Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dynamic regulation of axon guidance

Abstract

To reach their proper targets, axons rely upon the actions of highly conserved families of attractive and repulsive guidance molecules, including the netrins, Slits, semaphorins and ephrins. These guidance systems are used to generate an astonishingly varied set of neuronal circuits. Here we consider the mechanisms by which a few guidance systems can be used to generate diverse outcomes. Recent studies have revealed extensive transcriptional and post-transcriptional regulation of guidance cues and their receptors, as well as combinatorial mechanisms that integrate information from different families of guidance cues.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Summary of the four families of instructive guidance cues and receptors discussed in this review.
Figure 2: Transcriptional regulation of axon guidance cues and their receptors.
Figure 3: Combinatorial regulation of axon guidance receptor signaling.

Similar content being viewed by others

References

  1. Tessier-Lavigne, M. & Goodman, C. S. The molecular biology of axon guidance. Science 274, 1123–1133 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Culotti, J. G. & Merz, D. C. DCC and netrins. Curr. Opin. Cell. Biol. 10, 609–613 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Van Vactor, D. & Flanagan, J. G. The middle and the end: slit brings guidance and branching together in axon pathway selection. Neuron 22, 649–652 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Guthrie, S. Axon guidance: starting and stopping with slit. Curr. Biol. 9, R432–435 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Tamagnone, L. & Comoglio, P. M. Signalling by semaphorin receptors: cell guidance and beyond. Trends Cell Biol. 10, 377–383 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Raper, J. A. Semaphorins and their receptors in vertebrates and invertebrates. Curr. Opin. Neurobiol. 10, 88–94 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Flanagan, J. G. & Vanderhaeghen, P. The ephrins and Eph receptors in neural development. Annu. Rev. Neurosci. 21, 309–345 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Wilkinson, D. G. Multiple roles of EPH receptors and ephrins in neural development. Nature Rev. Neurosci. 2, 155–164 (2001).

    Article  CAS  Google Scholar 

  9. Hedgecock, E. M., Culotti, J. G. & Hall, D. H. The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron 4, 61–85 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Ackerman, S. L. et al. The mouse rostral cerebellar malformation gene encodes an UNC-5-like protein. Nature 386, 838–842 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Zallen, J. A., Kirch, S. A. & Bargmann, C. I. Genes required for axon pathfinding and extension in the C. elegans nerve ring. Development 126, 3679–3692 (1999).

    CAS  PubMed  Google Scholar 

  12. Kramer, S. G., Kidd, T., Simpson, J. H. & Goodman, C. S. Switching repulsion to attraction: changing responses to slit during transition in mesoderm migration. Science 292, 737–740 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Behar, O., Golden, J. A., Mashimo, H., Schoen, F. J. & Fishman, M. C. Semaphorin III is needed for normal patterning and growth of nerves, bones and heart. Nature 383, 525–528 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Wadsworth, W. G., Bhatt, H. & Hedgecock, E. M. Neuroglia and pioneer neurons express UNC-6 to provide global and local netrin cues for guiding migrations in C. elegans. Neuron 16, 35–46 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Yuan, W. et al. The mouse SLIT family: secreted ligands for ROBO expressed in patterns that suggest a role in morphogenesis and axon guidance. Dev. Biol. 212, 290–306 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Luo, Y. et al. A family of molecules related to collapsin in the embryonic chick nervous system. Neuron 14, 1131–1140 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Giger, R. J., Pasterkamp, R. J., Heijnen, S., Holtmaat, A. J. & Verhaagen, J. Anatomical distribution of the chemorepellent semaphorin III/collapsin-1 in the adult rat and human brain: predominant expression in structures of the olfactory-hippocampal pathway and the motor system. J. Neurosci. Res. 52, 27–42 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Itoh, A., Miyabayashi, T., Ohno, M. & Sakano, S. Cloning and expressions of three mammalian homologues of Drosophila slit suggest possible roles for Slit in the formation and maintenance of the nervous system. Brain Res. Mol. Brain Res. 62, 175–186 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Nakagawa, S. et al. Ephrin-B regulates the ipsilateral routing of retinal axons at the optic chiasm. Neuron 25, 599–610 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nash, B., Colavita, A., Zheng, H., Roy, P. J. & Culotti, J. G. The forkhead transcription factor UNC-130 is required for the graded spatial expression of the UNC-129 TGF-beta guidance factor in C. elegans. Genes Dev. 14, 2486–2500 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Su, M. et al. Regulation of the UNC-5 netrin receptor initiates the first reorientation of migrating distal tip cells in Caenorhabditis elegans. Development 127, 585–594 (2000).

    CAS  PubMed  Google Scholar 

  22. Brown, A. et al. Topographic mapping from the retina to the midbrain is controlled by relative but not absolute levels of EphA receptor signaling. Cell 102, 77–88 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Retaux, S. & Harris, W. A. Engrailed and retinotectal topography. Trends Neurosci. 19, 542–546 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Rhinn, M., Dierich, A., Le Meur, M. & Ang, S. Cell autonomous and non-cell autonomous functions of Otx2 in patterning the rostral brain. Development 126, 4295–4304 (1999).

    CAS  PubMed  Google Scholar 

  25. Schulte, D. & Cepko, C. L. Two homeobox genes define the domain of EphA3 expression in the developing chick retina. Development 127, 5033–5045 (2000).

    CAS  PubMed  Google Scholar 

  26. Baran, R., Aronoff, R. & Garriga, G. The C. elegans homeodomain gene unc-42 regulates chemosensory and glutamate receptor expression. Development 126, 2241–2251 (1999).

    CAS  PubMed  Google Scholar 

  27. Erkman, L. et al. A POU domain transcription factor–dependent program regulates axon pathfinding in the vertebrate visual system. Neuron 28, 779–792 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Much, J. W., Slade, D. J., Klampert, K., Garriga, G. & Wightman, B. The fax-1 nuclear hormone receptor regulates axon pathfinding and neurotransmitter expression. Development 127, 703–712 (2000).

    CAS  PubMed  Google Scholar 

  29. Thor, S., Andersson, S. G., Tomlinson, A. & Thomas, J. B. A LIM-homeodomain combinatorial code for motor-neuron pathway selection. Nature 397, 76–80 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Lundgren, S. E., Callahan, C. A., Thor, S. & Thomas, J. B. Control of neuronal pathway selection by the Drosophila LIM homeodomain gene apterous. Development 121, 1769–1773 (1995).

    CAS  PubMed  Google Scholar 

  31. Thor, S. & Thomas, J. B. The Drosophila islet gene governs axon pathfinding and neurotransmitter identity. Neuron 18, 397–409 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Landgraf, M., Roy, S., Prokop, A., VijayRaghavan, K. & Bate, M. even-skipped determines the dorsal growth of motor axons in Drosophila. Neuron 22, 43–52 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Hartmann, B., Hirth, F., Walldorf, U. & Reichert, H. Expression, regulation and function of the homeobox gene empty spiracles in brain and ventral nerve cord development of Drosophila. Mech. Dev. 90, 143–153 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Kania, A., Johnson, R. L. & Jessell, T. M. Coordinate roles for LIM homeobox genes in directing the dorsoventral trajectory of motor axons in the vertebrate limb. Cell 102, 161–173 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Seeger, M., Tear, G., Ferres-Marco, D. & Goodman, C. S. Mutations affecting growth cone guidance in Drosophila: genes necessary for guidance toward or away from the midline. Neuron 10, 409–426 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. Kidd, T., Russell, C., Goodman, C. S. & Tear, G. Dosage-sensitive and complementary functions of roundabout and commissureless control axon crossing of the CNS midline. Neuron 20, 25–33 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Tear, G. et al. commissureless controls growth cone guidance across the CNS midline in Drosophila and encodes a novel membrane protein. Neuron 16, 501–514 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Kidd, T. et al. Roundabout controls axon crossing of the CNS midline and defines a novel subfamily of evolutionarily conserved guidance receptors. Cell 92, 205–215 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Hornberger, M. R. et al. Modulation of EphA receptor function by coexpressed ephrinA ligands on retinal ganglion cell axons. Neuron 22, 731–742 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Dutting, D., Handwerker, C. & Drescher, U. Topographic targeting and pathfinding errors of retinal axons following overexpression of ephrinA ligands on retinal ganglion cell axons. Dev. Biol. 216, 297–311 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Feldheim, D. A. et al. Genetic analysis of ephrin-A2 and ephrin-A5 shows their requirement in multiple aspects of retinocollicular mapping. Neuron 25, 563–574 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Holmberg, J., Clarke, D. L. & Frisen, J. Regulation of repulsion versus adhesion by different splice forms of an Eph receptor. Nature 408, 203–206 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Castellani, V., Yue, Y., Gao, P. P., Zhou, R. & Bolz, J. Dual action of a ligand for Eph receptor tyrosine kinases on specific populations of axons during the development of cortical circuits. J Neurosci. 18, 4663–4672 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Galko, M. J. & Tessier-Lavigne, M. Function of an axonal chemoattractant modulated by metalloprotease activity. Science 289, 1365–1367 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Hattori, M., Osterfield, M. & Flanagan, J. G. Regulated cleavage of a contact-mediated axon repellent. Science 289, 1360–1365 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Hiramoto, M., Hiromi, Y., Giniger, E. & Hotta, Y. The Drosophila Netrin receptor Frazzled guides axons by controlling Netrin distribution. Nature 406, 886–889 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Brose, K. et al. Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell 96, 795–806 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Lander, A. D. Mechanisms by which molecules guide axons. Curr. Opin. Cell Biol. 2, 907–913 (1990).

    CAS  Google Scholar 

  49. Tanaka, E. & Sabry, J. Making the connection: cytoskeletal rearrangements during growth cone guidance. Cell 83, 171–176 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. Nobes, C. D. & Hall, A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62 (1995).

    Article  CAS  PubMed  Google Scholar 

  51. Luo, L., Liao, Y. J., Jan, L. Y. & Jan, Y. N. Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes Dev. 8, 1787–1802 (1994).

    Article  CAS  PubMed  Google Scholar 

  52. Zipkin, I. D., Kindt, R. M. & Kenyon, C. J. Role of a new Rho family member in cell migration and axon guidance in C. elegans. Cell 90, 883–894 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Steven, R. et al. UNC-73 activates the Rac GTPase and is required for cell and growth cone migrations in C. elegans. Cell 92, 785–795 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Luo, L. Trio quartet in D. (melanogaster). Neuron 26, 1–2 (2000).

    Article  PubMed  Google Scholar 

  55. Shamah, S. M. et al. EphA receptors regulate growth cone dynamics through the novel guanine nucleotide exchange factor ephexin. Cell 105, 233–244 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Mueller, B. K. Growth cone guidance: first steps towards a deeper understanding. Annu. Rev. Neurosci. 22, 351–388 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Song, H. & Poo, M. The cell biology of neuronal navigation. Nat Cell Biol. 3, E81–E88 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Wightman, B. et al. The C. elegans gene vab-8 guides posteriorly directed axon outgrowth and cell migration. Development 122, 671–682 (1996).

    CAS  PubMed  Google Scholar 

  59. Wolf, F. W., Hung, M. S., Wightman, B., Way, J. & Garriga, G. vab-8 is a key regulator of posteriorly directed migrations in C. elegans and encodes a novel protein with kinesin motor similarity. Neuron 20, 655–666 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Bashaw, G. J., Kidd, T., Murray, D., Pawson, T. & Goodman, C. S. Repulsive axon guidance: Abelson and Enabled play opposing roles downstream of the roundabout receptor. Cell 101, 703–715 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Sun, Q., Bahri, S., Schmid, A., Chia, W. & Zinn, K. Receptor tyrosine phosphatases regulate axon guidance across the midline of the Drosophila embryo. Development 127, 801–812 (2000).

    CAS  PubMed  Google Scholar 

  62. Hong, K., Nishiyama, M., Henley, J., Tessier-Lavigne, M. & Poo, M. Calcium signalling in the guidance of nerve growth by netrin-1. Nature 403, 93–98 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Zheng, J. Q. Turning of nerve growth cones induced by localized increases in intracellular calcium ions. Nature 403, 89–93 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Ming, G. L. et al. cAMP-dependent growth cone guidance by netrin-1. Neuron 19, 1225–1235 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Song, H. et al. Conversion of neuronal growth cone responses from repulsion to attraction by cyclic nucleotides. Science 281, 1515–1518 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Polleux, F., Giger, R. J., Ginty, D. D., Kolodkin, A. L. & Ghosh, A. Patterning of cortical efferent projections by semaphorin–neuropilin interactions. Science 282, 1904–1906 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Polleux, F., Morrow, T. & Ghosh, A. Semaphorin 3A is a chemoattractant for cortical apical dendrites. Nature 404, 567–573 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Davis, S. et al. Ligands for EPH-related receptor tyrosine kinases that require membrane attachment or clustering for activity. Science 266, 816–819 (1994).

    Article  CAS  PubMed  Google Scholar 

  69. Bruckner, K. & Klein, R. Signaling by Eph receptors and their ephrin ligands. Curr. Opin. Neurobiol. 8, 375–382 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Smalla, M. et al. Solution structure of the receptor tyrosine kinase EphB2 SAM domain and identification of two distinct homotypic interaction sites. Protein Sci. 8, 1954–1961 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Stapleton, D., Balan, I., Pawson, T. & Sicheri, F. The crystal structure of an Eph receptor SAM domain reveals a mechanism for modular dimerization. Nature Struct. Biol. 6, 44–49 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Thanos, C. D., Goodwill, K. E. & Bowie, J. U. Oligomeric structure of the human EphB2 receptor SAM domain. Science 283, 833–836 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Kullander, K. et al. Kinase-dependent and kinase-independent functions of EphA4 receptors in major axon tract formation in vivo. Neuron 29, 73–84 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 103, 211–225 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Stein, E., Zou, Y., Poo, M. & Tessier-Lavigne, M. Binding of DCC by netrin-1 to mediate axon guidance independent of adenosine A2B receptor activation. Science 291, 1976–1982 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Tamagnone, L. et al. Plexins are a large family of receptors for transmembrane, secreted, and GPI-anchored semaphorins in vertebrates. Cell 99, 71–80 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Takahashi, T. et al. Plexin–neuropilin-1 complexes form functional semaphorin–3A receptors. Cell 99, 59–69 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Takahashi, T. & Strittmatter, S. M. Plexin-A1 autoinhibition by the plexin sema domain. Neuron 29, 429–439 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Nakamura, F., Tanaka, M., Takahashi, T., Kalb, R. G. & Strittmatter, S. M. Neuropilin-1 extracellular domains mediate semaphorin D/III-induced growth cone collapse. Neuron 21, 1093–1100 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. He, Z. & Tessier-Lavigne, M. Neuropilin is a receptor for the axonal chemorepellent Semaphorin III. Cell 90, 739–751 (1997).

    Article  CAS  PubMed  Google Scholar 

  81. Kitsukawa, T. et al. Neuropilin–semaphorin III/D-mediated chemorepulsive signals play a crucial role in peripheral nerve projection in mice. Neuron 19, 995–1005 (1997).

    Article  CAS  PubMed  Google Scholar 

  82. Kolodkin, A. L. et al. Neuropilin is a semaphorin III receptor. Cell 90, 753–762 (1997).

    Article  CAS  PubMed  Google Scholar 

  83. Chen, H., Chedotal, A., He, Z., Goodman, C. S. & Tessier-Lavigne, M. Neuropilin-2, a novel member of the neuropilin family, is a high affinity receptor for the semaphorins Sema E and Sema IV but not Sema III. Neuron 19, 547–559 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Soker, S., Takashima, S., Miao, H. Q., Neufeld, G. & Klagsbrun, M. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92, 735–745 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Whitaker, G. B., Limberg, B. J. & Rosenbaum, J. S. Vascular endothelial growth factor receptor-2 and neuropilin-1 form a receptor complex that is responsible for the differential signaling potency of vegf165 and vegf121. J. Biol. Chem. 276, 25520–25531 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Castellani, V., Chedotal, A., Schachner, M., Faivre-Sarrailh, C. & Rougon, G. Analysis of the L1-deficient mouse phenotype reveals cross-talk between Sema3A and L1 signaling pathways in axonal guidance. Neuron 27, 237–249 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Kidd, T., Bland, K. S. & Goodman, C. S. Slit is the midline repellent for the Robo receptor in Drosophila. Cell 96, 785–794 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Simpson, J. H., Kidd, T., Bland, K. S. & Goodman, C. S. Short-range and long-range guidance by slit and its Robo receptors. Robo and Robo2 play distinct roles in midline guidance. Neuron 28, 753–766 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Simpson, J. H., Bland, K. S., Fetter, R. D. & Goodman, C. S. Short-range and long-range guidance by Slit and its Robo receptors: a combinatorial code of Robo receptors controls lateral position. Cell 103, 1019–1032 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Rajagopalan, S., Nicolas, E., Vivancos, V., Berger, J. & Dickson, B. J. Crossing the midline: roles and regulation of Robo receptors. Neuron 28, 767–777 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Rajagopalan, S., Vivancos, V., Nicolas, E. & Dickson, B. J. Selecting a longitudinal pathway: Robo receptors specify the lateral position of axons in the Drosophila CNS. Cell 103, 1033–1045 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Chan, S. S. et al. UNC-40, a C. elegans homolog of DCC (Deleted in Colorectal Cancer), is required in motile cells responding to UNC-6 netrin cues. Cell 87, 187–195 (1996).

    Article  CAS  PubMed  Google Scholar 

  93. Corset, V. et al. Netrin-1-mediated axon outgrowth and cAMP production requires interaction with adenosine A2b receptor. Nature 407, 747–750 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Leung-Hagesteijn, C. et al. UNC-5, a transmembrane protein with immunoglobulin and thrombospondin type 1 domains, guides cell and pioneer axon migrations in C. elegans. Cell 71, 289–299 (1992).

    Article  CAS  PubMed  Google Scholar 

  95. Leonardo, E. D. et al. Vertebrate homologues of C. elegans UNC-5 are candidate netrin receptors. Nature 386, 833–838 (1997).

    Article  CAS  PubMed  Google Scholar 

  96. Hamelin, M., Zhou, Y., Su, M. W., Scott, I. M. & Culotti, J. G. Expression of the UNC-5 guidance receptor in the touch neurons of C. elegans steers their axons dorsally. Nature 364, 327–330 (1993).

    Article  CAS  PubMed  Google Scholar 

  97. Hong, K. et al. A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion. Cell 97, 927–941 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Colavita, A. & Culotti, J. G. Suppressors of ectopic UNC-5 growth cone steering identify eight genes involved in axon guidance in Caenorhabditis elegans. Dev. Biol. 194, 72–85 (1998).

    Article  CAS  PubMed  Google Scholar 

  99. Hopker, V. H., Shewan, D., Tessier-Lavigne, M., Poo, M. & Holt, C. Growth-cone attraction to netrin-1 is converted to repulsion by laminin-1. Nature 401, 69–73 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Stein, E. & Tessier-Lavigne, M. Hierarchical organization of guidance receptors: silencing of netrin attraction by slit through a Robo/DCC receptor complex. Science 291, 1928–1938 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Lu, Q., Sun, E. E., Klein, R. S. & Flanagan, J. G. Ephrin-B reverse signaling is mediated by a novel PDZ–RGS protein and selectively inhibits G protein–coupled chemoattraction. Cell 105, 69–79 (2001)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia I. Bargmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, T., Bargmann, C. Dynamic regulation of axon guidance. Nat Neurosci 4 (Suppl 11), 1169–1176 (2001). https://doi.org/10.1038/nn748

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn748

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing