Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Glucocorticoids and fetal programming part 1: outcomes

Key Points

  • Glucocorticoids are necessary for normal development and are particularly important for maturation of the fetal brain, lungs and kidneys

  • Exposure of the fetus to excess glucocorticoids leads to long-term programming of the function of the hypothalamic–pituitary–adrenal (HPA) axis and the behaviour of the organism

  • A number of similarities exist between outcomes identified in animal models and those emerging from human studies

  • Programming of the HPA axis by glucocorticoids is dynamic and changes as a function of age; the effects are sex-specific and dependent on the stage of development at exposure

  • The effects of synthetic glucocorticoid exposure or maternal stress can manifest in offspring for multiple generations

Abstract

Fetal development is a critical period for shaping the lifelong health of an individual. However, the fetus is susceptible to internal and external stimuli that can lead to adverse long-term health consequences. Glucocorticoids are an important developmental switch, driving changes in gene regulation that are necessary for normal growth and maturation. The fetal hypothalamic–pituitary–adrenal (HPA) axis is particularly susceptible to long-term programming by glucocorticoids; these effects can persist throughout the life of an organism. Dysfunction of the HPA axis as a result of fetal programming has been associated with impaired brain growth, altered behaviour and increased susceptibility to chronic disease (such as metabolic and cardiovascular disease). Moreover, the effects of glucocorticoid-mediated programming are evident in subsequent generations, and transmission of these changes can occur through both maternal and paternal lineages.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simplified schematic of the hypothalamic–pituitary–adrenal axis.

Similar content being viewed by others

References

  1. Levine, S. Infantile experience and resistance to physiological stress. Science 126, 405 (1957).

    Article  CAS  PubMed  Google Scholar 

  2. Harris, A. & Seckl, J. Glucocorticoids, prenatal stress and the programming of disease. Horm. Behav. 59, 279–289 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Barella, L. F., de Oliveira, J. C. & Mathias, P. C. Pancreatic islets and their roles in metabolic programming. Nutrition 30, 373–379 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Entringer, S. & Wadhwa, P. D. Developmental programming of obesity and metabolic dysfunction: role of prenatal stress and stress biology. Nestle Nutr. Inst. Workshop Ser. 74, 107–120 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Santos, M. S. & Joles, J. A. Early determinants of cardiovascular disease. Best Pract. Res. Clin. Endocrinol. Metab. 26, 581–597 (2012).

    Article  PubMed  Google Scholar 

  6. Barker, D. J., Osmond, C., Golding, J., Kuh, D. & Wadsworth, M. E. Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. BMJ 298, 564–567 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Barker, D. J. & Thornburg, K. L. Placental programming of chronic diseases, cancer and lifespan: a review. Placenta 34, 841–845 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Moisiadis, V. G. & Matthews, S. G. Glucocorticoids and fetal programming part 2: mechanisms. Nat. Rev. Endocrinol. http:dx.doi.org/10.1038/nrendo.2014.74.

  9. Fowden, A. L., Li, J. & Forhead, A. J. Glucocorticoids and the preparation for life after birth: are there long-term consequences of the life insurance? Proc. Nutr. Soc. 57, 113–122 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Matthews, S. G. Antenatal glucocorticoids and programming of the developing CNS. Pediatr. Res. 47, 291–300 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Kapoor, A., Petropoulos, S. & Matthews, S. G. Fetal programming of hypothalamic–pituitary–adrenal (HPA) axis function and behavior by synthetic glucocorticoids. Brain Res. Rev. 57, 586–595 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Chapman, K., Holmes, M. & Seckl, J. 11β-hydroxysteroid dehydrogenases: intracellular gate-keepers of tissue glucocorticoid action. Physiol. Rev. 93, 1139–1206 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Van Vliet, G., Polak, M. & Ritzén, E. M. Treating fetal thyroid and adrenal disorders through the mother. Nat. Clin. Pract. Endocrinol. Metab. 4, 675–682 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Namazy, J. A. & Schatz, M. Treatment of asthma during pregnancy and perinatal outcomes. Curr. Opin. Allergy Clin. Immunol. 5, 229–233 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Doria, A., Tincani, A. & Lockshin, M. Challenges of lupus pregnancies. Rheumatology 47, 9–12 (2008).

    Google Scholar 

  16. Ulrich-Lai, Y. M. & Herman, J. P. Neural regulation of endocrine and autonomic stress responses. Nat. Rev. Neurosci. 10, 397–409 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. de Kloet, E. R., Joëls, M. & Holsboer, F. Stress and the brain: from adaptation to disease. Nat. Rev. Neurosci. 6, 463–475 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Braun, T., Challis, J. R., Newnham, J. P. & Sloboda, D. M. Early life glucocorticoid exposure: the hypothalamic pituitary adrenal axis, placental function and long term disease risk. Endocr. Rev. 34, 885–916 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Gatford, K. L. et al. Repeated betamethasone treatment of pregnant sheep programs persistent reductions in circulating IGF-I and IGF-binding proteins in progeny. Am. J. Physiol. Endocrinol. Metab. 295, E170–E178 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Reynolds, R. M. Glucocorticoid excess and the developmental origins of disease: two decades of testing the hypothesis—2012 Curt Richter Award Winner. Psychoneuroendocrinology 38, 1–11 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Di Dalmazi, G., Pagotto, U., Pasquali, R. & Vicennati, V. J. Glucocorticoids and type 2 diabetes: from physiology to pathology. Nutr. Metab. 2012, 525093 (2012).

    Google Scholar 

  22. Popoli, M., Yan, Z., McEwen, B. S. & Sanacora, G. The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission. Nat. Rev. Neurosci. 13, 22–37 (2012).

    Article  CAS  Google Scholar 

  23. Hunter, R. G. et al. Acute stress and hippocampal histone H3 lysine 9 trimethylation, a retrotransposon silencing response. Proc. Natl Acad. Sci. USA 109, 17657–17662 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Reynolds, R. M. et al. Morning cortisol levels and cognitive abilities in people with type 2 diabetes: the Edinburgh type 2 diabetes study. Diabetes Care 33, 714–720 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fries, E., Hesse, J., Hellhammer, J. & Hellhammer, D. H. A new view on hypocortisolism. Psychoneuroendocrinology 30, 1010–1016 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Reynolds, R. M. et al. Low serum cortisol predicts early death after acute myocardial infarction. Crit. Care Med. 38, 973–975 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Tegethoff, M., Pryce, C. & Meinlschmidt, G. Effects of intrauterine exposure to synthetic glucocorticoids on fetal, newborn, and infant hypothalamic–pituitary–adrenal axis function in humans: a systematic review. Endocr. Rev. 30, 753–789 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Blencowe, H. et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet 379, 2162–2172 (2012).

    Article  PubMed  Google Scholar 

  29. Liu, L. et al. Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet 379, 2151–2161 (2012).

    Article  PubMed  Google Scholar 

  30. National Institutes of Health Consensus Development Panel. Antenatal corticosteroids revisited: repeat courses—National Institutes of Health Consensus Development Conference Statement, August 17–18, 2000. Obstet. Gynecol. 98, 144–150 (2001).

  31. [No authors listed]. Effect of corticosteroids for fetal maturation on perinatal outcomes. NIH Consensus Development Panel on the Effect of Corticosteroids for Fetal Maturation on Perinatal Outcomes. JAMA 273, 413–418 (1995).

  32. Murphy, K. E. et al. Multiple courses of antenatal corticosteroids for preterm birth (MACS): a randomised controlled trial. Lancet 372, 2143–2151 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Quinlivan, J. A., Evans, S. F., Dunlop, S. A., Beazley, L. D. & Newnham, J. P. Use of corticosteroids by Australian obstetricians—a survey of clinical practice. Aust. NZ J. Obstet. Gynaecol. 38, 1–7 (1998).

    Article  CAS  Google Scholar 

  34. Brocklehurst, P., Gates, S., McKenzie-McHarg, K., Alfirevic, Z. & Chamberlain, G. Are we prescribing multiple courses of antenatal corticosteroids? A survey of practice in the UK. Br. J. Obstet. Gynaecol. 106, 977–979 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Crowther, C. A. et al. Neonatal respiratory distress syndrome after repeat exposure to antenatal corticosteroids: a randomised controlled trial. Lancet 367, 1913–1919 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Crowther, C. A., McKinlay, C. J., Middleton, P. & Harding, J. E. Repeat doses of prenatal corticosteroids for women at risk of preterm birth for improving neonatal health outcomes. Cochrane Database of Systematic Reviews Issue 6. Art. No.: CD003935 http://dx.doi.org/10.1002/14651858.CD003935.pub3.

  37. Garite, T. J. et al. Impact of a 'rescue course' of antenatal corticosteroids: a multicenter randomized placebo-controlled trial. Am. J. Obstet. Gynecol. 200, 248.e1–248.e9 (2009).

    Article  CAS  Google Scholar 

  38. McEvoy, C. et al. Respiratory compliance in preterm infants after a single rescue course of antenatal steroids: a randomized controlled trial. Am. J. Obstet. Gynecol. 202, 544.e1–544.e9 (2010).

    Article  Google Scholar 

  39. Koenen, S. V., Dunn, E. A., Kingdom, J. C., Ohlsson, A. & Matthews, S. G. Overexposure to antenatal corticosteroids: a global concern. J. Obstet. Gynaecol. Can. 29, 879 (2007).

    Article  PubMed  Google Scholar 

  40. Mastorakos, G. & Ilias, I. Maternal and fetal hypothalamic–pituitary–adrenal axes during pregnancy and postpartum. Ann. NY Acad. Sci. 997, 136–149 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Noorlander, C. W., De Graan, P. N., Middeldorp, J., Van Beers, J. J. & Visser, G. H. Ontogeny of hippocampal corticosteroid receptors: effects of antenatal glucocorticoids in human and mouse. J. Comp. Neurol. 499, 924–932 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Kosinska-Kaczynska, K., Bartkowiak, R., Kaczynski, B., Szymusik, I. & Wielgos, M. Autonomous adrenocorticotropin reaction to stress stimuli in human fetus. Early Hum. Dev. 88, 197–201 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Ballard, P. L., Granberg, P. & Ballard, R. A. Glucocorticoid levels in maternal and cord serum after prenatal betamethasone therapy to prevent respiratory distress syndrome. J. Clin. Invest. 56, 1548–1554 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Korebrits, C. et al. Antenatal glucocorticoid administration increases corticotrophin-releasing hormone in maternal plasma. Br. J. Obstet. Gynaecol. 105, 556–561 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Jeffray, T. M., Marinoni, E., Ramirez, M. M., Bocking, A. D. & Challis, J. R. Effect of prenatal betamethasone administration on maternal and fetal corticosteroid-binding globulin concentrations. Am. J. Obstet. Gynecol. 181, 1546–1551 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Marinoni, E., Korebrits, C., Di Iorio, R., Cosmi, E. V. & Challis, J. R. Effect of betamethasone in vivo on placental corticotropin-releasing hormone in human pregnancy. Am. J. Obstet. Gynecol. 178, 770–778 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Karlsson, R., Kallio, J., Toppari, J., Scheinin, M. & Kero, P. Antenatal and early postnatal dexamethasone treatment decreases cortisol secretion in preterm infants. Horm. Res. 53, 170–176 (2000).

    CAS  PubMed  Google Scholar 

  48. Terrone, D. A. et al. Multiple courses of betamethasone to enhance fetal lung maturation do not suppress neonatal adrenal response. Am. J. Obstet. Gynecol. 180, 1349–1353 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Davis, E. P., Waffarn, F. & Sandman, C. A. Prenatal treatment with glucocorticoids sensitizes the HPA axis response to stress among full-term infants. Dev. Psychobiol. 53, 175–183 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Arnold, J. D. et al. Antenatal glucocorticoids modulate the amplitude of pulsatile cortisol secretion in premature neonates. Pediatr. Res. 44, 876–881 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Davis, E. P. et al. Effects of prenatal betamethasone exposure on regulation of stress physiology in healthy premature infants. Psychoneuroendocrinology 29, 1028–1036 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Schäffer, L., Luzi, F., Burkhardt, T., Rauh, M. & Beinder, E. Antenatal betamethasone administration alters stress physiology in healthy neonates. Obstet. Gynecol. 113, 1082–1088 (2009).

    Article  PubMed  Google Scholar 

  53. Stark, M. J., Wright, I. M. & Clifton, V. L. Sex-specific alterations in placental 11β-hydroxysteroid dehydrogenase 2 activity and early postnatal clinical course following antenatal betamethasone. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297, R510–R514 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Gover, A. et al. Single course of antenatal steroids did not alter cortisol in preterm infants up to 18 months. Acta Paediatr. 101, 604–608 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Ashwood, P. J. et al. Neonatal adrenal function after repeat dose prenatal corticosteroids: a randomized controlled trial. Am. J. Obstet. Gynecol. 194, 861–867 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Alexander, N. et al. Impact of antenatal synthetic glucocorticoid exposure on endocrine stress reactivity in term-born children. J. Clin. Endocrinol. Metab. 97, 3538–3544 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Erni, K., Shaqiri-Emini, L., La Marca, R., Zimmermann, R. & Ehlert, U. Psychobiological effects of prenatal glucocorticoid exposure in 10-year-old-children. Front. Psychiatry 3, 104 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Meuwese, C. L. et al. Growth-restricted preterm newborns are predisposed to functional adrenal hyperandrogenism in adult life. Eur. J. Endocrinol. 163, 681–689 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Dalziel, S. R. et al. Cardiovascular risk factors after antenatal exposure to betamethasone: 30-year follow-up of a randomised controlled trial. Lancet 365, 1856–1862 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Crowther, C. A. et al. Outcomes at 2 years of age after repeat doses of antenatal corticosteroids. N. Engl. J. Med. 357, 1179–1189 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Crowther, C. A. et al. Australasian randomised trial to evaluate the role of maternal intramuscular dexamethasone versus betamethasone prior to preterm birth to increase survival free of childhood neurosensory disability (A*STEROID): study protocol. BMC Pregnancy Childbirth 13, 104 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Czock, D., Keller, F., Rasche, F. M. & Häussler, U. Pharmacokinetics and pharmacodynamics of systemically administered glucocorticoids. Clin. Pharmacokinet. 44, 61–98 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Chrousos, G. P. et al. Glucocorticoid hormone resistance during primate evolution: receptor-mediated mechanisms. Proc. Natl Acad. Sci. USA 79, 2036–2040 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Antonow-Schlorke, I., Schwab, M., Li, C. & Nathanielsz, P. W. Glucocorticoid exposure at the dose used clinically alters cytoskeletal proteins and presynaptic terminals in the fetal baboon brain. J. Physiol. 547, 117–123 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. de Vries, A. et al. Prenatal dexamethasone exposure induces changes in nonhuman primate offspring cardiometabolic and hypothalamic–pituitary–adrenal axis function. J. Clin. Invest. 117, 1058–1067 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hauser, J., Feldon, J. & Pryce, C. R. Direct and dam-mediated effects of prenatal dexamethasone on emotionality, cognition and HPA axis in adult Wistar rats. Horm. Behav. 56, 364–375 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Audette, M. C., Challis, J. R., Jones, R. L., Sibley, C. P. & Matthews, S. G. Antenatal dexamethasone treatment in midgestation reduces system A-mediated transport in the late-gestation murine placenta. Endocrinology 152, 3561–3570 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Tauber, S. C. et al. Intrauterine exposure to dexamethasone impairs proliferation but not neuronal differentiation in the dentate gyrus of newborn common marmoset monkeys. Brain Pathol. 16, 209–217 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dean, F., Yu, C., Lingas, R. I. & Matthews, S. G. Prenatal glucocorticoid modifies hypothalamo-pituitary-adrenal regulation in prepubertal guinea pigs. Neuroendocrinology 73, 194–202 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Jobe, A. H., Newnham, J. P., Moss, T. J. & Ikegami, M. Differential effects of maternal betamethasone and cortisol on lung maturation and growth in fetal sheep. Am. J. Obstet. Gynecol. 188, 22–28 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Leavitt, M. G., Aberdeen, G. W., Burch, M. G., Albrecht, E. D. & Pepe, G. J. Inhibition of fetal adrenal adrenocorticotropin receptor messenger ribonucleic acid expression by betamethasone administration to the baboon fetus in late gestation. Endocrinology 138, 2705–2712 (1997).

    Article  CAS  PubMed  Google Scholar 

  72. McCabe, L., Marash, D., Li, A. & Matthews, S. G. Repeated antenatal glucocorticoid treatment decreases hypothalamic corticotropin releasing hormone mRNA but not corticosteroid receptor mRNA expression in the fetal guinea-pig brain. J. Neuroendocrinol. 13, 425–431 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Owen, D. & Matthews, S. G. Glucocorticoids and sex-dependent development of brain glucocorticoid and mineralocorticoid receptors. Endocrinology 144, 2775–2784 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Rakers, F. et al. Effects of early- and late-gestational maternal stress and synthetic glucocorticoid on development of the fetal hypothalamus-pituitary-adrenal axis in sheep. Stress 16, 122–129 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Schwab, M., Coksaygan, T., Rakers, F. & Nathanielsz, P. W. Glucocorticoid exposure of sheep at 0.7 to 0.75 gestation augments late-gestation fetal stress responses. Am. J. Obstet. Gynecol. 206, 253.e16–253.e22 (2012).

    Article  CAS  Google Scholar 

  76. Fletcher, A. J. et al. Antenatal glucocorticoids reset the level of baseline and hypoxemia-induced pituitary-adrenal activity in the sheep fetus during late gestation. Am. J. Physiol. Endocrinol. Metab. 286, E311–E319 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Hauser, J. et al. Effects of prenatal dexamethasone treatment on physical growth, pituitary-adrenal hormones, and performance of motor, motivational, and cognitive tasks in juvenile and adolescent common marmoset monkeys. Endocrinology 149, 6343–6355 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Uno, H. et al. Neurotoxicity of glucocorticoids in the primate brain. 28, 336–348 (1994).

  79. Owen, D. & Matthews, S. G. Prenatal glucocorticoid exposure alters hypothalamic-pituitary-adrenal function in juvenile guinea pigs. J. Neuroendocrinol. 19, 172–180 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Shaltout, H. A., Chappell, M. C., Rose, J. C. & Diz, D. I. Exaggerated sympathetic mediated responses to behavioral or pharmacological challenges following antenatal betamethasone exposure. Am. J. Physiol. Endocrinol. Metab. 300, E979–E985 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Li, Y. & O'Neill, C. Persistence of cytosine methylation of DNA following fertilisation in the mouse. PLoS ONE 7, e30687 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nagano, M., Ozawa, H. & Suzuki, H. Prenatal dexamethasone exposure affects anxiety-like behaviour and neuroendocrine systems in an age-dependent manner. Neurosci. Res. 60, 364–371 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Liu, L., Li, A. & Matthews, S. G. Maternal glucocorticoid treatment programs HPA regulation in adult offspring: sex-specific effects. Am. J. Physiol. Endocrinol. Metab. 280, E729–E739 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Dunn, E., Kapoor, A., Leen, J. & Matthews, S. G. Prenatal synthetic glucocorticoid exposure alters hypothalamic-pituitary-adrenal regulation and pregnancy outcomes in mature female guinea pigs. J. Physiol. 588, 887–899 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sloboda, D. M., Moss, T. J., Gurrin, L. C., Newnham, J. P. & Challis, J. R. The effect of prenatal betamethasone administration on postnatal ovine hypothalamic-pituitary-adrenal function. J. Endocrinol. 172, 71–81 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Su, Y., Carey, L. C., Rose, J. C. & Pulgar, V. M. Antenatal glucocorticoid exposure enhances the inhibition of adrenal steroidogenesis by leptin in a sex-specific fashion. Am. J. Physiol. Endocrinol. Metab. 304, E1404–E1411 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sloboda, D. M. et al. Prenatal betamethasone exposure results in pituitary-adrenal hyporesponsiveness in adult sheep. Am. J. Physiol. Endocrinol. Metab. 292, E61–E70 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Long, N. M., Ford, S. P. & Nathanielsz, P. W. Multigenerational effects of fetal dexamethasone exposure on the hypothalamic-pituitary-adrenal axis of first- and second-generation female offspring. Am. J. Obstet. Gynecol. 208, 217.e1–217.e8 (2013).

    Article  CAS  Google Scholar 

  89. Sloboda, D. M. et al. Expression of glucocorticoid receptor, mineralocorticoid receptor, and 11β-hydroxysteroid dehydrogenase 1 and 2 in the fetal and postnatal ovine hippocampus: ontogeny and effects of prenatal glucocorticoid exposure. J. Endocrinol. 197, 213–220 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Bloomfield, F. H. et al. Brief undernutrition in late-gestation sheep programs the hypothalamic–pituitary–adrenal axis in adult offspring. Endocrinology 144, 2933–2940 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Liu, W. et al. Swimming exercise ameliorates depression-like behaviors induced by prenatal exposure to glucocorticoids in rats. Neurosci. Lett. 524, 119–123 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Welberg, L. A., Seckl, J. R. & Holmes, M. C. Prenatal glucocorticoid programming of brain corticosteroid receptors and corticotrophin-releasing hormone: possible implications for behaviour. Neuroscience 104, 71–79 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Modi, N. et al. The effects of repeated antenatal glucocorticoid therapy on the developing brain. Pediatr. Res. 50, 581–585 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Tijsseling, D. et al. Effects of antenatal glucocorticoid therapy on hippocampal histology of preterm infants. PLoS ONE 7, e33369 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Davis, E. P., Sandman, C. A., Buss, C., Wing, D. A. & Head, K. Fetal glucocorticoid exposure is associated with preadolescent brain development. Biol. Psychiatry 74, 647–655 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. French, N. P., Hagan, R., Evans, S. F., Mullan, A. & Newnham, J. P. Repeated antenatal corticosteroids: effects on cerebral palsy and childhood behavior. Am. J. Obstet. Gynecol. 190, 588–595 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Wapner, R. J. et al. Long-term outcomes after repeat doses of antenatal corticosteroids. N. Engl. J. Med. 357, 1190–1198 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Asztalos, E. V. et al. Multiple courses of antenatal corticosteroids for preterm birth study: outcomes in children at 5 years of age (MACS-5). JAMA Pediatr. 167, 1102–1110 (2013).

    PubMed  Google Scholar 

  99. Stutchfield, P. R. et al. Behavioural, educational and respiratory outcomes of antenatal betamethasone for term caesarean section (ASTECS trial). Arch. Dis. Child. Fetal Neonatal Ed. 98, F195–F200 (2013).

    Article  PubMed  Google Scholar 

  100. Dessens, A. B., Haas, H. S. & Koppe, J. G. Twenty-year follow-up of antenatal corticosteroid treatment. Pediatrics 105, E77 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Dalziel, S. R. et al. Antenatal exposure to betamethasone: psychological functioning and health related quality of life 31 years after inclusion in randomised controlled trial. BMJ 331, 665 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Hauser, J. et al. Effects of prenatal dexamethasone treatment on postnatal physical, endocrine, and social development in the common marmoset monkey. Endocrinology 148, 1813–1822 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Rodriguez, J. S. et al. Prenatal betamethasone exposure has sex specific effects in reversal learning and attention in juvenile baboons. Am. J. Obstet. Gynecol. 204, 545.e1–545.e10 (2011).

    Article  CAS  Google Scholar 

  104. Owen, D. & Matthews, S. G. Repeated maternal glucocorticoid treatment affects activity and hippocampal NMDA receptor expression in juvenile guinea pigs. J. Physiol. 578, 249–257 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Setiawan, E., Jackson, M. F., MacDonald, J. F. & Matthews, S. G. Effects of repeated prenatal glucocorticoid exposure on long-term potentiation in the juvenile guinea-pig hippocampus. J. Physiol. 581, 1033–1042 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Quinlivan, J. A., Beazley, L. D., Evans, S. F., Newnham, J. P. & Dunlop, S. A. Retinal maturation is delayed by repeated, but not single, maternal injections of betamethasone in sheep. Eye (Lond.) 14, 93–98 (2000).

    Article  Google Scholar 

  107. Dunlop, S. A., Archer, M. A., Quinlivan, J. A., Beazley, L. D. & Newnham, J. P. Repeated prenatal corticosteroids delay myelination in the ovine central nervous system. J. Matern. Fetal Med. 6, 309–313 (1997).

    CAS  PubMed  Google Scholar 

  108. Noorlander, C. W., Visser, G. H., Ramakers, G. M., Nikkels, P. G. & de Graan, P. N. Prenatal corticosteroid exposure affects hippocampal plasticity and reduces lifespan. Dev. Neurobiol. 68, 237–246 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Zuloaga, D. G. et al. Perinatal dexamethasone-induced alterations in apoptosis within the hippocampus and paraventricular nucleus of the hypothalamus are influenced by age and sex. J. Neurosci. Res. 90, 1403–1412 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Oliveira, M. et al. The bed nucleus of stria terminalis and the amygdala as targets of antenatal glucocorticoids: implications for fear and anxiety responses. Psychopharmacology (Berl.) 220, 443–453 (2012).

    Article  CAS  Google Scholar 

  111. Giesbrecht, G. F. et al. Psychological distress and salivary cortisol covary within persons during pregnancy. Psychoneuroendocrinology 37, 270–279 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. Voegtline, K. M. et al. Concurrent levels of maternal salivary cortisol are unrelated to self-reported psychological measures in low-risk pregnant women. Arch. Womens Ment. Health 16, 101–108 (2013).

    Article  PubMed  Google Scholar 

  113. Ghaemmaghami, P., Dainese, S. M., La Marca, R., Zimmermann, R. & Ehlert, U. The association between the acute psychobiological stress response in second trimester pregnant women, amniotic fluid glucocorticoids, and neonatal birth outcome. Dev. Psychobiol. 56, 734–747 (2014).

    Article  CAS  PubMed  Google Scholar 

  114. O'Connor, T. G., Bergman, K., Sarkar, P. & Glover, V. Prenatal cortisol exposure predicts infant cortisol response to acute stress. Dev. Psychobiol. 55, 145–155 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Smith, A. K. et al. Predictors of neonatal hypothalamic–pituitary–adrenal axis activity at delivery. Clin. Endocrinol. (Oxf.) 75, 90–95 (2011).

    Article  CAS  Google Scholar 

  116. Davis, E. P., Glynn, L. M., Waffarn, F. & Sandman, C. A. Prenatal maternal stress programs infant stress regulation. J. Child. Psychol. Psychiatry 52, 119–129 (2011).

    Article  PubMed  Google Scholar 

  117. Gutteling, B. M., de Weerth, C. & Buitelaar, J. K. Prenatal stress and children's cortisol reaction to the first day of school. Psychoneuroendocrinology 30, 541–549 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Tollenaar, M. S., Beijers, R., Jansen, J., Riksen-Walraven, J. M. & de Weerth, C. Maternal prenatal stress and cortisol reactivity to stressors in human infants. Stress 14, 53–65 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. Vedhara, K. et al. Maternal mood and neuroendocrine programming: effects of time of exposure and sex. J. Neuroendocrinol. 24, 999–1011 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. O'Donnell, K. J. et al. Prenatal maternal mood is associated with altered diurnal cortisol in adolescence. Psychoneuroendocrinology 38, 1630–1638 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ronald, A., Pennell, C. E. & Whitehouse, A. J. Prenatal maternal stress associated with ADHD and autistic traits in early childhood. Front. Psychol. 1, 223 (2010).

    PubMed  Google Scholar 

  122. LeWinn, K. Z. et al. Elevated maternal cortisol levels during pregnancy are associated with reduced childhood IQ. Int. J. Epidemiol. 38, 1700–1710 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Li, J. et al. Maternal life stress events in pregnancy link to children's school achievement at age 10 years. J. Pediatr. 162, 483–489 (2013).

    Article  PubMed  Google Scholar 

  124. Buss, C., Davis, E. P., Muftuler, L. T., Head, K. & Sandman, C. A. High pregnancy anxiety during mid-gestation is associated with decreased gray matter density in 6–9-year-old children. Psychoneuroendocrinology 35, 141–153 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Buss, C. et al. Maternal cortisol over the course of pregnancy and subsequent child amygdala and hippocampus volumes and affective problems. Proc. Natl Acad. Sci. USA 109, E1312–E1319 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Buss, C., Davis, E. P., Hobel, C. J. & Sandman, C. A. Maternal pregnancy-specific anxiety is associated with child executive function at 6–9 years age. Stress 14, 665–676 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Davis, E. P. & Sandman, C. A. Prenatal psychobiological predictors of anxiety risk in preadolescent children. Psychoneuroendocrinology 37, 1224–1233 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Coe, C. L. et al. Prenatal stress diminishes neurogenesis in the dentate gyrus of juvenile rhesus monkeys. Biol. Psychiatry 54, 1025–1034 (2003).

    Article  CAS  PubMed  Google Scholar 

  129. Kapoor, A. & Matthews, S. G. Short periods of prenatal stress affect growth, behaviour and hypothalamo–pituitary–adrenal axis activity in male guinea pig offspring. J. Physiol. 566, 967–977 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kapoor, A., Leen, J. & Matthews, S. G. Molecular regulation of the hypothalamic–pituitary–adrenal axis in adult male guinea pigs after prenatal stress at different stages of gestation. J. Physiol. 586, 4317–4326 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kapoor, A. & Matthews, S. G. Prenatal stress modifies behavior and hypothalamic–pituitary–adrenal function in female guinea pig offspring: effects of timing of prenatal stress and stage of reproductive cycle. Endocrinology 149, 6406–6415 (2008).

    Article  CAS  PubMed  Google Scholar 

  132. Green, M. K. et al. Prenatal stress induces long term stress vulnerability, compromising stress response systems in the brain and impairing extinction of conditioned fear after adult stress. Neuroscience 192, 438–451 (2011).

    Article  CAS  PubMed  Google Scholar 

  133. Brunton, P. J. & Russell, J. A. Prenatal social stress in the rat programmes neuroendocrine and behavioural responses to stress in the adult offspring: sex-specific effects. J. Neuroendocrinol. 22, 258–271 (2010).

    Article  CAS  PubMed  Google Scholar 

  134. Barbazanges, A., Piazza, P. V., Le Moal, M. & Maccari, S. Maternal glucocorticoid secretion mediates long-term effects of prenatal stress. J. Neurosci. 16, 3943–3949 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kapoor, A. & Matthews, S. G. Testosterone is involved in mediating the effects of prenatal stress in male guinea pig offspring. J. Physiol. 589, 755–766 (2011).

    Article  CAS  PubMed  Google Scholar 

  136. Kapoor, A., Kostaki, A., Janus, C. & Matthews, S. G. The effects of prenatal stress on learning in adult offspring is dependent on the timing of the stressor. Behav. Brain Res. 197, 144–149 (2009).

    Article  PubMed  Google Scholar 

  137. Bogoch, Y., Biala, Y. N., Linial, M. & Weinstock, M. Anxiety induced by prenatal stress is associated with suppression of hippocampal genes involved in synaptic function. J. Neurochem. 101, 1018–1030 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Zohar, I. & Weinstock, M. Differential effect of prenatal stress on the expression of corticotrophin-releasing hormone and its receptors in the hypothalamus and amygdala in male and female rats. J. Neuroendocrinol. 23, 320–328 (2011).

    Article  CAS  PubMed  Google Scholar 

  139. Salomon, S., Bejar, C., Schorer-Apelbaum, D. & Weinstock, M. Corticosterone mediates some but not other behavioural changes induced by prenatal stress in rats. J. Neuroendocrinol. 23, 118–128 (2011).

    Article  CAS  PubMed  Google Scholar 

  140. Yaka, R., Salomon, S., Matzner, H. & Weinstock, M. Effect of varied gestational stress on acquisition of spatial memory, hippocampal LTP and synaptic proteins in juvenile male rats. Behav. Brain Res. 179, 126–132 (2007).

    Article  CAS  PubMed  Google Scholar 

  141. Suenaga, T., Yukie, M., Gao, S. & Nakahara, D. Sex-specific effects of prenatal stress on neuronal development in the medial prefrontal cortex and the hippocampus. Neuroreport 23, 430–435 (2012).

    Article  PubMed  Google Scholar 

  142. Hennessy, E. & Alberman, E. Intergenerational influences affecting birth outcome. I. Birthweight for gestational age in the children of the 1958 British birth cohort. Paediatr. Perinat. Epidemiol. 12 (Suppl. 1), 45–60 (1998).

    Article  PubMed  Google Scholar 

  143. Hennessy, E. & Alberman, E. Intergenerational influences affecting birth outcome. II. Preterm delivery and gestational age in the children of the 1958 British birth cohort. Paediatr. Perinat. Epidemiol. 12 (Suppl. 1), 61–75 (1998).

    Article  PubMed  Google Scholar 

  144. Lumey, L. H. Reproductive outcomes in women prenatally exposed to undernutrition: a review of findings from the Dutch famine birth cohort. Proc. Nutr. Soc. 57, 129–135 (1998).

    Article  CAS  PubMed  Google Scholar 

  145. Painter, R. C. et al. Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life. BJOG 115, 1243–1249 (2008).

    Article  CAS  PubMed  Google Scholar 

  146. Barker, D. J., Shiell, A. W., Barker, M. E. & Law, C. M. Growth in utero and blood pressure levels in the next generation. J. Hypertens. 18, 843–846 (2000).

    Article  CAS  PubMed  Google Scholar 

  147. Yehuda, R., Halligan, S. L. & Grossman, R. Childhood trauma and risk for PTSD: relationship to intergenerational effects of trauma, parental PTSD, and cortisol excretion. Dev. Psychopathol. 13, 733–753 (2001).

    Article  CAS  PubMed  Google Scholar 

  148. Bertram, C. et al. Transgenerational effects of prenatal nutrient restriction on cardiovascular and hypothalamic–pituitary–adrenal function. J. Physiol. 586, 2217–2229 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Iqbal, M., Moisiadis, V. G., Kostaki, A. & Matthews, S. G. Transgenerational effects of prenatal synthetic glucocorticoids on hypothalamic–pituitary–adrenal function. Endocrinology 153, 3295–3307 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Drake, A. J., Walker, B. R. & Seckl, J. R. Intergenerational consequences of fetal programming by in utero exposure to glucocorticoids in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288, R34–R38 (2005).

    Article  CAS  PubMed  Google Scholar 

  151. Drake, A. J. & Liu, L. Intergenerational transmission of programmed effects: public health consequences. Trends Endocrinol. Metab. 21, 206–213 (2010).

    Article  CAS  PubMed  Google Scholar 

  152. Drake, A. J. et al. Prenatal dexamethasone programs expression of genes in liver and adipose tissue and increased hepatic lipid accumulation but not obesity on a high-fat diet. Endocrinology 151, 1581–1587 (2010).

    Article  CAS  PubMed  Google Scholar 

  153. Morgan, C. P. & Bale, T. L. Early prenatal stress epigenetically programs dysmasculinization in second-generation offspring via the paternal lineage. J. Neurosci. 31, 11748–11755 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Rodgers, A. B., Morgan, C. P., Bronson, S. L., Revello, S. & Bale, T. L. Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress axis regulation. J. Neurosci. 33, 9003–9012 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Petropoulos, S., Matthews, S. G. & Szyf, M. Adult glucocorticoid exposure leads to transcriptional and DNA methylation changes in nuclear steroid receptors in the hippocampus and kidney of mouse male offspring. Biol. Reprod. 90, 43 (2014).

    Article  PubMed  CAS  Google Scholar 

  156. Hochberg, Z. et al. Child health, developmental plasticity, and epigenetic programming. Endocr. Rev. 32, 159–224 (2011).

    Article  CAS  PubMed  Google Scholar 

  157. Franklin, T. B., Linder, N., Russig, H., Thöny, B. & Mansuy, I. M. Influence of early stress on social abilities and serotonergic functions across generations in mice. PLoS ONE 6, e21842 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of grants from the Canadian Institutes of Health Research (126166) and the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to all aspects of the manuscript.

Corresponding author

Correspondence to Stephen G. Matthews.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moisiadis, V., Matthews, S. Glucocorticoids and fetal programming part 1: outcomes. Nat Rev Endocrinol 10, 391–402 (2014). https://doi.org/10.1038/nrendo.2014.73

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2014.73

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing