Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A protein kinase A–dependent molecular switch in synapsins regulates neurite outgrowth

Abstract

Cyclic AMP (cAMP) promotes neurite outgrowth in a variety of neuronal cell lines through the activation of protein kinase A (PKA). We show here, using both Xenopus laevis embryonic neuronal culture and intact X. laevis embryos, that the nerve growth–promoting action of cAMP/PKA is mediated in part by the phosphorylation of synapsins at a single amino acid residue. Expression of a mutated form of synapsin that prevents phosphorylation at this site, or introduction of phospho-specific antibodies directed against this site, decreased basal and dibutyryl cAMP–stimulated neurite outgrowth. Expression of a mutation mimicking constitutive phosphorylation at this site increased neurite outgrowth, both under basal conditions and in the presence of a PKA inhibitor. These results provide a potential molecular approach for stimulating neuron regeneration, after injury and in neurodegenerative diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Injection of S9A-mutated synapsin IIa RNA decreases neurite outgrowth, whereas injection of S9E-mutated synapsin IIa RNA increases neurite outgrowth in cultured X. laevis embryonic neurons.
Figure 2: Injection of S9A-mutated synapsin IIa RNA decreases nerve growth, whereas injection of S9E-mutated synapsin IIa RNA increases nerve growth in intact X. laevis embryos.
Figure 3: Injection of phospho-specific P-site 1 antibodies decreases neurite outgrowth, whereas injection of dephospho-specific P-site 1 antibodies has no effect in cultured X. laevis embryonic neurons.
Figure 4: PKA stimulates early neurite outgrowth predominantly by phosphorylating P-site 1.

Similar content being viewed by others

References

  1. Song, H. J. & Poo, M.-m. Signal transduction underlying growth cone guidance by diffusible factors. Curr. Opinion Neurobiol. 9, 355–363 (1999).

    Article  CAS  Google Scholar 

  2. Liesi, P., Rechardt, L. & Wartiovaara, J. Nerve growth factor induces adrenergic neuronal differentiation in F9 teratocarcinoma cells. Nature 306, 265–267 (1983).

    Article  CAS  Google Scholar 

  3. Rydel, R. E. & Greene, L. A. cAMP analogs promote survival and neurite outgrowth in cultures of rat sympathetic and sensory neurons independently of nerve growth factor. Proc. Natl. Acad. Sci. USA 85, 1257–1261 (1988).

    Article  CAS  Google Scholar 

  4. Meyer-Franke, A., Kaplan, M. R., Pfrieger, F. W. & Barres, B.A. Characterization of the signaling interactions that promote the survival and growth of developing retinal ganglion cells in culture. Neuron 15, 805–819 (1995).

    Article  CAS  Google Scholar 

  5. Song, H.-j., Ming, G.-l. & Poo, M.-m. cAMP-induced switching in turning direction of nerve growth cones. Nature 388, 275–279 (1997).

    Article  CAS  Google Scholar 

  6. Ming, G.-l. et al. cAMP-dependent growth cone guidance by netrin-1. Neuron 19, 1225–1235 (1997).

    Article  CAS  Google Scholar 

  7. Song, H.-j. et al. Conversion of neuronal growth cone responses from repulsion to attraction by cyclic nucleotides. Science 281, 1515–1518 (1998).

    Article  CAS  Google Scholar 

  8. Cai, D., Shen, Y., De Bellard, M., Tang, S. & Filbin, M. T. Prior exposure to neurotrophins blocks inhibition of axonal regeneration by MAG and myelin via a cAMP-dependent mechanism. Neuron 22, 89–101 (1999).

    Article  CAS  Google Scholar 

  9. Levitan, I. B. & Kaczmarek, L. K. The Neuron (Oxford University Press, New York, NY, 1997).

    Google Scholar 

  10. Johnson, E. M., Ueda, T., Maeno, H. & Greengard, P. Adenosine-3′,5-monophosphate–dependent phosphorylation of a specific protein in synaptic membrane fractions from rat cerebrum. J. Biol. Chem. 247, 5650–5652 (1972).

    CAS  PubMed  Google Scholar 

  11. Hilfiker, S. et al. Synapsins as regulators of neurotransmitter release. Phil. Trans. R. Soc. Lond. B Biol. Sci. 354, 269–279 (1999).

    Article  CAS  Google Scholar 

  12. Lu, B. et al. Expression of synapsin I correlates with maturation of the neuromuscular synapse. Neuroscience 74, 1087–1097 (1996).

    Article  CAS  Google Scholar 

  13. Han, H.-Q., Nichols, R. A., Rubin, M. R., Bähler, M. & Greengard, P. Induction of formation of presynaptic terminals in neuroblastoma cells by synapsin IIb. Nature 349, 697–700 (1991).

    Article  CAS  Google Scholar 

  14. Zhong, Z.-G., Noda, M., Takahashi, H. & Higashida, H. Overexpression of rat synapsins in NG108-15 neuronal cells enhances functional synapse formation with myotubes. Neurosci. Lett. 260, 93–96 (1999).

    Article  CAS  Google Scholar 

  15. Lu, B., Greengard, P. & Poo, M.-m. Exogenous synapsin I promotes functional maturation of developing neuromuscular synapses. Neuron 8, 521–529 (1992).

    Article  CAS  Google Scholar 

  16. Schaeffer, E., Alder, J., Greengard, P. & Poo, M.-m. Synapsin IIa accelerates functional development of neuromuscular synapses. Proc. Natl. Acad. Sci. USA 91, 3882–3886 (1994).

    Article  CAS  Google Scholar 

  17. Ferreira, A., Han, H.-Q., Greengard, P. & Kosik, K. S. Suppression of synapsin II inhibits the formation and maintenance of synapses in hippocampal culture. Proc. Natl. Acad. Sci. USA 92, 9225–9229 (1995).

    Article  CAS  Google Scholar 

  18. Chin, L. S., Li, L., Ferreira, A., Kosik, K. S. & Greengard, P. Impairment of axonal development and of synaptogenesis in hippocampal neurons of synapsin I–deficient mice. Proc. Natl. Acad. Sci. USA 92, 9230–9234 (1995).

    Article  CAS  Google Scholar 

  19. Ferreira, A., Kao, H.-T., Feng, J., Rapoport, M. & Greengard, P. Synapsin III: developmental expression, subcellular localization, and role in axon formation. J. Neurosci. 20, 3736–3744 (2000).

    Article  CAS  Google Scholar 

  20. Kao, H.-T. et al. Molecular evolution of the synapsin gene family. J. Expt. Zool. (Mol. Dev. Evol.) 285, 360–377 (1999).

    Article  CAS  Google Scholar 

  21. Czernik, A. J., Pang, D. T. & Greengard, P. Amino acid sequences surrounding the cAMP-dependent and calcium/calmodulin-dependent phosphorylation sites in rat and bovine synapsin I. Proc. Natl. Acad. Sci. USA 84, 7518–7522 (1987).

    Article  CAS  Google Scholar 

  22. Picciotto, M. R., Czernik, A. J. & Nairn, A. C. Calcium/calmodulin-dependent protein kinase I. cDNA cloning and identification of autophosphorylation site. J. Biol. Chem. 268, 26512–26521 (1993).

    CAS  PubMed  Google Scholar 

  23. Südhof, T. C. et al. Synapsins: mosaics of shared and individual domains in a family of synaptic vesicle phosphoproteins. Science 245, 1474–1480 (1989).

    Article  Google Scholar 

  24. Porton, B., Kao, H.-T. & Greengard, P. Characterization of transcripts from the synapsin III gene locus. J. Neurochem. 73, 2266–2271 (1999).

    Article  CAS  Google Scholar 

  25. Grant, P. & Tseng, Y. Embryonic and regenerating Xenopus retinal fibers are intrinsically different. Developmental Biology (Orlando) 114, 475–491 (1986).

    Article  CAS  Google Scholar 

  26. Sive, H. L., Grainger, R. M. & Harland, R. Early Development of Xenopus laevis: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2000).

    Google Scholar 

  27. Feany, M. B., Lee, S., Edwards, R. H. & Buckley, K. M. The synaptic vesicle protein SV2 is a novel type of transmembrane transporter. Cell 70, 861–867 (1992).

    Article  CAS  Google Scholar 

  28. Czernik, A. J. et al. in Methods in Enzymology (eds. Hunter, T. & Sefton, B. M.) 264–283 (Academic Press, San Diego, California, 1991).

    Google Scholar 

  29. Kase, H. et al. K-252 compounds, novel and potent inhibitors of protein kinase C and cyclic nucleotide–dependent protein kinases. Biochem. Biophys. Res. Comm. 142, 436–440 (1987).

    Article  CAS  Google Scholar 

  30. Greengard, P., Valtorta, F., Czernik, A. J. & Benfenati, F. Synaptic vesicle phosphoproteins and regulation of synaptic function. Science 259, 780–785 (1993).

    Article  CAS  Google Scholar 

  31. Jovanovic, J. N. et al. Neurotrophins stimulate phosphorylation of synapsin I by MAP kinase and regulate synapsin I–actin interactions. Proc. Natl. Acad. Sci. USA 93, 3679–3683 (1996).

    Article  CAS  Google Scholar 

  32. Jovanovic, J. N., Czernik, A. J., Fienberg, A. A., Greengard, P. & Sihra, T. S. Synapsins as mediators of BDNF-enhanced neurotransmitter release. Nat. Neurosci. 3, 323–329 (2000).

    Article  CAS  Google Scholar 

  33. Matsubara, M. et al. Site-specific phosphorylation of synapsin I by mitogen-activated protein kinase and Cdk5 and its effects on physiological functions. J. Biol. Chem. 271, 21108–21113 (1996).

    Article  CAS  Google Scholar 

  34. Lin, W. & Szaro, B. G. Neurofilaments help maintain normal morphologies and support elongation of neurites in Xenopus laevis cultured embryonic spinal cord neurons. J. Neurosci. 15, 8331-8344 (1995).

  35. Skene, J. H. Axonal growth–associated proteins. Annu. Rev. Neurosci. 12, 127–156 (1989).

    Article  CAS  Google Scholar 

  36. Caceres, A., Potrebic, S. & Kosik, K. S. The effect of tau antisense oligonucleotides on neurite formation of cultured cerebellar macroneurons. J. Neurosci. 11, 1515–1523 (1991).

    Article  CAS  Google Scholar 

  37. Doherty, P., Williams, G. & Williams, E. J. CAMs and axonal growth: a critical evaluation of the role of calcium and the MAPK cascade. Mol. Cell. Neurosci. 16, 283–295 (2000).

    Article  CAS  Google Scholar 

  38. Nikolic, M., Dudek, H., Kwon, Y. T., Ramos, Y. F. & Tsai, L. H. The cdk5/p35 kinase is essential for neurite outgrowth during neuronal differentiation. Genes Dev. 10, 816–825 (1996).

    Article  CAS  Google Scholar 

  39. Fesce, R., Benfenati, F., Greengard, P. & Valtorta, F. Effects of the neuronal phosphoprotein synapsin I on actin polymerization. II. Analytical interpretation of kinetic curves. J. Biol. Chem. 267, 11289–11299 (1992).

    CAS  PubMed  Google Scholar 

  40. Nielander, H. B. et al. Phosphorylation-dependent effects of synapsin IIa on actin polymerization and network formation. Eur. J. Neurosci. 9, 2712–2722 (1997).

    Article  CAS  Google Scholar 

  41. Hosaka, M. & Südhof, T. C. Synapsins I and II are ATP-binding proteins with differential Ca2+ regulation. J. Biol. Chem. 273, 1425–1429 (1998).

    Article  CAS  Google Scholar 

  42. Hosaka, M. & Südhof, T. C. Synapsin III, a novel synapsin with an unusual regulation by Ca2+. J. Biol. Chem. 273, 13371–13374 (1998).

    Article  CAS  Google Scholar 

  43. Esser, L. et al. Synapsin I is structurally similar to ATP-utilizing enzymes. EMBO J. 17, 977–984 (1998).

    Article  CAS  Google Scholar 

  44. Gage, F. H. Mammalian neural stem cells. Science 287, 1433–1438 (2000).

    Article  CAS  Google Scholar 

  45. Tabti, N., Alder, J. & Poo, M.-m. in Culturing Nerve Cells (eds. Banker, G. & Goslin, K.) 237–260 (MIT Press, Cambridge, Massachusetts, 1998).

    Google Scholar 

Download references

Acknowledgements

This work was supported by U.S. Public Health Service Grants MH39327 (P.G.), AG15072 (P.G.), R29 NS35941 (V.P.) and NS37831 (M-m.P.). B.P. is a 2000 Katowitz-Raden Investigator of the National Alliance for Research in Schizophrenia and Affective Disorders. The catalytic subunit of PKA was a gift from A. Nairn and A. Horiuchi. We thank P. Allen for reviewing the manuscript, and G. Yiu and G. Chaiken for technical assistance.

*This work was also supported by U.S. Public Health Service Grants HG00008 (to J. Ott) and K25-HG00060-01A1 (J.H.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hung-Teh Kao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kao, HT., Song, Hj., Porton, B. et al. A protein kinase A–dependent molecular switch in synapsins regulates neurite outgrowth. Nat Neurosci 5, 431–437 (2002). https://doi.org/10.1038/nn840

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn840

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing