foret, S., Kucharski, R. & Pellegrini, M. DNA methylation dynamics, metabolic fluxes, gene splicing, and alternative phenotypes in honey bees. Proc. Natl Acad. Sci. USA 109, 4968–4973 (2012). References 57–59 demonstrate how the connection between alternative DNA-methylation and splicing affects the development of honeybees into queens or workers.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Shukla, S. et al. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature 479, 74–79 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Phillips, J. E. & Corces, V. G. CTCF: master weaver of the genome. Cell 137, 1194–1211 (2009).

    PubMed  PubMed Central  Google Scholar 

  62. Sun, S. et al. ALS-causative mutations in FUS/TLS confer gain and loss of function by altered association with SMN and U1-snRNP. Nat. Commun. 6, 6171 (2015).

    CAS  PubMed  Google Scholar 

  63. Bentmann, E., Haass, C. & Dormann, D. Stress granules in neurodegeneration — lessons learnt from TAR DNA binding protein of 43 kDa and fused in sarcoma. FEBS J. 280, 4348–4370 (2013).

    CAS  PubMed  Google Scholar 

  64. Tollervey, J. R. et al. Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat. Neurosci. 14, 452–458 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Janssens, J. & Van Broeckhoven, C. Pathological mechanisms underlying TDP-43 driven neurodegeneration in FTLD-ALS spectrum disorders. Hum. Mol. Genet. 22, R77–R87 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Scotter, E. L., Chen, H. J. & Shaw, C. E. TDP-43 proteinopathy and ALS: insights into disease mechanisms and therapeutic targets. Neurotherapeutics 12, 352–363 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Ling, J. P. et al. TDP-43 repression of nonconserved cryptic exons is compromised in ALS-FTD. Science 349, 650–655 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Coady, T. H. & Manley, J. L. ALS mutations in TLS / FUS disrupt target gene expression. Genes Dev. 29, 1696–1706 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Avendaño-Vázquez, S. E. et al. Autoregulation of TDP-43 mRNA levels involves interplay between transcription, splicing, and alternative polyA site selection. Genes Dev. 26, 1679–1684 (2012).

    PubMed  PubMed Central  Google Scholar 

  70. De Conti, L. et al. TDP-43 affects splicing profiles and isoform production of genes involved in the apoptotic and mitotic cellular pathways. Nucleic Acids Res. 43, 8990–9005 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Weyn-Vanhentenryck, S. M. et al. HITS-CLIP and integrative modeling define the Rbfox splicing-regulatory network linked to brain development and autism. Cell Rep. 6, 1139–1152 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Bill, B. R., Lowe, J. K., DyBuncio, C. T. & Fogel, B. L. Orchestration of neurodevelopmental programs by RBFOX1: implications for autism spectrum disorder. Int. Rev. Neurobiol. 113, 251–267 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Voineagu, I. et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 474, 380–384 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Irimia, M. et al. A highly conserved program of neuronal microexons is misregulated in autistic brains. Cell 159, 1511–1523 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Lacovich, V. et al. Tau isoforms imbalance impairs the axonal transport of the amyloid precursor protein in human neurons. J. Neurosci. 37, 58–69 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Vuong, C. K., Black, D. L. & Zheng, S. The neurogenetics of alternative splicing. Nat. Rev. Neurosci. 17, 265–281 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Buljan, M. et al. Tissue-specific splicing of disordered segments that embed binding motifs rewires protein interaction networks. Mol. Cell 46, 871–883 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Ellis, J. D. et al. Tissue-specific alternative splicing remodels protein-protein interaction networks. Mol. Cell 46, 884–892 (2012).

    CAS  PubMed  Google Scholar 

  79. Giudice, J. & Cooper, T. A. RNA-binding proteins in heart development. Adv. Exp. Med. Biol. 825, 389–429 (2014).

    CAS  PubMed  Google Scholar 

  80. Wang, E. T. et al. Antagonistic regulation of mRNA expression and splicing by CELF and MBNL proteins. Genome Res. 25, 858–871 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Gao, C. et al. RBFox1-mediated RNA splicing regulates cardiac hypertrophy and heart failure. J. Clin. Invest. 126, 195–206 (2016).

    PubMed  Google Scholar 

  82. Gallagher, T. L. et al. Rbfox-regulated alternative splicing is critical for zebrafish cardiac and skeletal muscle functions. Dev. Biol. 359, 251–261 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Salomonis, N. et al. Alternative splicing in the differentiation of human embryonic stem cells into cardiac precursors. PLoS Comput. Biol. 5, e1000553 (2009).

    PubMed  PubMed Central  Google Scholar 

  84. Giudice, J., Loehr, J., Rodney, G. G. & Cooper, T. A. Alternative splicing of Snap23, Tmed2, Trip10, and Cltc regulates myofiber structure and skeletal muscle physiology. Cell Rep. 17, 1923–1933 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Labeit, S. & Kolmerer, B. Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 270, 293–296 (1995).

    CAS  PubMed  Google Scholar 

  86. Bang, M. L. et al. The complete gene sequence of titin, expression of an unusual approximately 700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking system. Circ. Res. 89, 1065–1072 (2001).

    CAS  PubMed  Google Scholar 

  87. Li, S., Guo, W., Dewey, C. N. & Greaser, M. L. Rbm20 regulates titin alternative splicing as a splicing repressor. Nucleic Acids Res. 41, 2659–2672 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Krüger, M. & Linke, W. A. The giant protein titin: a regulatory node that integrates myocyte signaling pathways. J. Biol. Chem. 286, 9905–9912 (2011).

    PubMed  PubMed Central  Google Scholar 

  89. Guo, W. et al. RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing. Nat. Med. 18, 766–773 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Refaat, M. M. et al. Genetic variation in the alternative splicing regulator RBM20 is associated with dilated cardiomyopathy. Heart Rhythm 9, 390–396 (2012).

    PubMed  Google Scholar 

  91. Brauch, K. M. et al. Mutations in ribonucleic acid binding protein gene cause familial dilated cardiomyopathy. J. Am. Coll. Cardiol. 54, 930–941 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Beqqali, A. et al. A mutation in the glutamate-rich region of RNA-binding motif protein 20 causes dilated cardiomyopathy through missplicing of titin and impaired Frank-Starling mechanism. Cardiovasc. Res. 112, 452–463 (2016).

    CAS  PubMed  Google Scholar 

  93. Haas, J. et al. Atlas of the clinical genetics of human dilated cardiomyopathy. Eur. Heart J. 36, 1123–1135 (2015).

    CAS  PubMed  Google Scholar 

  94. Charton, K. et al. Exploiting the CRISPR/CAS9 system to study alternative splicing in vivo: application to Titin. Hum. Mol. Genet. 25, 4518–4532 (2016). The first study to apply CRISPR–Cas9 editing technologies in the investigation of alternative splicing functions in vivo.

    CAS  PubMed  Google Scholar 

  95. Beraldi, R. et al. Rbm20-deficient cardiogenesis reveals early disruption of RNA processing and sarcomere remodeling establishing a developmental etiology for dilated cardiomyopathy. Hum. Mol. Genet. 23, 3779–3791 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Maatz, H. et al. RNA-binding protein RBM20 represses splicing to orchestrate cardiac pre-mRNA processing. J. Clin. Invest. 124, 3419–3430 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Lara-Pezzi, E., Gómez-Salinero, J., Gatto, A. & García-Pavía, P. The alternative heart: Impact of alternative splicing in heart disease. J. Cardiovasc. Transl Res. 6, 945–955 (2013).

    PubMed  Google Scholar 

  98. Mirtschink, P. et al. HIF-driven SF3B1 induces KHK-C to enforce fructolysis and heart disease. Nature 522, 444–449 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Castle, J. C. et al. Expression of 24,426 human alternative splicing events and predicted cis regulation in 48 tissues and cell lines. Nat. Genet. 40, 1416–1425 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Runfola, V., Sebastian, S., Dilworth, F. J. & Gabellini, D. Rbfox proteins regulate tissue-specific alternative splicing of Mef2D required for muscle differentiation. J. Cell Sci. 128, 631–637 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Hall, M. P. et al. Quaking and PTB control overlapping splicing regulatory networks during muscle cell differentiation. RNA 19, 627–638 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Sebastian, S. et al. Tissue-specific splicing of a ubiquitously expressed transcription factor is essential for muscle differentiation. Genes Dev. 27, 1247–1259 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Harper, P. Myotonic Dystrophy 3rd edn (W.B. Saunders, 2001).

    Google Scholar 

  104. Savkur, R. S., Philips, A. V. & Cooper, T. A. Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat. Genet. 29, 40–47 (2001).

    CAS  PubMed  Google Scholar 

  105. Savkur, R. S. et al. Insulin receptor splicing alteration in myotonic dystrophy type 2. Am. J. Hum. Genet. 74, 1309–1313 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Fugier, C. et al. Misregulated alternative splicing of BIN1 is associated with T tubule alterations and muscle weakness in myotonic dystrophy. Nat. Med. 17, 720–725 (2011).

    CAS  PubMed  Google Scholar 

  107. Kimura, T. et al. Altered mRNA splicing of the skeletal muscle ryanodine receptor and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase in myotonic dystrophy type 1. Hum. Mol. Genet. 14, 2189–2200 (2005).

    CAS  PubMed  Google Scholar 

  108. Freyermuth, F. et al. Splicing misregulation of SCN5A contributes to cardiac conduction delay and heart arrhythmia in myotonic dystrophy. Nat. Commun. 7, 11067 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Eizirik, D. L. et al. The human pancreatic islet transcriptome: expression of candidate genes for type 1 diabetes and the impact of pro-inflammatory cytokines. PLoS Genet. 8, e1002552 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Villate, O. et al. Nova1 is a master regulator of alternative splicing in pancreatic beta cells. Nucleic Acids Res. 42, 11818–11830 (2015).

    Google Scholar 

  111. Cnop, M. et al. RNA sequencing identifies dysregulation of the human pancreatic islet transcriptome by the saturated fatty acid palmitate. Diabetes 63, 1978–1993 (2014).

    CAS  PubMed  Google Scholar 

  112. Lin, J. C. et al. RBM4 promotes pancreas cell differentiation and insulin expression. Mol. Cell. Biol. 33, 319–327 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Sen, S., Jumaa, H. & Webster, N. J. G. Splicing factor SRSF3 is crucial for hepatocyte differentiation and metabolic function. Nat. Commun. 4, 1336 (2013).

    PubMed  Google Scholar 

  114. Pihlajamäki, J. et al. Expression of the splicing factor gene SFRS10 is reduced in human obesity and contributes to enhanced lipogenesis. Cell Metab. 14, 208–218 (2011).

    PubMed  PubMed Central  Google Scholar 

  115. Elizalde, M. et al. Splicing regulator SLU7 is essential for maintaining liver homeostasis. J. Clin. Invest. 124, 2909–2920 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Carreira-Rosario, A. et al. Repression of Pumilio protein expression by Rbfox1 promotes germ cell differentiation. Dev. Cell 36, 562–571 (2016). A report showing how nuclear and cytoplasmic isoforms of RBFOX1 contribute to germ cell differentiation.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Slaidina, M. & Lehmann, R. Translational control in germline stem cell development. J. Cell Biol. 207, 13–21 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Soumillon, M. et al. Cellular source and mechanisms of high transcriptome complexity in the mammalian testis. Cell Rep. 3, 2179–2190 (2013).

    CAS  PubMed  Google Scholar 

  119. Ramsköld, D., Wang, E. T., Burge, C. B. & Sandberg, R. An abundance of ubiquitously expressed genes revealed by tissue transcriptome sequence data. PLoS Comput. Biol. 5, e1000598 (2009).

    PubMed  PubMed Central  Google Scholar 

  120. Schmid, R. et al. The splicing landscape is globally reprogrammed during male meiosis. Nucleic Acids Res. 41, 10170–10184 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Zagore, L. L. et al. RNA binding protein Ptbp2 is essential for male germ cell development. Mol. Cell. Biol. 35, 4030–4042 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Paronetto, M. P. et al. Sam68 marks the transcriptionally active stages of spermatogenesis and modulates alternative splicing in male germ cells. Nucleic Acids Res. 39, 4961–4974 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Luco, R. F. et al. Regulation of alternative splicing by histone modifications. Science 327, 996–1000 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Iwamori, N. et al. MRG15 is required for pre-mRNA splicing and spermatogenesis. Proc. Natl Acad. Sci. USA 113, E5408–E5415 (2016). This study nicely demonstrates how the interplay between epigenetic information and splicing affects mouse spermatogenesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Gaudreau, M.-C., Heyd, F., Bastien, R., Wilhelm, B. & Möröy, T. Alternative splicing controlled by heterogeneous nuclear ribonucleoprotein L regulates development, proliferation, and migration of thymic pre-T cells. J. Immunol. 188, 5377–5388 (2012).

    CAS  PubMed  Google Scholar 

  126. Shankarling, G., Cole, B. S., Mallory, M. J. & Lynch, K. W. Transcriptome-wide RNA interaction profiling reveals physical and functional targets of hnRNP L in human T cells. Mol. Cell. Biol. 34, 71–83 (2014).

    PubMed  PubMed Central  Google Scholar 

  127. Yarosh, C. A. et al. TRAP150 interacts with the RNA-binding domain of PSF and antagonizes splicing of numerous PSF-target genes in T cells. Nucleic Acids Res. 43, 9006–9016 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Ajith, S. et al. Position-dependent activity of CELF2 in the regulation of splicing and implications for signal-responsive regulation in T cells. RNA Biol. 13, 569–581 (2016).

    PubMed  PubMed Central  Google Scholar 

  129. Mallory, M. J. et al. Induced transcription and stability of CELF2 mRNA drives widespread alternative splicing during T-cell signaling. Proc. Natl Acad. Sci. USA 112, E2139–E2148 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Ni, T. et al. Global intron retention mediated gene regulation during CD4+ T cell activation. Nucleic Acids Res. 44, 6817–6829 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Martinez, N. M. et al. Widespread JNK-dependent alternative splicing induces a positive feedback loop through CELF2-mediated regulation of MKK7 during T-cell activation. Genes Dev. 29, 2054–2066 (2015). References 128, 129 and 131 provide evidence of a positive feedback loop in T cell activation that consists of the CELF2 splicing factor, the JNK signalling pathway and MKK7 alternative splicing.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Cole, B. S. et al. Global analysis of physical and functional RNA targets of hnRNP L reveals distinct sequence and epigenetic features of repressed and enhanced exons. RNA 21, 2053–2066 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Rothrock, C., House, A. & Lynch, K. W. HnRNP L represses exon splicing via a regulated exonic splicing silencer. EMBO J. 24, 2792–2802 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Yamamoto, M. L. et al. Alternative pre-mRNA splicing switches modulate gene expression in late erythropoiesis. Blood 113, 3363–3370 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Hou, V. C. et al. Decrease in hnRNP A/B expression during erythropoiesis mediates a pre-mRNA splicing switch. EMBO J. 21, 6195–6204 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Cheng, A. W. et al. Muscleblind-like 1 (Mbnl1) regulates pre-mRNA alternative splicing during terminal erythropoiesis. Blood 124, 598–610 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Pimentel, H. et al. A dynamic alternative splicing program regulates gene expression during terminal erythropoiesis. Nucleic Acids Res. 42, 4031–4042 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Pimentel, H. et al. A dynamic intron retention program enriched in RNA processing genes regulates gene expression during terminal erythropoiesis. Nucleic Acids Res. 44, 838–851 (2016).

    CAS  PubMed  Google Scholar 

  139. Yan, Q. et al. Systematic discovery of regulated and conserved alternative exons in the mammalian brain reveals NMD modulating chromatin regulators. Proc. Natl Acad. Sci. USA 112, 3445–3450 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Charizanis, K. et al. Muscleblind-like 2-mediated alternative splicing in the developing brain and dysregulation in myotonic dystrophy. Neuron 75, 437–450 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Pilaz, L.-J. & Silver, D. L. Post-transcriptional regulation in corticogenesis: how RNA-binding proteins help build the brain. Wiley Interdiscip. Rev. RNA 6, 501–515 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Raj, B. & Blencowe, B. J. Alternative splicing in the mammalian nervous system: recent insights into mechanisms and functional roles. Neuron 87, 14–27 (2015).

    CAS  PubMed  Google Scholar 

  143. Blech-Hermoni, Y. & Ladd, A. N. RNA binding proteins in the regulation of heart development. Int. J. Biochem. Cell Biol. 45, 2467–2478 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Van Den Hoogenhof, M. M. G., Pinto, Y. M. & Creemers, E. E. RNA splicing regulation and dysregulation in the heart. Circ. Res. 118, 454–468 (2016).

    CAS  PubMed  Google Scholar 

  145. Licatalosi, D. D. Roles of RNA-binding proteins and post-transcriptional regulation in driving male germ cell development in the mouse. Adv. Exp. Med. Biol. 907, 123–151 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Martinez, N. M. & Lynch, K. W. Control of alternative splicing in immune responses: many regulators, many predictions, much still to learn. Immunol. Rev. 253, 216–236 (2013).

    PubMed  PubMed Central  Google Scholar 

  147. Yabas, M., Elliott, H. & Hoyne, G. The role of alternative splicing in the control of immune homeostasis and cellular differentiation. Int. J. Mol. Sci. 17, E3 (2015).

    PubMed  Google Scholar 

  148. Conboy, J. G. RNA splicing during terminal erythropoiesis. Curr. Opin. Hematol. 24, 215–221 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Bland, C. S. et al. Global regulation of alternative splicing during myogenic differentiation. Nucleic Acids Res. 38, 7651–7664 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Wells, Q. S. et al. Whole exome sequencing identifies a causal RBM20 mutation in a large pedigree with familial dilated cardiomyopathy. Circ. Cardiovasc. Genet. 6, 317–326 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Echeverria, G. V. & Cooper, T. A. RNA-binding proteins in microsatellite expansion disorders: mediators of RNA toxicity. Brain Res. 1462, 100–111 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Goodwin, M. et al. MBNL sequestration by toxic RNAs and RNA misprocessing in the myotonic dystrophy brain. Cell Rep. 12, 1159–1168 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Chau, A. & Kalsotra, A. Developmental insights into the pathology of and therapeutic strategies for DM1: back to the basics. Dev. Dyn. 244, 377–390 (2015).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.G. is supported by start-up funds, a Junior Faculty Development Award and a Nutrition Obesity Research Center (NORC) Pilot and Feasibility Grant (P30DK056350) from The University of North Carolina at Chapel Hill.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jimena Giudice.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

RNA-binding proteins (RBPs) regulating alternative splicing in developmental or differentiation contexts (PDF 156 kb)

PowerPoint slides

Glossary

Spliceosome

A large, macromolecular complex composed of small nuclear RNAs and protein factors that removes regions (mostly introns) from transcribed precursor mRNA.

RNA-binding proteins

(RBPs). Proteins that bind to RNA molecules through RNA-recognition motifs and exert nuclear and cytoplasmic post-transcriptional functions.

Poison exons

Exons that, when included in mRNA, introduce a premature termination codon.

Nonsense-mediated mRNA decay

(NMD). A regulatory mechanism that controls mRNA levels by eliminating mRNA transcripts that contain premature stop codons.

Filamin A

An actin-binding protein that is involved in the crosslinking of actin filaments, cytoskeleton remodelling, cell shape and cell migration.

Ninein

A protein involved in the anchoring of microtubule minus-ends and in centrosomal functions.

Amyotrophic lateral sclerosis

A progressive neurodegenerative disease in which motor neuron functions are altered and motor neurons die. As a consequence, the brain is not capable of controlling muscle movement, and people with the disease lose the ability to speak, eat, move and breathe.

Frontotemporal lobar degeneration

A disease caused by progressive damage to and atrophy of the temporal and/or frontal lobes of the brain.

Z-Line

The line that separates two adjacent sarcomeres.

M-Line

The centre of the sarcomere and the anchor site for thick myosin filaments.

Sarcomere

The basic structural unit of a myofibril in striated muscles. The sarcomere consists of a dark band and the nearest half of the adjacent pale band. Sarcomeres are composed of myosin filaments (thick) and actin filaments (thin).

Myoblast fusion

Myoblast cells fuse with each other, forming multinucleated myotubes that generate muscle fibres (myofibres) during development.

c-Jun N-terminal kinase signalling cascade

(JNK signalling cascade). A signalling pathway that is activated by environmental stress, inflammatory cytokines and growth factors. On its activation, JNK translocates to the nucleus, where it regulates transcription.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baralle, F., Giudice, J. Alternative splicing as a regulator of development and tissue identity. Nat Rev Mol Cell Biol 18, 437–451 (2017). https://doi.org/10.1038/nrm.2017.27

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2017.27

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing