Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Internalization of ionotropic glutamate receptors in response to mGluR activation

Abstract

Activation of group 1 metabotropic glutamate receptors (mGluRs) stimulates dendritic protein synthesis and long-term synaptic depression (LTD), but it remains unclear how these effects are related. Here we provide evidence that a consequence of mGluR activation in the hippocampus is the rapid loss of both AMPA and NMDA receptors from synapses. Like mGluR-LTD, the stable expression of this change requires protein synthesis. These data suggest that expression of mGluR-LTD is at least partly postsynaptic, and that a functional consequence of dendritic protein synthesis is the regulation of glutamate receptor trafficking.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: mGluR stimulation induces endocytosis of GluR1 puncta.
Figure 2: mGluR stimulation induces loss of synaptic surface AMPARs.
Figure 3: mGluR stimulation induces loss of surface GluR1.
Figure 4: DHPG-induced synaptic depression is accompanied by a reduction in AMPAR-mediated mEPSC frequency.
Figure 5: mGluR stimulation induces loss of synaptic surface NMDARs.
Figure 6: DHPG application attenuates synaptically evoked NMDAR-mediated EPSCs and NMDA-evoked currents.

Similar content being viewed by others

References

  1. Bear, M. F. & Linden, D. J. in Synapses (eds. Cowan, W. M., Sudhoff, T. C. & Stevens, C. F.) 455–517 (The Johns Hopkins University Press, Baltimore, Maryland, 2001).

    Google Scholar 

  2. Carroll, R. C., Lissin, D. V., von Zastrow, M., Nicoll, R. A. & Malenka, R. C. Rapid redistribution of glutamate receptors contributes to long-term depression in hippocampal cultures. Nat. Neurosci. 2, 454–460 (1999).

    Article  CAS  Google Scholar 

  3. Carroll, R. C. et al. Dynamin-dependent endocytosis of ionotropic glutamate receptors. Proc. Natl. Acad. Sci. USA 96, 14112–14117 (1999).

    Article  CAS  Google Scholar 

  4. Lüscher, C. et al. Role of AMPA receptor cycling in synaptic transmission and plasticity. Neuron 24, 649–658 (1999).

    Article  Google Scholar 

  5. Liao, D., Zhang, X., O'Brien, R., Ehlers, R. O. & Huganir, R. L. Regulation of morphological postsynaptic silent synapses in developing hippocampal neurons. Nat. Neurosci. 2, 37–43 (1999).

    Article  CAS  Google Scholar 

  6. Man, H.-Y. et al. Regulation of AMPA receptor-mediated synaptic transmission by clathrin-dependent receptor internalization. Neuron 25, 649–662 (2000).

    Article  CAS  Google Scholar 

  7. Heynen, A. J., Quinlan, E. M., Bae, D. C. & Bear, M. F. Bidirectional, activity-dependent regulation of glutamate receptors in the adult hippocampus in vivo. Neuron 28, 527–536 (2002).

    Article  Google Scholar 

  8. Bolshakov, V. Y. & Siegelbaum, S. A. Postsynaptic induction and presynaptic expression of hippocampal long-term depression. Science 264, 1148–1152 (1994).

    Article  CAS  Google Scholar 

  9. Oliet, S. H., Malenka, R. C. & Nicoll, R. A. Two distinct forms of long-term depression coexist in CA1 hippocampal pyramidal cells. Neuron 18, 969–982 (1997).

    Article  CAS  Google Scholar 

  10. Palmer, M. J., Irving, A. J., Seabrook, G. R., Jane, D. E. & Collingridge, G. L. The group I mGlu receptor agonist DHPG induces a novel form of LTD in the CA1 region of the hippocampus. Neuropharmacology 36, 1517–1532 (1997).

    Article  CAS  Google Scholar 

  11. Camodeca, N., Breakwell, N. A., Rowan, M. J. & Anwyl, R. Induction of LTD by activation of group I mGluR in the dentate gyrus in vitro. Neuropharmacology 38, 1597–1606 (1999).

    Article  CAS  Google Scholar 

  12. Fitzjohn, S. M., Kingston, A. E., Lodge, D. & Collingridge, G. L. DHPG-induced LTD in area CA1 of juvenile rat hippocampus; characterisation and sensitivity to novel mGlu receptor antagonists. Neuropharmacology 38, 1577–1583 (1999).

    Article  CAS  Google Scholar 

  13. Huber, K. M., Kayser, M. S. & Bear, M. F. Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent long-term depression. Science 288, 1254–1256 (2000).

    Article  CAS  Google Scholar 

  14. Huber, K. M., Roder, J. & Bear, M. F. Chemical induction of mGluR- and protein synthesis-dependent long-term depression in hippocampal area CA1. J. Neurophysiol. 86, 321–325 (2001).

    Article  CAS  Google Scholar 

  15. Doherty, A. et al. A novel, competitive mGluR5 receptor antagonist (LY344545) blocks DHPG-induced potentiation of NMDA responses but not the induction of LTP in rat hippocampal slices. Br. J. Pharmacol. 131, 239–244 (2000).

    Article  CAS  Google Scholar 

  16. Noel, J. et al. Surface expression of AMPA receptors in hippocampal neurons is regulated by an NSF-dependent mechanism. Neuron 23, 365–376 (1999).

    Article  CAS  Google Scholar 

  17. Beattie, E. C. et al. Regulation of AMPA receptor endocytosis by a signaling mechanism shared with LTD. Nat. Neurosci. 3, 1291–1300 (2000).

    Article  CAS  Google Scholar 

  18. Man, Y. H. et al. Regulation of AMPA receptor-mediated synaptic transmission by clathrin- dependent receptor internalization. Neuron 25, 649–662 (2000).

    Article  CAS  Google Scholar 

  19. Ehlers, M. D. Reinsertion or degradation of AMPA receptors determined by activity- dependent endocytic sorting. Neuron 28, 511–525 (2000).

    Article  CAS  Google Scholar 

  20. Philpot, B. D., Sekhar, A. K., Shouval, H. Z. & Bear, M. F. Visual experience and deprivation bidirectionally modify the composition and function of NMDA receptors in visual cortex. Neuron 29, 157–169 (2001).

    Article  CAS  Google Scholar 

  21. Cohen, A. S. & Abraham, W. C. Facilitation of long-term potentiation by prior activation of metabotropic glutamate receptors. J. Neurophysiol. 76, 953–962 (1996).

    Article  CAS  Google Scholar 

  22. Ehlers, M. D., Tingley, W. G. & Huganir, R. L. Regulated subcellular distribution of the NR1 subunit of the NMDA receptor. Science 269, 1734–1737 (1995).

    Article  CAS  Google Scholar 

  23. Benke, T. A., Jones, O. T., Collingridge, G. L. & Angelides, K. J. N-Methyl-D-aspartate receptors are clustered and immobilized on dendrites of living cortical neurons. Proc. Natl. Acad. Sci. USA 90, 7819–7823 (1993).

    Article  CAS  Google Scholar 

  24. Wang, Y. T. & Linden, D. J. Expression of cerebellar long-term depression requires postsynaptic clathrin-mediated endocytosis. Neuron 25, 635–647 (2000).

    Article  CAS  Google Scholar 

  25. Luthi, A. et al. Hippocampal LTD expression involves a pool of AMPARs regulated by the NSF-GluR2 interaction. Neuron 24, 389–399 (1999).

    Article  CAS  Google Scholar 

  26. Kauderer, B. S. & Kandel, E. R. Capture of a protein synthesis-dependent component of long-term depression. Proc. Natl. Acad. Sci. USA 97, 13342–13347 (2000).

    Article  CAS  Google Scholar 

  27. Lin, J. W. et al. Distinct molecular mechanisms and divergent endocytotic pathways of AMPA receptor internalization. Nat. Neurosci. 3, 1282–1290 (2000).

    Article  CAS  Google Scholar 

  28. Roche, K. W. et al. Molecular determinants of NMDA receptor internalization. Nat. Neurosci. 4, 794–802 (2001).

    Article  CAS  Google Scholar 

  29. Weiler, I. J. & Greenough, W. T. Metabotropic glutamate receptors trigger postsynaptic protein synthesis. Proc. Natl. Acad. Sci. USA 90, 7168–7171 (1993).

    Article  CAS  Google Scholar 

  30. Balice-Gordon, R. J. & Lichtman, J. W. Long-term synapse loss induced by focal blockade of postsynaptic receptors. Nature 372, 519–524 (1994).

    Article  CAS  Google Scholar 

  31. Ichise, T. et al. MGluR1 in cerebellar Purkinje cells essential for long-term depression, synapse elimination, and motor coordination. Science 288, 1832–1835 (2000).

    Article  CAS  Google Scholar 

  32. Dudek, S. M. & Bear, M. F. A biochemical correlate of the critical period for synaptic modification in the visual cortex. Science 246, 673–675 (1989).

    Article  CAS  Google Scholar 

  33. Bear, M. F. & Rittenhouse, C. D. A molecular basis for induction of ocular dominance plasticity. J. Neurobiol. 41, 83–91 (1999).

    Article  CAS  Google Scholar 

  34. Wu, L. et al. CPEB-mediated cytoplasmic polyadenylation and the regulation of experience-dependent translation of α-CaMKII mRNA. Neuron 21, 1129–1139 (1998).

    Article  CAS  Google Scholar 

  35. Chung, H. J., Xia, J., Scannevin, R. H., Zhang, X. & Huganir, R. L. Phosphorylation of the AMPA receptor subunit GluR2 differentially regulates its interaction with PDZ domain-containing proteins. J. Neurosci. 20, 7258–7267 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Ornstein at Eli Lilly for the LY344545, S. Won, M. Milekic and E. Glater for assistance, and M. Colledge and H.-K. Lee for advice. This work was supported in part by NIH Grant #NS39321.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark F. Bear.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snyder, E., Philpot, B., Huber, K. et al. Internalization of ionotropic glutamate receptors in response to mGluR activation. Nat Neurosci 4, 1079–1085 (2001). https://doi.org/10.1038/nn746

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn746

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing