Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Imaging synaptic vesicle exocytosis and endocytosis with FM dyes

Abstract

FM dyes have been used to label and then monitor synaptic vesicles, secretory granules and other endocytic structures in a variety of preparations. Here, we describe the general procedure for using FM dyes to study endosomal trafficking in general, and synaptic vesicle recycling in particular. The dye, dissolved in normal saline solution, is added to a chamber containing the preparation to be labeled. Stimulation evokes exocytosis, and compensatory endocytosis that follows traps FM dye inside the retrieved vesicles. The extracellular dye is then washed from the chamber, and labeled endocytic structures are examined with a fluorescence microscope. Fluorescence intensity provides a direct measure of the labeled vesicle number, a good measure of the amount of exocytosis. If the preparation is stimulated again, without dye in the chamber, dimming of the preparation provides a measure of exocytosis of labeled vesicles. With a synaptic preparation on hand, this protocol requires 1 day.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FM 1-43 structure.
Figure 2: Typical FM dye experiment.
Figure 3: FM dye-labeled synaptic vesicles in nerve terminals.
Figure 4: Expected destain rates.

Similar content being viewed by others

References

  1. Betz, W.J., Mao, F. & Bewick, G.S. Activity-dependent fluorescent staining and destaining of living vertebrate motor nerve terminals. J. Neurosci. 12, 363–375 (1992).

    Article  CAS  Google Scholar 

  2. Betz, W.J. & Bewick, G.S. Optical analysis of synaptic vesicle recycling at the frog neuromuscular junction. Science 255, 200–203 (1992).

    Article  CAS  Google Scholar 

  3. Lichtman, J.W., Wilkinson, R.S. & Rich, M.M. Multiple innervation of tonic endplates revealed by activity-dependent uptake of fluorescent probes. Nature 314, 357–359 (1985).

    Article  CAS  Google Scholar 

  4. Grinvald, A., Frostig, R.D., Lieke, E. & Hildesheim, R. Optical imaging of neuronal activity. Physiol. Rev. 68, 1285–1366 (1988).

    Article  CAS  Google Scholar 

  5. Ryan, T.A. et al. The kinetics of synaptic vesicle recycling measured at single presynaptic boutons. Neuron 11, 713–724 (1993).

    Article  CAS  Google Scholar 

  6. Ramaswami, M., Krishnan, K.S. & Kelly, R.B. Intermediates in synaptic vesicle recycling revealed by optical imaging of Drosophila neuromuscular junctions. Neuron 13, 363–375 (1994).

    Article  CAS  Google Scholar 

  7. Pocock, J.M., Cousin, M.A., Parkin, J. & Nicholls, D.G. Glutamate exocytosis from cerebellar granule cells: the mechanism of a transition to an L-type Ca2+ channel coupling. Neuroscience 67, 595–607 (1995).

    Article  CAS  Google Scholar 

  8. Lagnado, L., Gomis, A. & Job, C. Continuous vesicle cycling in the synaptic terminal of retinal bipolar cells. Neuron 17, 957–967 (1996).

    Article  CAS  Google Scholar 

  9. Wang, C. & Zucker, R.S. Regulation of synaptic vesicle recycling by calcium and serotonin. Neuron 21, 155–167 (1998).

    Article  CAS  Google Scholar 

  10. Teng, H., Cole, J.C., Roberts, R.L. & Wilkinson, R.S. Endocytic active zones: hot spots for endocytosis in vertebrate neuromuscular terminals. J. Neurosci. 19, 4855–4866 (1999).

    Article  CAS  Google Scholar 

  11. Kay, A.R. et al. Imaging synaptic activity in intact brain and slices with FM1-43 in C. elegans, lamprey, and rat. Neuron 24, 809–817 (1999).

    Article  CAS  Google Scholar 

  12. Pyle, J.L., Kavalali, E.T., Choi, S. & Tsien, R.W. Visualization of synaptic activity in hippocampal slices with FM1-43 enabled by fluorescence quenching. Neuron 24, 803–808 (1999).

    Article  CAS  Google Scholar 

  13. Smith, C.B. & Betz, W.J. Simultaneous independent measurement of endocytosis and exocytosis. Nature 380, 531–534 (1996).

    Article  CAS  Google Scholar 

  14. Stafford, S.J., Shorte, S.L. & Schofield, J.G. Use of a fluorescent dye to measure secretion from intact bovine anterior pituitary cells. Biosci. Rep. 13, 9–17 (1993).

    Article  CAS  Google Scholar 

  15. Brumback, A.C., Lieber, J.L., Angleson, J.K. & Betz, W.J. Using FM1-43 to study neuropeptide granule dynamics and exocytosis. Methods 33, 287–294 (2004).

    Article  CAS  Google Scholar 

  16. Takahashi, N. et al. Two-photon excitation imaging of pancreatic islets with various fluorescent probes. Diabetes 51 (Suppl 1): S25–S28 (2002).

    Article  CAS  Google Scholar 

  17. Giovannucci, D.R., Yule, D.I. & Stuenkel, E.L. Optical measurement of stimulus-evoked membrane dynamics in single pancreatic acinar cells. Am. J. Physiol. 275, C732–C739 (1998).

    Article  CAS  Google Scholar 

  18. Vida, T.A. & Emr, S.D. A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J. Cell Biol. 128, 779–792 (1995).

    Article  CAS  Google Scholar 

  19. Vlahakis, N.E., Schroeder, M.A., Pagano, R.E. & Hubmayr, R.D. Deformation-induced lipid trafficking in alveolar epithelial cells. Am. J. Physiol. Lung Cell Mol. Physiol. 280, L938–L946 (2001).

    Article  CAS  Google Scholar 

  20. Sterling, T.M. & Nemere, I. 1,25-dihydroxyvitamin D3 stimulates vesicular transport within 5 s in polarized intestinal epithelial cells. J. Endocrinol. 185, 81–91 (2005).

    Article  CAS  Google Scholar 

  21. Lee, S.C., Vielhauer, N.S., Leaver, E.V. & Pappone, P.A. Differential regulation of Ca(2+) signaling and membrane trafficking by multiple p2 receptors in brown adipocytes. J. Membr. Biol. 207, 131–142 (2005).

    Article  CAS  Google Scholar 

  22. Bolte, S. et al. FM-dyes as experimental probes for dissecting vesicle trafficking in living plant cells. J. Microsc. 214, 159–173 (2004).

    Article  CAS  Google Scholar 

  23. Angleson, J.K., Cochilla, A.J., Kilic, G., Nussinovitch, I. & Betz, W.J. Regulation of dense core release from neuroendocrine cells revealed by imaging single exocytic events. Nat. Neurosci. 2, 440–446 (1999).

    Article  CAS  Google Scholar 

  24. Henkel, A.W., Lubke, J. & Betz, W.J. FM1-43 dye ultrastructural localization in and release from frog motor nerve terminals. Proc. Natl. Acad. Sci. USA 93, 1918–1923 (1996).

    Article  CAS  Google Scholar 

  25. Harata, N., Ryan, T.A., Smith, S.J., Buchanan, J. & Tsien, R.W. Visualizing recycling synaptic vesicles in hippocampal neurons by FM 1-43 photoconversion. Proc. Natl. Acad. Sci. USA 98, 12748–12753 (2001).

    Article  CAS  Google Scholar 

  26. Rizzoli, S.O. & Betz, W.J. The structural organization of the readily releasable pool of synaptic vesicles. Science 303, 2037–2039 (2004).

    Article  CAS  Google Scholar 

  27. Richards, D.A., Bai, J. & Chapman, E.R. Two modes of exocytosis at hippocampal synapses revealed by rate of FM1-43 efflux from individual vesicles. J. Cell Biol. 168, 929–939 (2005).

    Article  CAS  Google Scholar 

  28. Zenisek, D., Steyer, J.A., Feldman, M.E. & Almers, W. A membrane marker leaves synaptic vesicles in milliseconds after exocytosis in retinal bipolar cells. Neuron 35, 1085–1097 (2002).

    Article  CAS  Google Scholar 

  29. Richards, D.A., Guatimosim, C. & Betz, W.J. Two endocytic recycling routes selectively fill two vesicle pools in frog motor nerve terminals. Neuron 27, 551–559 (2000).

    Article  CAS  Google Scholar 

  30. Bewick, G.S. & Betz, W.J. Illumination partly reverses the postsynaptic blockade of the frog neuromuscular junction by the styryl pyridinium dye RH414. Proc. Biol. Sci. 258, 201–207 (1994).

    Article  CAS  Google Scholar 

  31. Mazzone, S.B. et al. Fluorescent styryl dyes FM1-43 and FM2-10 are muscarinic receptor antagonists: intravital visualization of receptor occupancy. J. Physiol 575, 23–35 (2006).

    Article  CAS  Google Scholar 

  32. Nishikawa, S. & Sasaki, F. Internalization of styryl dye FM1-43 in the hair cells of lateral line organs in Xenopus larvae. J. Histochem. Cytochem. 44, 733–741 (1996).

    Article  CAS  Google Scholar 

  33. Gale, J.E., Marcotti, W., Kennedy, H.J., Kros, C.J. & Richardson, G.P. FM1-43 dye behaves as a permeant blocker of the hair-cell mechanotransducer channel. J. Neurosci. 21, 7013–7025 (2001).

    Article  CAS  Google Scholar 

  34. Griesinger, C.B., Richards, C.D. & Ashmore, J.F. Fm1-43 reveals membrane recycling in adult inner hair cells of the mammalian cochlea. J. Neurosci. 22, 3939–3952 (2002).

    Article  CAS  Google Scholar 

  35. Chi, P., Greengard, P. & Ryan, T.A. Synapsin dispersion and reclustering during synaptic activity. Nat. Neurosci. 4, 1187–1193 (2001).

    Article  CAS  Google Scholar 

  36. Renger, J.J., Egles, C. & Liu, G. A developmental switch in neurotransmitter flux enhances synaptic efficacy by affecting AMPA receptor activation. Neuron 29, 469–484 (2001).

    Article  CAS  Google Scholar 

  37. Winterer, J., Stanton, P.K. & Muller, W. Direct monitoring of vesicular release and uptake in brain slices by multiphoton excitation of the styryl FM 1-43. Biotechniques 40, 343–351 (2006).

    Article  CAS  Google Scholar 

  38. Kraszewski, K. et al. Synaptic vesicle dynamics in living cultured hippocampal neurons visualized with CY3-conjugated antibodies directed against the lumenal domain of synaptotagmin. J. Neurosci. 15, 4328–4342 (1995).

    Article  CAS  Google Scholar 

  39. Miesenbock, G., De Angelis, D.A. & Rothman, J.E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394, 192–195 (1998).

    Article  CAS  Google Scholar 

  40. Sankaranarayanan, S. & Ryan, T.A. Real-time measurements of vesicle-SNARE recycling in synapses of the central nervous system. Nat. Cell Biol. 2, 197–204 (2000).

    Article  CAS  Google Scholar 

  41. Fernandez-Alfonso, T., Kwan, R. & Ryan, T.A. Synaptic vesicles interchange their membrane proteins with a large surface reservoir during recycling. Neuron 51, 179–186 (2006).

    Article  CAS  Google Scholar 

  42. Wienisch, M. & Klingauf, J. Vesicular proteins exocytosed and subsequently retrieved by compensatory endocytosis are nonidentical. Nat. Neurosci. 9, 1019–1027 (2006).

    Article  CAS  Google Scholar 

  43. Granseth, B., Odermatt, B., Royle, S.J. & Lagnado, L. Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses. Neuron 51, 773–786 (2006).

    Article  CAS  Google Scholar 

  44. Waters, J. & Smith, S.J. Phorbol esters potentiate evoked and spontaneous release by different presynaptic mechanisms. J. Neurosci. 20, 7863–7870 (2000).

    Article  CAS  Google Scholar 

  45. Virmani, T., Ertunc, M., Sara, Y., Mozhayeva, M. & Kavalali, E.T. Phorbol esters target the activity-dependent recycling pool and spare spontaneous vesicle recycling. J. Neurosci. 25, 10922–10929 (2005).

    Article  CAS  Google Scholar 

  46. Sara, Y., Virmani, T., Deak, F., Liu, X. & Kavalali, E.T. An isolated pool of vesicles recycles at rest and drives spontaneous neurotransmission. Neuron 45, 563–573 (2005).

    Article  CAS  Google Scholar 

  47. Henkel, A.W., Simpson, L.L., Ridge, R.M. & Betz, W.J. Synaptic vesicle movements monitored by fluorescence recovery after photobleaching in nerve terminals stained with FM1-43. J. Neurosci. 16, 3960–3967 (1996).

    Article  CAS  Google Scholar 

  48. Darcy, K.J., Staras, K., Collinson, L.M. & Goda, Y. Constitutive sharing of recycling synaptic vesicles between presynaptic boutons. Nat. Neurosci. 9, 315–321 (2006).

    Article  CAS  Google Scholar 

  49. Gaffield, M.A., Rizzoli, S.O. & Betz, W.J. Mobility of synaptic vesicles in different pools in resting and stimulated frog motor nerve terminals. Neuron 51, 317–325 (2006).

    Article  CAS  Google Scholar 

  50. Shtrahman, M., Yeung, C., Nauen, D.W., Bi, G.Q. & Wu, X.L. Probing vesicle dynamics in single hippocampal synapses. Biophys. J. 89, 3615–3627 (2005).

    Article  CAS  Google Scholar 

  51. Jordan, R., Lemke, E.A. & Klingauf, J. Visualization of synaptic vesicle movement in intact synaptic boutons using fluorescence fluctuation spectroscopy. Biophys. J. 89, 2091–2102 (2005).

    Article  CAS  Google Scholar 

  52. Betz, W.J., Mao, F. & Smith, C.B. Imaging exocytosis and endocytosis. Curr. Opin. Neurobiol. 6, 365–371 (1996).

    Article  CAS  Google Scholar 

  53. Ryan, T.A. Presynaptic imaging techniques. Curr. Opin. Neurobiol. 11, 544–549 (2001).

    Article  CAS  Google Scholar 

  54. Cousin, M.A. & Robinson, P.J. Mechanisms of synaptic vesicle recycling illuminated by fluorescent dyes. J. Neurochem. 73, 2227–2239 (1999).

    Article  CAS  Google Scholar 

  55. Royle, S.J. & Lagnado, L. Endocytosis at the synaptic terminal. J. Physiol 553, 345–355 (2003).

    Article  CAS  Google Scholar 

  56. de Lange, R.P., de Roos, A.D. & Borst, J.G. Two modes of vesicle recycling in the rat calyx of Held. J. Neurosci. 23, 10164–10173 (2003).

    Article  CAS  Google Scholar 

  57. Richards, D.A., Guatimosim, C., Rizzoli, S.O. & Betz, W.J. Synaptic vesicle pools at the frog neuromuscular junction. Neuron 39, 529–541 (2003).

    Article  CAS  Google Scholar 

  58. Kuromi, H. & Kidokoro, Y. Two distinct pools of synaptic vesicles in single presynaptic boutons in a temperature-sensitive Drosophila mutant, shibire. Neuron 20, 917–925 (1998).

    Article  CAS  Google Scholar 

  59. Rizzoli, S.O. & Betz, W.J. Synaptic vesicle pools. Nat. Rev. Neurosci. 6, 57–69 (2005).

    Article  CAS  Google Scholar 

  60. Neves, G. & Lagnado, L. The kinetics of exocytosis and endocytosis in the synaptic terminal of goldfish retinal bipolar cells. J. Physiol 515, 181–202 (1999).

    Article  CAS  Google Scholar 

  61. Kuromi, H. & Kidokoro, Y. Tetanic stimulation recruits vesicles from reserve pool via a cAMP-mediated process in Drosophila synapses. Neuron 27, 133–143 (2000).

    Article  CAS  Google Scholar 

  62. Ryan, T.A. & Smith, S.J. Vesicle pool mobilization during action potential firing at hippocampal synapses. Neuron 14, 983–989 (1995).

    Article  CAS  Google Scholar 

  63. Cousin, M.A., Held, B. & Nicholls, D.G. Exocytosis and selective neurite calcium responses in rat cerebellar granule cells during field stimulation. Eur. J. Neurosci. 7, 2379–2388 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by grants from MDA and NIH to W.J.B. We thank Steve Fadul for technical assistance, Michael Grybko for discussions on brain slices, Dr Silvio Rizzoli for discussions on phototoxicity, and Dr Joe Johnson and Dr Leah Sheridan for discussions on the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J Betz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Video 1

FM 1-43 destain in frog motor nerve terminal. The nerve was stimulated at 30 Hz. One revolution of the clock represents one minute. (AVI 1363 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaffield, M., Betz, W. Imaging synaptic vesicle exocytosis and endocytosis with FM dyes. Nat Protoc 1, 2916–2921 (2006). https://doi.org/10.1038/nprot.2006.476

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.476

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing