Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways

Abstract

Here we report that synaptic and extrasynaptic NMDA (N-methyl-D-aspartate) receptors have opposite effects on CREB (cAMP response element binding protein) function, gene regulation and neuron survival. Calcium entry through synaptic NMDA receptors induced CREB activity and brain-derived neurotrophic factor (BDNF) gene expression as strongly as did stimulation of L-type calcium channels. In contrast, calcium entry through extrasynaptic NMDA receptors, triggered by bath glutamate exposure or hypoxic/ischemic conditions, activated a general and dominant CREB shut-off pathway that blocked induction of BDNF expression. Synaptic NMDA receptors have anti-apoptotic activity, whereas stimulation of extrasynaptic NMDA receptors caused loss of mitochondrial membrane potential (an early marker for glutamate-induced neuronal damage) and cell death. Specific blockade of extrasynaptic NMDA receptors may effectively prevent neuron loss following stroke and other neuropathological conditions associated with glutamate toxicity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Calcium entry through NMDA receptors rather than through L-type calcium channels is responsible for nuclear signaling to CREB and induction of CRE-dependent transcription in synaptically activated hippocampal neurons.
Figure 2: NMDA receptors activated by synaptic activity robustly induced BDNF expression.
Figure 3: Comparison of NMDA receptor–mediated calcium signals triggered by bursts of action potentials or by glutamate bath application.
Figure 4: Calcium flux through extrasynaptic NMDA receptors initiates a CREB shut-off signal and suppresses induction of BDNF expression.
Figure 5: Inhibition of the predominantly extrasynaptically localized NMDA receptor subunit NR2B with ifenprodil blocks the CREB shut-off process.
Figure 6: Extrasynaptic NMDA receptors mediate CREB shut-off induced by hypoxia/ischemia.
Figure 7: Extrasynaptic NMDA receptors are linked to mitochondrial dysfunction and neuronal death.
Figure 8: Stimulation of synaptic NMDA receptors is anti-apoptotic.

Similar content being viewed by others

References

  1. Carafoli, E., Santella, L., Branca, D. & Brini, M. Generation, control, and processing of cellular calcium signals. Crit. Rev. Biochem. Mol. Biol. 36, 107–260 (2001).

    Article  CAS  Google Scholar 

  2. Berridge, M. J. Neuronal calcium signaling. Neuron 21, 13–26 (1998).

    Article  CAS  Google Scholar 

  3. Milner, B., Squire, L. R. & Kandel, E. R. Cognitive neuroscience and the study of memory. Neuron 20, 445–468 (1998).

    Article  CAS  Google Scholar 

  4. Bading, H., Ginty, D. D. & Greenberg, M. E. Regulation of gene expression in hippocampal neurons by distinct calcium signaling pathways. Science 260, 181–186 (1993).

    Article  CAS  Google Scholar 

  5. Bito, H., Deisseroth, K. & Tsien, R. W. CREB phosphorylation and dephosphorylation: a Ca2+ and stimulus duration–dependent switch for hippocampal gene expression. Cell 87, 1203–1214 (1996).

    Article  CAS  Google Scholar 

  6. Fields, R. D., Esthete, F., Stevens, B. & Itoh, K. Action potential–dependent regulation of gene expression: temporal specificity in calcium, cAMP-reponsive element binding proteins, and mitogen-activated protein kinase signalling. J. Neurosci. 17, 7252–7266 (1997).

    Article  CAS  Google Scholar 

  7. Hardingham, G. E., Chawla, S., Johnson, C. M. & Bading, H. Distinct functions of nuclear and cytoplasmic calcium in the control of gene expression. Nature 385, 260–265 (1997).

    Article  CAS  Google Scholar 

  8. Hardingham, G. E., Chawla, S., Cruzalegui, F. H. & Bading, H. Control of recruitment and transcription-activating function of CBP determines gene regulation by NMDA receptors and L-type calcium channels. Neuron 22, 789–798 (1999).

    Article  CAS  Google Scholar 

  9. Hardingham, G. E., Arnold, F. J. L. & Bading, H. Nuclear calcium signaling controls CREB-mediated gene expression triggered by synaptic activity. Nat. Neurosci. 4, 261–267 (2001).

    Article  CAS  Google Scholar 

  10. Chawla, S. & Bading, H. CREB/CBP and SRE-interacting transcriptional regulators are fast on–off switches: duration of calcium transients specifies the magnitude of transcriptional responses. J. Neurochem. 79, 849–858.

  11. Hardingham, G. E., Arnold, F. J. L. & Bading, H. A calcium microdomain near NMDA receptors: on-switch for ERK-dependent synapse-to-nucleus communication. Nat. Neurosci. 4, 565–566 (2001).

    Article  CAS  Google Scholar 

  12. Bading, H. Transcription-dependent neuronal plasticity: the nuclear calcium hypothesis. Eur. J. Biochem. 267, 5280–5283 (2000).

    Article  CAS  Google Scholar 

  13. Ghosh, A., Carnahan, J. & Greenberg, M. E. Requirement for BDNF in activity-dependent survival of cortical neurons. Science 263, 1618–1623 (1994).

    Article  CAS  Google Scholar 

  14. Deisseroth, K., Heist, E. K. & Tsien, R. W. Calmodulin translocation to the nucleus supports CREB phosphorylation in hippocampal neurons. Nature 392, 198–202 (1998).

    Article  CAS  Google Scholar 

  15. Dolmetsch, R. E., Pajvani, U., Fife, K., Spotts, J. M. & Greenberg, M. E. Signaling to the nucleus by an L-type calcium channel–calmodulin complex through the MAP kinase pathway. Science 294, 333–339 (2001).

    Article  CAS  Google Scholar 

  16. Bading, H. et al. N-methyl-d-aspartate receptors are critical for mediating the effects of glutamate on intracellular calcium concentration and immediate early gene expression in cultured hippocampal neurons. Neuroscience 64, 653–664 (1995).

    Article  CAS  Google Scholar 

  17. Ginty, D. D. et al. Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and a circadian clock. Science 268, 238–241 (1993).

    Article  Google Scholar 

  18. Lipsky, R. H., Xu, K., Zhu, D., Kelly, C., Terhakopian, A., Novelli, A. & Marini, A. M. Nuclear factor kappaB is a critical determinant in N-methyl-d-aspartate receptor–mediated neuroprotection. J. Neurochem. 78, 254–264 (2001).

    Article  CAS  Google Scholar 

  19. Tao, X., Finkbeiner, S., Arnold, D. B., Shaywitz, A. J. & Greenberg, M. E. Ca2+ influx regulates BDNF transcription by a CREB family transcription factor–dependent mechanism. Neuron 20, 709–726 (1998).

    Article  CAS  Google Scholar 

  20. Shieh, P. B., Hu, S.-C., Bobb, K., Timmusk, T. & Ghosh, A. Identification of a signaling pathway involved in calcium regulation of BDNF expression. Neuron 20, 727–740 (1998).

    Article  CAS  Google Scholar 

  21. Tovar, K. R. & Westbrook, G. L. The incorporation of NMDA receptors with a distinct subunit composition at nascent hippocampal synapses in vitro. J. Neurosci. 19, 4180–4188 (1999).

    Article  CAS  Google Scholar 

  22. Sala, C., Rudolph-Correia, S. & Sheng, M. Developmentally regulated NMDA receptor–dependent dephosphorylation of cAMP response element–binding protein (CREB) in hippocampal neurons. J. Neurosci. 20, 3529–3536 (2000).

    Article  CAS  Google Scholar 

  23. Williams, K. Ifenprodil discriminates subtypes of the N-methyl-d-aspartate receptor: selectivity and mechanisms at recombinant heteromeric receptors. Mol. Pharmacol. 44, 851–859 (1993).

    CAS  PubMed  Google Scholar 

  24. Rossi, D. J., Oshima, T. & Attwell, D. Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 403, 316–321 (2000).

    Article  CAS  Google Scholar 

  25. Stout, A. K., Raphael, H. M., Kanterewicz, B. I., Klann, E. & Reynolds, I. J. Glutamate-induced neuron death requires mitochondrial calcium uptake. Nat. Neurosci. 1, 366–373 (1998).

    Article  CAS  Google Scholar 

  26. White, R. J. & Reynolds, I. J. Mitochondrial depolarization in glutamate-stimulated neurons: an early signal specific to excitotoxin exposure. J. Neurosci 16, 5688–5697 (1996).

    Article  CAS  Google Scholar 

  27. Schinder, A. F., Olson, E. C., Spitzer, N. C. & Montal, M. Mitochondrial dysfunction is a primary event in glutamate neurotoxicity. J. Neurosci. 16, 6125–6133 (1996).

    Article  CAS  Google Scholar 

  28. Vergun, O., Keelan, J., Khodorov, B. I. & Duchen, M. R. Glutamate-induced mitochondrial depolarisation and perturbation of calcium homeostasis in cultured rat hippocampal neurones. J. Physiol. 519, 451–466 (1999).

    Article  CAS  Google Scholar 

  29. Fujikawa, D.G., Shinmei, S. S. & Cai, B. Kainic acid-induced seizures produce necrotic, not apoptotic, neurons with internucleosomal DNA cleavage: implications for programmed cell death mechanisms. Neuroscience 98, 41–53 (2000).

    Article  CAS  Google Scholar 

  30. Tymianski, M., Charlton, M. P., Carlen, P. L. & Tator, C. H. Source specificity of early calcium neurotoxicity in cultures embryonic spinal neurons. J. Neurosci. 13, 2085–2104 (1993).

    Article  CAS  Google Scholar 

  31. Sattler, R., Charlton, M. P., Hafner, M. & Tymianski, M. Distinct influx pathways, not calcium load, determine neuronal vulnerability to calcium neurotoxicity. J. Neurochem. 71, 2346–2364 (1998).

    Google Scholar 

  32. Chang, K. T. & Berg, D. K. Voltage-gated channels block nicotinic regulation of CREB phosphorylation and gene expression in neurons. Neuron 32, 855–865 (2001).

    Article  CAS  Google Scholar 

  33. Hagiwara, M. et al. Transcriptional attenuation following cAMP induction requires PP-1-mediated dephosphorylation of CREB. Cell 70, 105–113 (1992).

    Article  CAS  Google Scholar 

  34. Bollen, M. Combinatorial control of protein phosphatase-1. Trends Biochem. Sci. 26, 426–431 (2001).

    Article  CAS  Google Scholar 

  35. Hu, S. C., Chrivia, J. & Ghosh, A. Regulation of CBP-mediated transcription by neuronal calcium signaling. Neuron 22, 799–808 (1999).

    Article  CAS  Google Scholar 

  36. Husi, H., Ward, M. A., Choudhary, J. S., Blackstock, W. P. & Grant, S. G. N. Proteomic analysis of NMDA receptor–adhesion protein signaling complexes. Nat. Neurosci. 3, 661–669 (2000).

    Article  CAS  Google Scholar 

  37. Parpura, V., Basarsky, T. A., Liu, F., Jeftinija, K., Jeftinija, S. & Haydon, P. G. Glutamate-mediated astrocyte–neuron signalling. Nature 369, 744–747 (1994).

    Article  CAS  Google Scholar 

  38. Ikonomidou, C. et al. Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science 283, 70–74 (1999).

    Article  CAS  Google Scholar 

  39. Ikonomidou, C., Stefovska, V. & Turski, L. Neuronal death enhanced by N-methyl-d-aspartate antagonists. Proc. Natl. Acad. Sci. USA 97, 12885–12890 (2000).

    Article  CAS  Google Scholar 

  40. Young, D., Lawlor, P. A., Leone, P., Dragunow, M. & During, M. J. Environmental enrichment inhibits spontaneous apoptosis, prevents seizures and is neuroprotective. Nat. Med. 5, 448–453 (1999).

    Article  CAS  Google Scholar 

  41. Olney, J. W., Collins, R. C. & Sloviter, R. S. Excitotoxic mechanisms of epileptic brain damage. Adv. Neurol. 44, 857–77 (1986).

    CAS  PubMed  Google Scholar 

  42. Bittigau, P. & Ikonomidou, C. Glutamate in neurologic diseases. J. Child Neurol. 12, 471–485 (1997).

    Article  CAS  Google Scholar 

  43. Dirnagl, U., Iadecola, C. & Moskowitz, M. A. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 22, 391–397 (1999).

    Article  CAS  Google Scholar 

  44. Lee, J.-M., Zipfel, G. J. & Choi, D. W. The changing landscape of ischaemic brain injury mechanisms. Nature 399, A7–A14 (1999).

  45. Hossmann, K. A. Viability thresholds and the penumbra of focal ischemia. Ann. Neurol. 36, 557–565 (1994).

    Article  CAS  Google Scholar 

  46. Riccio, A., Ahn, S., Davenport, C. M., Blendy, J. A. & Ginty, D. D. Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons. Science 286, 2358–2361 (1999).

    Article  CAS  Google Scholar 

  47. Walton, M. R. & Dragunow, M. Is CREB a key to neuronal survival? Trends Neurosci. 23, 48–53 (2000).

    Article  CAS  Google Scholar 

  48. Kokaia, Z. et al. Regulation of brain-derived neurotrophic factor gene-expression after transient middle cerebral artery occlusion with and without brain damage. Exp. Neurol. 136, 73–88 (1995).

    Article  CAS  Google Scholar 

  49. Bading, H. & Greenberg, M. E. Stimulation of protein tyrosine phosphorylation by NMDA receptor activation. Science 253, 912–914 (1991).

    Article  CAS  Google Scholar 

  50. Keelan, J., Vergun, O. & Duchen, M. R. Excitotoxic mitochondrial depolarisation requires both calcium and nitric oxide in rat hippocampal neurons. J. Physiol. 520, 797–813 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Arnold for help with the multi-electrode array recordings, and P. Vanhoutte and B. Wisden for discussion. This work was supported by the Medical Research Council, Clare College, Cambridge, and the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilmar Bading.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hardingham, G., Fukunaga, Y. & Bading, H. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci 5, 405–414 (2002). https://doi.org/10.1038/nn835

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn835

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing