Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Essay
  • Published:

Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century

Abstract

Gene targeting in mouse embryonic stem cells has become the 'gold standard' for determining gene function in mammals. Since its inception, this technology has revolutionized the study of mammalian biology and human medicine. Here I provide a personal account of the work that led to the generation of gene targeting which now lies at the centre of functional genomic analysis.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of an integrated, head-to-tail concatemer of multiple copies of a plasmid following its injection into nuclei of cultured mammalian cells.
Figure 2: Generation of a functional neomycin resistance gene from two defective genes by gene targeting.
Figure 3: Disruption of the endogenous hypoxanthine phosphoribosyl transferase gene by gene targeting in embryonic stem cells.
Figure 4: Positive–negative selection.
Figure 5: Generation of mouse germline chimaeras from embryonic stem cells that contain the desired targeted mutation.

References

  1. Capecchi, M. R. Generating mice with targeted mutations. Nature Med. 7, 1086–1090 (2001).

    Article  CAS  Google Scholar 

  2. Wigler, M. et al. Transfer of purified herpes virus thymidine kinase gene to cultured mouse cells. Cell 11, 223–232 (1977).

    Article  CAS  Google Scholar 

  3. Capecchi, M. R. High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell 22, 479–488 (1980).

    Article  CAS  Google Scholar 

  4. Gordon, J. W., Scangos, G. A., Plotkin, D. J., Barbosa, J. A. & Ruddle, F. H. Genetic transformation of mouse embryos by microinjection of purified DNA. Proc. Natl Acad. Sci. USA 77, 7380–7384 (1980).

    Article  CAS  Google Scholar 

  5. Brinster, R. L. et al. Somatic expression of herpes thymidine kinase in mice following injection of a fusion gene into eggs. Cell 27, 223–231 (1981).

    Article  CAS  Google Scholar 

  6. Costantini, F. & Lacy, E. Introduction of a rabbit β-globin gene into the mouse germ line. Nature 294, 92–94 (1981).

    Article  CAS  Google Scholar 

  7. Wagner, E. F., Stewart, T. A. & Mintz, B. The human β-globin gene and a functional thymidine kinase gene in developing mice. Proc. Natl Acad. Sci. USA 78, 5016–5020 (1981).

    Article  CAS  Google Scholar 

  8. Wagner, T. E. et al. Microinjection of a rabbit β-globin gene in zygotes and its subsequent expression in adult mice and their offspring. Proc. Natl Acad. Sci. USA 78, 6376–6380 (1981).

    Article  CAS  Google Scholar 

  9. Luciw, P. A., Bishop, J. M., Varmus, H. E. & Capecchi, M. R. Location and function of retroviral and SV40 sequences that enhance biochemical transformation after microinjection of DNA. Cell 33, 705–716 (1983).

    Article  CAS  Google Scholar 

  10. Levinson, B., Khoury, G., VandeWoude, G. & Gruss, P. Activation of SV40 genome by 72-base pair tandem repeats of Moloney sarcoma virus. Nature 295, 568–572 (1982).

    Article  CAS  Google Scholar 

  11. Folger, K. R., Wong, E. A., Wahl, G. & Capecchi, M. R. Patterns of integration of DNA microinjected into cultured mammalian cells: evidence for homologous recombination between injected plasmid DNA molecules. Mol. Cell. Biol. 2, 1372–1387 (1982).

    Article  CAS  Google Scholar 

  12. Hinnen, A., Hicks, J. B. & Fink, G. R. Transformation of yeast. Proc. Natl Acad. Sci. USA 75, 1929–1933 (1978).

    Article  CAS  Google Scholar 

  13. Thomas, K. R., Folger, K. R. & Capecchi, M. R. High frequency targeting of genes to specific sites in the mammalian genome. Cell 44, 419–428 (1986).

    Article  CAS  Google Scholar 

  14. Wong, E. A. & Capecchi, M. R. Analysis of homologous recombination in cultured mammalian cells in transient expression and stable transformation assays. Somat. Cell Mol. Genet. 12, 63–72 (1986).

    Article  CAS  Google Scholar 

  15. Folger, K. R., Thomas, K. R. & Capecchi, M. R. Nonreciprocal exchanges of information between DNA duplexes coinjected into mammalian cell nuclei. Mol. Cell. Biol. 2, 1372–1387 (1985).

    Article  Google Scholar 

  16. Folger, K., Thomas, K. & Capecchi, M. R. Analysis of homologous recombination in cultured mammalian cells. Cold Spring Harbor Symp. Quant. Biol. 49, 123–138 (1984).

    Article  CAS  Google Scholar 

  17. Smithies, O., Gregg, R. G., Boggs, S. S., Koralewski, M. A. & Kucherlapati, R. S. Insertion of DNA sequences into the human chromosomal β-globin locus by homologous recombination. Nature 317, 230–234 (1985).

    Article  CAS  Google Scholar 

  18. Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981).

    Article  CAS  Google Scholar 

  19. Bradley, A., Evans, M., Kaufman, M. H. & Robertson, E. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309, 255–256 (1984).

    Article  CAS  Google Scholar 

  20. Thomas, K. R. & Capecchi, M. R. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51, 503–512 (1987).

    Article  CAS  Google Scholar 

  21. Thomas, K. R., Deng, C. & Capecchi, M. R. High-fidelity gene targeting in embryonic stem cells by using sequence replacement vectors. Mol. Cell. Biol. 12, 2919–2923 (1992).

    Article  CAS  Google Scholar 

  22. Deng, C. & Capecchi, M. R. Reexamination of gene targeting frequency as a function of the extent of homology between the targeting vector and the target locus. Mol. Cell. Biol. 12, 3365–3371 (1992).

    Article  CAS  Google Scholar 

  23. Deng, C., Thomas, K. R. & Capecchi, M. R. Location of crossovers during gene targeting with insertion and replacement vectors. Mol. Cell. Biol. 13, 2134–2140 (1993).

    Article  CAS  Google Scholar 

  24. Joyner, A. L., Skarnes, W. C. & Rossant, J. Production of a mutation in mouse En-2 gene by homologous recombination in embryonic stem cells. Nature 338, 153–156 (1989).

    Article  CAS  Google Scholar 

  25. Zijlstra, M., Li, E., Sajjadi, F., Subramani, S. & Jaenisch, R. Germ-line transmission of a disrupted β2-microglobulin gene produced by homologous recombination in embryonic stem cells. Nature 342, 435–438 (1989).

    Article  CAS  Google Scholar 

  26. Schwartzberg, P. L., Goff, S. P. & Robertson, E. J. Germ-line transmission of a c-abl mutation produced by targeted gene disruption in ES cells. Science 246, 799–803 (1989).

    Article  CAS  Google Scholar 

  27. DeChiara, T. M., Efstratiadis, A. & Robertson, E. J. A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature 345, 78–80 (1990).

    Article  CAS  Google Scholar 

  28. Koller, B. H., Marrack, P., Kappler, J. W. & Smithies, O. Normal development of mice deficient in β2M, MHC class I proteins, and CD8+ T cells. Science 248, 1227–1230 (1990).

    Article  CAS  Google Scholar 

  29. Thomas, K. R. & Capecchi, M. R. Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature 346, 847–850 (1990).

    Article  CAS  Google Scholar 

  30. Mansour, S. L., Thomas, K. R. & Capecchi, M. R. Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336, 348–352 (1988).

    Article  CAS  Google Scholar 

  31. Austin et al. The Knockout Mouse Project. Nature Genet. 36, 921–924 (2004).

    Article  CAS  Google Scholar 

  32. Gu, H., Marth, J. D., Orban, P. C., Mossmann, H. & Rajewsky, K. Deletion of a DNA polymerase β-gene segment in T cells using cell type-specific gene targeting. Science 265, 103–106 (1994).

    Article  CAS  Google Scholar 

  33. Bunting, M., Bernstein, K. E., Greer, J. M., Capecchi, M. R. & Thomas, K. R. Targeting genes for self-excision in the germline. Genes Dev. 13, 1524–1528 (1999).

    Article  CAS  Google Scholar 

  34. Moon, A. M., Boulet, A. M. & Capecchi, M. R. Normal limb development in conditional mutants of Fgf4. Development 127, 989–996 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Schmidt, E. E., Taylor, D. S., Prigge, J. R., Barnett, S. & Capecchi, M. R. Illegitimate Cre-dependent chromosome rearrangements in transgenic mouse spermatids. Proc. Natl Acad. Sci. USA 97, 13702–13707 (2000).

    Article  CAS  Google Scholar 

  36. Moon, A. M. & Capecchi, M. R. Fgf8 is required for outgrowth and patterning of the limbs. Nature Genet. 26, 455–459 (2000).

    Article  CAS  Google Scholar 

  37. Barrow, J. R. et al. Ectodermal Wnt3/βcatenin signalling is required for the establishment and the maintenance of the apical ectodermal ridge. Genes Dev. 17, 394–409 (2003).

    Article  CAS  Google Scholar 

  38. Boulet, A. M. & Capecchi, M. R. Multiple roles of Hoxa11 and Hoxd11 in the formation of the mammalian forelimb zeugopod. Development 131, 299–309 (2004).

    Article  CAS  Google Scholar 

  39. Davis, A. P., Witte, D. P., Hsieh-Li, H. M., Potter, S. S. & Capecchi, M. R. Absence of radius and ulna in mice lacking hoxa-11 and hoxd-11. Nature 375, 791–795 (1995).

    Article  CAS  Google Scholar 

  40. Goddard, J. M., Rossel, M., Manley, N. R. & Capecchi, M. R. Mice with targeted disruption of Hoxb-1 fail to form the motor nucleus of the VIIth nerve. Development 122, 3217–3228 (1996).

    CAS  PubMed  Google Scholar 

  41. Greer, J. M., Puetz, J., Thomas, K. R. & Capecchi, M. R. Maintenance of functional equivalence during paralogous Hox gene evolution. Nature 403, 661–665 (2000).

    Article  CAS  Google Scholar 

  42. Wellik, D. M. & Capecchi, M. R. Hox10 and Hox11 genes are required to globally pattern the mammalian skeleton. Science 301, 363–367 (2003).

    Article  CAS  Google Scholar 

  43. Arenkiel, B. R., Tvrdik, P., Gaufo, G. O. & Capecchi, M. R. Hoxb1 functions in both motoneurons and target tissues to establish and maintain proper neuronal circuitry. Development (2004).

  44. Greer, J. M. & Capecchi, M. R. Hoxb8 is required for normal grooming behavior in the mouse. Neuron 33, 23–34 (2002).

    Article  CAS  Google Scholar 

  45. Keller, C., Hansen, M. S., Coffin, C. M. & Capecchi, M. R. Pax3:Fkhr interferes with embryonic Pax3 and Pax7 function: implications for alveolar rhabdomyosarcoma cell of origin. Genes Dev. 18, 2608–2613 (2004).

    Article  CAS  Google Scholar 

  46. Keller, C. et al. Alveolar rhabdomyosarcomas in conditional Pax3:Fkhr mice: cooperativity of Ink4a/ARF and Trp53 loss of function. Genes Dev. 18, 2614–2626 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I would like to thank all those who have worked in my laboratory.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

Hprt1

HSV-tk

FURTHER INFORMATION

Mario Capecchi's homepage

Glossary

ALLELIC SERIES

A series of alleles that can be present at the same locus, which produces graded phenotypes.

HYPOMORPHIC MUTATION

A mutation of which the phenotypic effects are less severe relative to a null mutation in the same gene.

PLURIPOTENT

When referring to stem cells, having the capacity to contribute to the formation of all cell types, such as embryonic stem cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capecchi, M. Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat Rev Genet 6, 507–512 (2005). https://doi.org/10.1038/nrg1619

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1619

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing