Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Paired-recordings from synaptically coupled cortical and hippocampal neurons in acute and cultured brain slices

Abstract

Analysis of synaptic transmission, synaptic plasticity, axonal processing, synaptic timing or electrical coupling requires the simultaneous recording of both the pre- and postsynaptic compartments. Paired-recording technique of monosynaptically connected neurons is also an appropriate technique to probe the function of small molecules (calcium buffers, peptides or small proteins) at presynaptic terminals that are too small to allow direct whole-cell patch-clamp recording. We describe here a protocol for obtaining, in acute and cultured slices, synaptically connected pairs of cortical and hippocampal neurons, with a reasonably high probability. The protocol includes four main stages (acute/cultured slice preparation, visualization, recording and analysis) and can be completed in 4 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Configuration and possible applications of paired-recordings.
Figure 2: Synaptic interactions in pairs of CA3 pyramidal neurons from a cultured hippocampal slice.
Figure 3: Preparation of neocortical or hippocampal slices.
Figure 4: Glutamatergic transmission between pairs of cortical L5 pyramidal neurons.

Similar content being viewed by others

References

  1. Hugues, G. & Tauc, L. A direct synaptic connexion between the left and right giant cells in Aplysia. J. Physiol. 197, 511–527 (1968).

    Article  Google Scholar 

  2. Miles, R. & Poncer, J.C. Paired recording from neurones. Curr. Opin. Neurobiol. 6, 387–394 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Miles, R. Synaptic excitation of inhibitory cells by single CA3 hippocampal pyramidal cells of the guinea-pig in vitro . J. Physiol. 428, 64–77 (1990).

    Article  Google Scholar 

  4. Sayer, R.J., Friedlander, M.J. & Redman, S.J. The time course and amplitude of EPSPs evoked at synapses between pairs of CA3/CA1 neurons in the hippocampal slice. J. Neurosci. 10, 826–836 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hefft, S. & Jonas, P. Asynchronous GABA release generates long-lasting inhibition at a hippocampal interneuron-principal neuron synapse. Nat. Neurosci. 8, 1319–1328 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Mason, A., Nicoll, A. & Stratford, K. Synaptic transmission between individual pyramidal neurons of the rat visual cortex in vitro . J. Neurosci. 11, 72–84 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Deuchars, J., West, D.C. & Thomson, A.M. Relationships between morphology and physiology of pyramid-pyramid single axon connections in rat neocortex in vitro . J. Physiol. 478, 423–435 (1994).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Markram, H., Lübke, J., Frotscher, M., Roth, A. & Sakmann, B. Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. J. Physiol. 500, 409–440 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Feldmeyer, D., Egger, V., Lübke, J. & Sakmann, B. Reliable synaptic connections between pairs of excitatory layer 4 neurons within a single “barrel” of developing rat somatosensory cortex. J. Physiol. 521, 169–190 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Barbour, B. & Isope, P. Combining loose cell-attached stimulation and recording. J. Neurosci. Methods 103, 199–208 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Vincent, P. & Marty, A. Fluctuations of inhibitory postsynaptic currents in Purkinje cells from rat cerebellar slices. J. Physiol. 494, 183–199 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Orduz, D. & Llano, I. Recurrent axon collaterals underlie facilitating synapses between cerebellar Purkinje cells. Proc. Natl. Acad. Sci. USA 104, 17831–17836 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Freiman, I., Anton, A., Monyer, H., Urbanski, M.J. & Szabo, B. Analysis of the effects of cannabinoids on identified synaptic connections in the caudate-putamen by paired-recordings in transgenic mice. J. Physiol. 575, 789–806 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vandercasteel, M., Glowinski, J., Deniau, J.M. & Venance, L. Chemical transmission between dopaminergic neuron pairs. Proc. Natl. Acad. Sci. USA 105, 4904–4909 (2008).

    Article  Google Scholar 

  15. Woodruff, A.R., Monyer, H. & Sah, P. GABAergic excitation in the basolateral amygdala. J. Neurosci. 26, 11881–11887 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Geracitano, R., Kaufmann, W.A., Szabo, G., Ferraguti, F. & Capogna, M. Synaptic heterogeneity between mouse paracapsular intercalated neurons of the amygdala. J. Physiol. 585, 117–134 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Urban, N. & Sakmann, B. Reciprocal intraglomerular excitation and intra- and interglomerular lateral inhibition between mouse olfactory bulb mitral cells. J. Physiol. 542, 355–367 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Christie, J.M. & Westbrook, G.L. Lateral excitation within the olfactory bulb. J. Neurosci. 26, 2269–2277 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pressler, R.T. & Strowbridge, B.W. Blanes cells mediate persistent feedforward inhibition onto granule cells in the olfactory bulb. Neuron 49, 889–904 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Jonas, P., Bischofberger, J. & Sandkühler, J. Corelease of two fast neurotransmitters at a central synapse. Science 281, 419–424 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Gulyás, A.I. et al. Hippocampal pyramidal cells excite inhibitory neurons through a single release site. Nature 366, 683–387 (1993).

    Article  PubMed  Google Scholar 

  22. Maccaferri, G., Roberts, J.D.B., Szucs, P., Cottingham, C.A. & Somogyi, P. Cell surface domain specific postsynaptic currents evoked by identified GABAergic neurones in rat hippocampus in vitro . J. Physiol. 524, 91–116 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Malinow, R. Transmission between pairs of hippocampal slice neurons: quantal levels, oscillations, and LTP. Science 252, 722–724 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Stricker, C., Field, A.C. & Redman, S.J. Changes in quantal parameters of EPSCs in rat CA1 neurones in vitro after the induction of long-term potentiation. J. Physiol. 490, 443–454 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Biró, A., Holderith, N.B. & Nusser, Z. Quantal size is independent of the release probability at hippocampal excitatory synapses. J. Neurosci. 25, 223–232 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Debanne, D., Guérineau, N.C., Gähwiler, B.H. & Thompson, S.M. Physiology and pharmacology of unitary synaptic connections between pairs of cells in areas CA3 and CA1 of rat hippocampal slice cultures. J. Neurophysiol. 73, 1282–1294 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Raffaelli, G., Saviane, C., Mohajerani, M.H., Pedarzani, P. & Cherubini, E. BK potassium channels control transmitter release at CA3-CA3 synapses in the rat hippocampus. J. Physiol. 557, 147–157 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Capogna, M., McKinney, R.A., O'Connor, V., Gähwiler, B.H. & Thompson, S.M. Ca2+ or Sr2+ partially rescues synaptic transmission in hippocampal cultures treated with botulinum toxin A and C, but not tetanus toxin. J. Neurosci. 17, 7190–7202 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Poncer, J.C., McKinney, R.A., Gähwiler, B.H. & Thompson, S.M. Either N- or P-type calcium channels mediate GABA release at distinct hippocampal inhibitory synapses. Neuron 18, 463–472 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Scanziani, M., Gähwiler, B.H. & Charpak, S. Target cell-specific modulation of transmitter release at terminals from a single axon. Proc. Natl. Acad. Sci. USA 95, 12004–12009 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Poncer, J.C., McKinney, R.A., Gähwiler, B.H. & Thompson, S.M. Differential control of GABA release at synapses from distinct interneurons in rat hippocampus. J. Physiol. 528, 123–130 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Neu, A., Földy, C. & Soltesz, I. Postsynaptic origin of CB1-dependent tonic inhibition of GABA release at cholecystokinin-positive basket cell to pyramidal cell synapses in the CA1 region of the rat hippocampus. J. Physiol. 578, 233–247 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Boudkkazi, S. et al. Release-dependent variations in synaptic latency: a putative code for short- and long-term synaptic dynamics. Neuron 56, 1048–1060 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Miles, R. & Wong, R.K.S. Excitatory synaptic interactions between CA3 neurones in the guinea-pig hippocampus in vitro . J. Physiol. 373, 397–418 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Miles, R. & Wong, R.K.S. Unitary inhibitory synaptic potentials in the guinea-pig hippocampus in vitro . J. Physiol. 356, 97–113 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bartos, M., Vida, I., Frotscher, M., Geiger, J.R.P. & Jonas, P. Rapid signalling at inhibitory synapses in a dentate gyrus interneuron network. J. Neurosci. 21, 2687–2698 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Okun, M. & Lampl, I. Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities. Nat. Neurosci. 11, 535–537 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Khalilov, I. et al. A novel in vitro preparation: the intact hippocampal formation. Neuron 19, 743–749 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Schneggenburger, R. & Forsythe, I.D. The calyx of Held. Cell Tissue Res. 326, 311–337 (2006).

    Article  PubMed  Google Scholar 

  40. Geiger, J.R.P. & Jonas, P. Dynamic control of presynaptic Ca2+ inflow by fast-inactivating K+ channels in hippocampal mossy fiber boutons. Neuron 28, 927–939 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Ohana, O. & Sakmann, B. Transmitter release modulation in nerve terminals of rat neocortical pyramidal cells by intracellular calcium buffers. J. Physiol. 513, 135–148 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pavlidis, P. & Madison, D.V. Synaptic transmission in pair recordings from CA3 pyramidal cells in organotypic culture. J. Neurophysiol. 81, 2787–2797 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Rozov, A., Burnashev, N., Sakmann, B. & Neher, E. Transmitter release modulation by intracellular Ca2+ buffers in facilitating and depressing nerve terminals of pyramidal cells in layer 2/3 of the rat neocortex indicates a target cell-specific difference in presynaptic calcium dynamics. J. Physiol. 531, 807–826 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Caillard, O. et al. Role of the calcium binding protein parvalbumin in short-term synaptic plasticity. Proc. Natl. Acad. Sci. USA 97, 13372–13377 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lu, F.M. & Hawkins, R.D. Presynaptic and postsynaptic Ca2+ and CaMKII contribute to long-term potentiation at synapses between individual CA3 neurons. Proc. Natl. Acad. Sci. USA 103, 4264–4269 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Blatow, M., Caputi, A., Burnashev, N., Monyer, H. & Rozov, A. Ca2+ buffer saturation underlies paired pulse facilitation in calbindin-D28k-containing terminals. Neuron 38, 79–88 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Unni, V., Zakharenko, S.S., Zablow, L., DeCostanzo, A.J. & Siegelbaum, S.A. Calcium release from presynaptic ryanodine-sensitive stores is required for long-term depression at hippocampal CA3-CA3 pyramidal neuron synapses. J. Neurosci. 24, 9612–9622 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bucurenciu, I., Kulik, A., Schwaller, B., Frotscher, M. & Jonas, P. Nanodomain coupling between Ca2+ channels and Ca2+ sensors promotes fast and efficient transmitter release at a cortical GABAergic synapse. Neuron 57, 536–545 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Bekkers, J. & Stevens, C.F. Excitatory and inhibitory autaptic currents in isolated hippocampal neurons maintained in cell culture. Proc. Natl. Acad. Sci. USA 88, 7834–7838 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Feldmeyer, D., Lübke, J., Silver, R.A. & Sakmann, B. Synaptic connections between layer 4 spiny neurone-layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column. J. Physiol. 538, 803–822 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Feldmeyer, D., Roth, A. & Sakmann, B. Monosynaptic connections between pairs of spiny stellate cells in layer 4 and pyramidal cells in layer 5A indicate that lemniscal and paralemniscal afferent pathway converge in the infragranular somatosensory cortex. J. Neurosci. 25, 3423–3441 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Song, S., Sjöström, P.J., Reigl, M., Nelson, S. & Chklovskii, D.B. Highly non-random features of synaptic connectivity in local cortical circuits. PLoS Biol. 3, e68 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kampa, B.M., Letzkus, J.J. & Stuart, G.J. Cortical feed-forward networks for binding different streams of sensory information. Nat. Neurosci. 9, 1472–1473 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Maffei, A., Nelson, S.B. & Turrigiano, G.G. Selective reconfiguration of layer 4 visual cortical circuitry by visual deprivation. Nat. Neurosci. 7, 1353–1359 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Maffei, A., Nataraj, K., Nelson, S.B. & Turrigiano, G.G. Potentiation of cortical inhibition by visual deprivation. Nature 443, 81–84 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Bolshakov, V. & Siegelbaum, S.A. Regulation of hippocampal transmitter release during development and long-term potentiation. Science 269, 1730–1734 (1995).

    Article  CAS  PubMed  Google Scholar 

  57. Gähwiler, B.H., Capogna, M., Debanne, D., McKinney, R.A. & Thompson, S.M. Organotypic slice cultures: a technique has come of age. Trends Neurosci. 20, 471–477 (1997).

    Article  PubMed  Google Scholar 

  58. De Simoni, A., Griesinger, C.B. & Edwards, F.A. Development of rat CA1 neurones in acute versus organotypic slices: role of experience in synaptic morphology and activity. J. Physiol. 550, 135–147 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Debanne, D., Gähwiler, B.H. & Thompson, S.M. Cooperative interactions in the induction of long-term potentiation and depression of synaptic excitation between hippocampal CA3-CA1 cell pairs in vitro . Proc. Natl. Acad. Sci. USA 93, 11225–11230 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mori, M., Abegg, M.H., Gähwiler, B.H. & Gerber, U. A frequency-dependent switch from inhibition to excitation in a hippocampal unitary circuit. Nature 431, 453–456 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Galimberti, I. et al. Long-term rearrangements of hippocampal mossy fibre terminal connectivity in the adult regulated by experience. Neuron 50, 749–763 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Mori, M., Gähwiler, B.H. & Gerber, U. Recruitment of an inhibitory hippocampal network after bursting in a single granule cell. Proc. Natl. Acad. Sci. USA 104, 7640–7645 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Debanne, D., Guérineau, N.C., Gähwiler, B.H. & Thompson, S.M. Paired-pulse facilitation and depression at unitary synapses in rat hippocampus: quantal fluctuation affects subsequent release. J. Physiol. 491, 163–176 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Angulo, M.C., Staiger, J.F., Rossier, J. & Audinat, E. Distinct local circuits between neocortical pyramidal cells and fast-spiking interneurons in young adult rats. J. Neurophysiol. 89, 943–953 (2003).

    Article  PubMed  Google Scholar 

  65. Alle, H., Jonas, P. & Geiger, J.R.P. PTP and LTP at a hippocampal mossy fiber-interneuron synapse. Proc. Natl. Acad. Sci. USA 98, 14708–14713 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Markram, H., Lübke, J., Frotscher, M. & Sakmann, B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213–215 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Debanne, D., Gähwiler, B.H. & Thompson, S.M. Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. J. Physiol. 507, 237–247 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bi, Q.Q. & Poo, M.M. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Egger, V., Feldmeyer, D. & Sakmann, B. Coincidence detection and changes of synaptic efficacy in spiny stellate neurons in rat barrel cortex. Nat. Neurosci. 2, 1098–1105 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Sjöström, P.J., Turrigiano, G.G. & Nelson, S.B. Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron 32, 1149–1164 (2001).

    Article  PubMed  Google Scholar 

  71. Sjöström, P.J. & Häusser, M. A cooperative switch determines the sign of synaptic plasticity in distal dendrites of neocortical pyramidal neurons. Neuron 51, 227–238 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Holmgren, C.D. & Zilberter, Y. Coindicent spiking activity induces long-term changes in inhibition of neocortical pyramidal cells. J. Neurosci. 21, 8270–8277 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li, C.Y., Lu, J.T., Wu, C.P., Duan, S.M. & Poo, M.M. Bidirectional modification of presynaptic neuronal excitability accompanying spike timing-dependent synaptic plasticity. Neuron 41, 257–268 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Debanne, D., Guérineau, N.C., Gähwiler, B.H. & Thompson, S.M. Action-potential propagation gated by an axonal IA-like K+ conductance in hippocampus. Nature 389, 286–289 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. Baccus, S.A. Synaptic facilitation by reflected action potentials: enhancement of transmission when nerve impulses reverse direction at axon branch points. Proc. Natl. Acad. Sci. USA 95, 8345–8350 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Debanne, D. Information processing in the axon. Nat. Rev. Neurosci. 5, 304–316 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Saviane, C., Mohajerani, M.H. & Cherubini, E. An ID-like current that is downregulated by Ca2+ modulates information coding at CA3-CA1 synapses in the rat hippocampus. J. Physiol. 552, 513–524 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shu, Y., Hasenstaub, A., Duque, A., Yu, Y. & McCormick, D.A. Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential. Nature 441, 761–765 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Kole, M.H.P., Letzkus, J.J. & Stuart, G.J. Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy. Neuron 55, 633–647 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Galaretta, M. & Hestrin, S. A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature 402, 72–75 (1999).

    Article  CAS  Google Scholar 

  81. Gibson, J.R., Beierlein, M. & Connors, B.W. Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402, 75–79 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Schmitz, D. et al. Axo-axonal coupling: a novel mechanism for ultrafast neuronal communication. Neuron 31, 831–840 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Zsiros, V., Aradi, I. & Maccaferri, G. Propagation of postsynaptic currents and potentials via gap junctions in GABAergic networks of the rat hippocampus. J. Physiol. 578, 527–544 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Zsiros, V. & Maccaferri, G. Noradrenergic modulation of electrical coupling in GABAergic networks of the hippocampus. J. Neurosci. 28, 1804–1815 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hestrin, S. & Galarreta, M. Electrical synapses define networks of neocortical GABAergic neurons. Trends Neurosci. 28, 304–309 (2004).

    Article  CAS  Google Scholar 

  86. Wickersham, I.R. et al. Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53, 639–647 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Luo, L., Callaway, E.M. & Svoboda, K. Genetic dissection of neural circuits. Neuron 57, 634–660 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Scharfman, H.E. Evidence from simultaneous intracellular recordings in rat hippocampal slices that area CA3 pyramidal cells innervate dentate hilar mossy cells. J. Neurophysiol. 72, 2167–2180 (1994).

    Article  CAS  PubMed  Google Scholar 

  89. Davie, J.T. et al. Dendritic patch-clamp recording. Nat. Protoc. 1, 1235–1247 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Bischofberger, J., Engel, D., Li, L.Y., Geiger, J.R.P. & Jonas, P. Patch-clamp recording from mossy fiber terminal in hippocampal slices. Nat. Protoc. 1, 2075–2081 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. De Simoni, A. & Yu, L.M.Y. Preparation of organotypic hippocampal slice cultures: interface method. Nat. Protoc. 1, 1439–1445 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Castañeda-Castellanos, D.R., Flint, A.C. & Kriegstein, A.R. Blind patch clamp recordings in embryonic and adult mammalian brain slices. Nat. Protoc. 1, 532–542 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Gogolla, N., Galimberti, I., DePaola, V. & Caroni, P. Preparation of organotypic hippocampal slice cultures for long-term live imaging. Nat. Protoc. 1, 1165–1171 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Mortensen, M. & Smart, T. Single-channel recording of ligand-gated ion channels. Nat. Protoc. 2, 2826–2841 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Thompson, S.M., Masukawa, L.M. & Prince, D.A. Temperature dependence of intrinsic membrane properties and synaptic potentials in hippocampal CA1 neurons in vitro . J. Neurosci. 5, 817–824 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Postlethwaite, M., Hennig, M.H., Steinert, J.R., Graham, B.P. & Forsythe, I.D. Acceleration of AMPA receptor kinetics underlies temperature-dependent changes in synaptic strength at the calyx of Held. J. Physiol. 579, 69–84 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Saviane, C., Savtchenko, L.P., Raffaelli, G., Voronin, L.L. & Cherubini, E. Frequency-dependent shift from paired-pulse facilitation to paired-pulse depression at unitary CA3-CA3 synapses in the rat hippocampus. J. Physiol. 544, 469–476 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Harveit, E. & Veruki, M.L. Studying properties of neurotransmitter receptors by non-stationary noise analysis of spontaneous currents and agonist-evoked responses in outside-out patches. Nat. Protoc. 2, 434–448 (2007).

    Article  CAS  Google Scholar 

  99. Reyes, A. et al. Target-cell-specific facilitation and depression in neocortical circuits. Nat. Neurosci. 1, 279–285 (1998).

    Article  CAS  PubMed  Google Scholar 

  100. Silberberg, G. & Markram, H. Disynaptic inhibition between neocortical pyramidal cells mediated by Martinotti cells. Neuron 53, 735–746 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Sjöström, P.J., Turrigiano, G.G. & Nelson, S.B. Neocortical LTD via coincident activation of presynaptic NMDA and cannabinoid receptors. Neuron 39, 641–654 (2003).

    Article  PubMed  Google Scholar 

  102. Simon, A., Oláh, S., Molnár, G., Szabadics, J. & Tamás, G. Gap-junctional coupling between neurogliaform cells and various interneuron types in the neocortex. J. Neurosci. 25, 6278–6285 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Le Bé, J.V. & Markram, H. Spontaneous and evoked synaptic rewiring in the neonatal neocortex. Proc. Natl. Acad. Sci. USA 103, 13214–13219 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Gasparini, S., Saviane, C., Voronin, L.L. & Cherubini, E. Silent synapses in the developing hippocampus: lack of functional AMPA receptors or low probability of glutamate release? Proc. Natl. Acad. Sci. USA 97, 9741–9746 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Montgomery, J.M., Pavlidis, P. & Madison, D.V. Pair recordings reveal all-silent synaptic connections and the post-synaptic expression of long-term potentiation. Neuron 29, 691–701 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Durand, G.M., Kovalchuk, Y. & Konnerth, A. Long-term potentiation and functional synapse induction in developing hippocampus. Nature 381, 71–75 (1996).

    Article  CAS  PubMed  Google Scholar 

  107. Nowak, L., Bregestowski, P., Ascher, P., Herbet, A. & Prochiantz, A. Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307, 462–465 (1984).

    Article  CAS  PubMed  Google Scholar 

  108. Isaac, J.T., Nicoll, R.A. & Malenka, R.C. Evidence for silent synapses: implications for the expression of LTP. Neuron 15, 427–434 (1995).

    Article  CAS  PubMed  Google Scholar 

  109. Diana, M.A. & Marty, A. Characterization of depolarization-induced suppression of inhibition using paired interneuron-Purkinje cell recordings. J. Neurosci. 23, 5906–5918 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Seagar, O. El Far, J.M. Goaillard, Y. Frégnac and G. Alcaraz for stimulating discussions and F. Dubruc for help with video recordings. This work was supported by the Institut National de la Santé et de la Recherche Médicale, the Centre National de la Recherche Scientifique, the Agence Nationale de la Recherche (Neuroscience, Neurologie and Psychiatrie, 06-Neuro-014-01 to D.D.), the Fondation pour la Recherche Médicale (to E.C.), the Fondation Française pour la Recherche sur l'Epilepsie (to O.C.), the Ministry of Research (doctoral grant to S.B. & E.C. and ACI Jeunes Chercheurs to D.D.), AFM (to R.C.) and the European Community (LSHM-CT-2004-511995, synaptic scaffolding proteins orchestrating cortical synapse organization during development to D.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Debanne.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Debanne, D., Boudkkazi, S., Campanac, E. et al. Paired-recordings from synaptically coupled cortical and hippocampal neurons in acute and cultured brain slices. Nat Protoc 3, 1559–1568 (2008). https://doi.org/10.1038/nprot.2008.147

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.147

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing