Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Morris water maze: procedures for assessing spatial and related forms of learning and memory

Abstract

The Morris water maze (MWM) is a test of spatial learning for rodents that relies on distal cues to navigate from start locations around the perimeter of an open swimming arena to locate a submerged escape platform. Spatial learning is assessed across repeated trials and reference memory is determined by preference for the platform area when the platform is absent. Reversal and shift trials enhance the detection of spatial impairments. Trial-dependent, latent and discrimination learning can be assessed using modifications of the basic protocol. Search-to-platform area determines the degree of reliance on spatial versus non-spatial strategies. Cued trials determine whether performance factors that are unrelated to place learning are present. Escape from water is relatively immune from activity or body mass differences, making it ideal for many experimental models. The MWM has proven to be a robust and reliable test that is strongly correlated with hippocampal synaptic plasticity and NMDA receptor function. We present protocols for performing variants of the MWM test, from which results can be obtained from individual animals in as few as 6 days.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Percent time in each quadrant of Morris water maze performance on each day of testing in C57BL mice.
Figure 2: Percent time in each quadrant of Morris water maze performance on each day of testing in Sprague–Dawley rats.
Figure 3: Morris water maze acquisition performance in untreated adult Long–Evans rats.

Similar content being viewed by others

References

  1. Morris, R.G.M. Spatial localization does not require the presence of local cues. Learn. Motiv. 12, 239–260 (1981).

    Article  Google Scholar 

  2. Morris, R. Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods 11, 47–60 (1984).

    Article  CAS  Google Scholar 

  3. Stewart, C.A. & Morris, R.G.M. The watermaze. in Behavioural Neuroscience, Volume I, A Practical Approach (ed. Sahgal, A.) 107–122 (IRL Press at Oxford University Press, Oxford, 1993).

    Google Scholar 

  4. Kallai, J., Makany, T., Karadi, K. & Jacobs, W.J. Spatial orientation strategies in Morris-type virtual water task for humans. Behav. Brain Res. 159, 187–196 (2005).

    Article  Google Scholar 

  5. Morris, R.G.M. An attempt to dissociate 'spatial-mapping' and 'working-memory' theories of hippocampal function. in Neurobiology of the Hippocampus (ed. Seifert, W.) 405–432 (Academic Press, New York, 1993).

    Google Scholar 

  6. Cravens, R.W. Effects of maternal undernutrition on offspring behavior: Incentive value of a food reward and ability to escape from water. Dev. Psychobiol. 7, 61–69 (1974).

    Article  CAS  Google Scholar 

  7. Morris, R.G., Garrud, P., Rawlins, J.N. & O'Keefe, J. Place navigation impaired in rats with hippocampal lesions. Nature 297, 681–683 (1982).

    Article  CAS  Google Scholar 

  8. Fitzgerald, L.W. & Dokla, C.P. Morris water task impairment and hypoactivity following cysteamine-induced reductions of somatostatin-like immunoreactivity. Brain Res. 505, 246–250 (1989).

    Article  CAS  Google Scholar 

  9. Brandeis, R., Brandys, Y. & Yehuda, S. The use of the Morris water maze in the study of memory and learning. Int. J. Neurosci. 48, 29–69 (1989).

    Article  CAS  Google Scholar 

  10. D'Hooge, R. & De Deyn, P.P. Applications of the Morris water maze in the study of learning and memory. Brain Res. Rev. 36, 60–90 (2001).

    Article  CAS  Google Scholar 

  11. McNamara, R.K. & Skelton, R.W. The neuropharmacological and neurochemical basis of place learning in the Morris water maze. Brain Res. Rev. 18, 33–49 (1993).

    Article  CAS  Google Scholar 

  12. Jeffery, K.J. & Morris, R.G.M. Cumulative long-term potentiation in the rat dentate gyrus correlates with, but does not modify, performance in the water maze. Hippocampus 3, 133–140 (1993).

    Article  CAS  Google Scholar 

  13. Moser, E.I., Krobert, K.A., Moser, M.-B. & Morris, R.G.M. Impaired spatial learning after saturation of long-term potentiation. Science 281, 2038–2042 (1998).

    Article  CAS  Google Scholar 

  14. Morris, R.G.M., Anderson, E., Lynch, G.S. & Baudry, M. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate antagonist, AP5. Nature 329, 774–776 (1986).

    Article  Google Scholar 

  15. Bannerman, D.M., Good, M.A., Butcher, S.P., Ramsay, M. & Morris, R.G.M. Distinct components of spatial learning revealed by prior training and NMDA receptor blockade. Nature 378, 182–186 (1995).

    Article  CAS  Google Scholar 

  16. Vorhees, C.V. et al. Adult learning deficits after neonatal exposure to D-methamphetamine: Selective effects on spatial navigation and memory. J. Neurosci. 20, 4732–4739 (2000).

    Article  CAS  Google Scholar 

  17. Broening, H.W., Morford, L.L., Inman-Wood, S.L., Fukumura, M. & Vorhees, C.V. 3,4-methylenedioxymethamphetamine (ecstasy) induced learning and memory impairments depend on the age of exposure during early development. J. Neurosci. 21, 3228–3235 (2001).

    Article  CAS  Google Scholar 

  18. Vorhees, C.V., Reed, T.M., Skelton, M.R. & Williams, M.T. Exposure to 3,4-methylenedioxymethamphetamine (MDMA) on postnatal days 11-20 induces reference but not working memory deficits in the Morris water maze in rats: implications of prior learning. Int. J. Dev. Neurosci. 22, 247–259 (2004).

    Article  CAS  Google Scholar 

  19. Williams, M.T. et al. Developmental d-methamphetamine treatment selectively induces spatial navigation impairments in reference memory in the Morris water maze while sparing working memory. Synapse 48, 138–148 (2003).

    Article  CAS  Google Scholar 

  20. Morford, L.L., Inman-Wood, S.L., Gudelsky, G.A., Williams, M.T. & Vorhees, C.V. Impaired spatial and sequential learning in rats treated neonatally with d-fenfluramine. Eur. J. Neurosci. 16, 491–500 (2002).

    Article  CAS  Google Scholar 

  21. Ehrman, L.A. et al. Phosphodiesterase 1B modulates the effects of methamphetamine on locomotor activity and spatial learning through a DARPP-32-dependent pathway: Evidence from PDE1B-DARPP32 double-knockout mice. Genes Brain Behav. (in the press).

  22. Silva, A.J., Paylor, R., Wehner, J.M. & Tonegawa, S. Impaired spatial learning in α-calcium-calmodulin kinase II mutant mice. Science 257, 206–211 (1992).

    Article  CAS  Google Scholar 

  23. Bourtchuladze, R. et al. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79, 59–68 (1994).

    Article  CAS  Google Scholar 

  24. Cho, Y.H., Giese, K.P., Tanila, H., Silva, A.J. & Eichenbaum, H. Abnormal hippocampal spatial representations in αCaMKIIT286A and CREBαΔ- mice. Science 279, 867–869 (1998).

    Article  CAS  Google Scholar 

  25. Upchurch, M. & Wehner, J.M. Effects of N-methyl-D-aspartate antagonism on spatial learning in mice. Psychopharmacology 100, 214 (1990).

    Article  Google Scholar 

  26. Grant, S.G.N. et al. Impaired long-term potentiation, spatial learning, and hippocampal development in fyn mutant mice. Science 258, 1903–1910 (1992).

    Article  CAS  Google Scholar 

  27. Limback-Stokin, K., Korzus, E., Nagaoka-Yasuda, R. & Mayford, M. Nuclear calcium/calmodulin regulates memory consolidation. J. Neurosci. 24, 10858–10867 (2004).

    Article  Google Scholar 

  28. Tang, Y.-P. et al. Genetic enhancement of learning and memory in mice. Nature 401, 63–69 (1999).

    Article  CAS  Google Scholar 

  29. Maurer, R. & Derivaz, V. Rats in a transparent morris water maze use elemental and configural geometry of landmarks as well as distance to the pool wall. Spatial Cogn. Comput. 2, 135–156 (2000).

    Article  Google Scholar 

  30. Kim, J.J., Lee, H.J., Han, J.-S. & Packard, M.G. Amygdala is critical for stress-induced modulation of hippocampal long-term potentiation and learning. J. Neurosci. 21, 5222–5228 (2001).

    Article  CAS  Google Scholar 

  31. Markowska, A.L., Long, J.M., Johnson, C.T. & Olton, D.S. Variable-interval probe test as a tool for repeated measurements of spatial memory in the water maze. Behav. Neurosci. 107, 627–632 (1993).

    Article  CAS  Google Scholar 

  32. Sutherland, R.J., Chew, G.L., Baker, J.C. & Linggard, R.C. Some limitations on the use of distal cues in place navigation by rats. Psychobiology 15, 48–57 (1987).

    Google Scholar 

  33. Williams, M.T. et al. Developmental 3,4-methylenedioxymethamphetamine (MDMA) impairs sequential and spatial but not cued learning independent of growth, litter effects, or injection stress. Brain Res. 968, 89–101 (2003).

    Article  CAS  Google Scholar 

  34. Saucier, D. & Cain, D.P. Spatial learning without NMDA receptor-dependent long-term potentiation. Nature 378, 186–189 (1995).

    Article  CAS  Google Scholar 

  35. Saucier, D., Hargreaves, E.L., Boon, F., Vanderwolf, C.H. & Cain, D.P. Detailed behavioral analysis of water maze acquisition under systemic NMDA or muscarinic antagonism: Nonspatial pretraining eliminates spatial learning deficits. Behav. Neurosci. 110, 103–116 (1996).

    Article  CAS  Google Scholar 

  36. Cain, D.P., Saucier, D., Hall, J., Hargreaves, E.L. & Boon, F. Detailed behavioral analysis of water maze acquisition under APV or CNQX: Contribution of sensorimotor disturbances to drug-induced acquisition deficits. Behav. Neurosci. 110, 86–102 (1996).

    Article  CAS  Google Scholar 

  37. Cain, D.P. & Saucier, D. The neuroscience of spatial navigation: Focus on behavior yields advances. Rev. Neurosci. 7, 215–231 (1996).

    Article  CAS  Google Scholar 

  38. Hoh, T.E. & Cain, D.P. Fractionating the nonspatial pretraining effect in the water maze task. Behav. Neurosci. 111, 1285–1291 (1997).

    Article  CAS  Google Scholar 

  39. Williams, M.T., Vorhees, C.V., Boon, F., Saber, A.J. & Cain, D.P. Methamphetamine exposure from postnatal days 11 to 20 causes impairments in both behavioral strategies and spatial learning in adult rats. Brain Res. 958, 312–321 (2002).

    Article  CAS  Google Scholar 

  40. Whishaw, I.Q. Posterior neocortical (visual cortex) lesions in the rat impair matching-to-place navigation in a swimming pool: a reevaluation of cortical contributions to spatial behavior using a new assessment of spatial versus non-spatial behavior. Behav. Brain Res. 155, 177–184 (2004).

    Article  Google Scholar 

  41. Blokland, A., Geraerts, E. & Been, M. A detailed analysis of rats' spatial memory in a probe trial of a Morris task. Behav. Brain Res. 154, 71–75 (2004).

    Article  Google Scholar 

  42. Morris, R.G.M., Hagan, J.J. & Rawlins, J.N.P. Allocentric spatial learning by hippocampectomized rats: A further test of the 'spatial mapping' and 'working memory' theories of hippocampal function. Quart. J. Exp. Psychol. 38B, 365–395 (1986).

    Google Scholar 

  43. Morris, R.G.M., Davis, S. & Butcher, S.P. Hippocampal synaptic plasticity and NMDA receptors: A role in information storage? Phil. Trans. R. Soc. Lond. 329, 187–204 (1990).

    Article  CAS  Google Scholar 

  44. Upchurch, M. & Wehner, J.M. Differences between inbred strains of mice in Morris water maze performance. Behav. Genet. 18, 55–68 (1988).

    Article  CAS  Google Scholar 

  45. Wahlsten, D., Cooper, S.F. & Crabbe, J.C. Different rankings of inbred mouse strains on the Morris maze and a refined 4-arm water escape task. Behav. Brain Res. 165, 36–51 (2005).

    Article  Google Scholar 

  46. Wenk, G.L. Assessment of spatial memory using the radial arm and Morris water maze. (eds. Crawley, J.N. et al.) Unit 8.5A (Wiley Interscience, New York, 2004).

    Book  Google Scholar 

  47. Williams, M.T., Moran, M.S. & Vorhees, C.V. Behavioral and growth effects induced by low dose methamphetamine administration during the neonatal period in rats. Int. J. Dev. Neurosci. 22, 273–283 (2004).

    Article  CAS  Google Scholar 

  48. Mactutus, C.F. & Booze, R.M. Accuracy of spatial navigation: The role of platform and tank size. Soc. Neurosci. Abst. 20, 1014 (1994).

    Google Scholar 

  49. Lindner, M.D. & Ribkoff, V.K. Relationship between performance in the Morris water task, visual acuity, and thermoregulatory function in aged F-344 rats. Behav. Brain Res. 45, 45–55 (1991).

    Article  CAS  Google Scholar 

  50. Hodges, H. Maze procedures: The radial-arm and water maze compared. Cog. Brain Res. 3, 167–181 (1996).

    Article  CAS  Google Scholar 

  51. Iivonen, H., Nurminen, L., Harri, M., Tanila, H. & Puolivali, J. Hypothermia in mice tested in Morris water maze. Behav. Brain Res. 141, 207–213 (2003).

    Article  Google Scholar 

  52. Devan, B.D., Blank, G.S. & Petri, H.L. Place navigation in the Morris water task: Effects of reducted platform interval lighting and pseudorandom plaform positioning. Psychobiology 20, 120–126 (1992).

    Google Scholar 

  53. Otnaess, M.K., Brun, V.H., Moser, M.-B. & Moser, E.I. Pretraining prevents spatial learning impairment after saturation of hippocampal long-term potentiation. J. Neurosci. 19 (RC49): 1–5 (1999).

    Google Scholar 

  54. Gallagher, M., Burwell, R. & Burchinal, M. Severity of spatial learning impairment in aging: Development of a learning index for performance in the Morris water maze. Behav. Neurosci. 107, 618–626 (1993).

    Article  CAS  Google Scholar 

  55. Burwell, R.D., Saddoris, M.P., Bucci, D.J. & Wiig, K.A. Corticohippocampal contributions to spatial and contextual learning. J. Neurosci. 24, 3826–3836 (2004).

    Article  CAS  Google Scholar 

  56. Holscher, C. Stress impairs performance in spatial watermaze learning tasks. Behav. Brain Res. 100, 225–235 (1999).

    Article  CAS  Google Scholar 

  57. Clapcote, S.J., Lazar, N.L., Bechard, A.R., Wood, G.A. & Roder, J.C. NIH Swiss and Black Swiss mice have retinal degeneration and performance deficits in cognitive tests. Comp. Med. 55, 310–316 (2005).

    CAS  PubMed  Google Scholar 

  58. Devan, B.D., McDonald, R.J. & White, N.M. Effects of medial and lateral caudate-putamen lesions on place- and cue-guided behaviors in the water maze: relation to thigmotaxis. Behav. Brain Res. 100, 5–14 (1999).

    Article  CAS  Google Scholar 

  59. Rauch, T.M., Welch, D.I. & Gallego, L. Hyperthermia impairs retrieval of an overtrained spatial task in the Morris water maze. Behav. Neural Biol. 52, 321–330 (1989).

    Article  CAS  Google Scholar 

  60. Giese, K.P., Fedorov, N.B., Filipkowski, R.K. & Silva, A.J. Autophosphorylation at Thr286 of the α calcium-calmodulin kinase II in LTP and learning. Science 279, 870–873 (1998).

    Article  CAS  Google Scholar 

  61. Guzowski, J.F., Setlow, B., Wagner, E.K. & McGaugh, J.L. Experience-dependent gene expression in the rat hippocampus after spatial learning: A comparison of the immediate-early genes Arc, c-fos, and zif268. J. Neurosci. 21, 5089–5098 (2001).

    Article  CAS  Google Scholar 

  62. Brown, R.W. et al. Adulthood nicotine treatment alleviates behavioural impairments in rats neonatally treated with quinpirole: possible roles of acetylcholine function and neurotrophic factor expression. Eur. J. Neurosci. 19, 1634–1642 (2004).

    Article  Google Scholar 

  63. Wolfer, D.P., Stagljar-Bozicevic, M., Errington, M.L. & Lipp, H.-P. Spatial memory and learning in transgenic mice: Fact or artifact? News Physiol. Sci. 13, 118–123 (1998).

    PubMed  Google Scholar 

  64. Lipp, H.P. & Wolfer, D.P. Genetically modified mice and cognition. Curr. Opin. Neurobiol. 8, 272–280 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of National Institutes of Health grants DA006733, DA021394, DA014269 and ES007051.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles V Vorhees.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vorhees, C., Williams, M. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1, 848–858 (2006). https://doi.org/10.1038/nprot.2006.116

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.116

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing