Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A voice region in the monkey brain

Abstract

For vocal animals, recognizing species-specific vocalizations is important for survival and social interactions. In humans, a voice region has been identified that is sensitive to human voices and vocalizations. As this region also strongly responds to speech, it is unclear whether it is tightly associated with linguistic processing and is thus unique to humans. Using functional magnetic resonance imaging of macaque monkeys (Old World primates, Macaca mulatta) we discovered a high-level auditory region that prefers species-specific vocalizations over other vocalizations and sounds. This region not only showed sensitivity to the 'voice' of the species, but also to the vocal identify of conspecific individuals. The monkey voice region is located on the superior-temporal plane and belongs to an anterior auditory 'what' pathway. These results establish functional relationships with the human voice region and support the notion that, for different primate species, the anterior temporal regions of the brain are adapted for recognizing communication signals from conspecifics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Auditory cortex regions preferring species-specific vocalizations in two awake monkeys.
Figure 2: Auditory cortical field summaries of MVocs preference.
Figure 3: Experiments with anesthetized animals.
Figure 4: Brain clusters outside of auditory cortex that prefer MVocs.
Figure 5: Auditory cortex regions preferring familiar conspecific vocalizations (Experiment 2).
Figure 6: Sensitivity in the anterior STP region to the identity of the individuals producing the vocalizations (Experiment 3).

Similar content being viewed by others

References

  1. Van Lancker, D.R. & Canter, G.J. Impairment of voice and face recognition in patients with hemispheric damage. Brain Cogn. 1, 185–195 (1982).

    Article  CAS  Google Scholar 

  2. Van Lancker, D.R., Cummings, J.L., Kreiman, J. & Dobkin, B.H. Phonagnosia: a dissociation between familiar and unfamiliar voices. Cortex 24, 195–209 (1988).

    Article  CAS  Google Scholar 

  3. Belin, P., Zatorre, R.J., Lafaille, P., Ahad, P. & Pike, B. Voice-selective areas in human auditory cortex. Nature 403, 309–312 (2000).

    Article  CAS  Google Scholar 

  4. Belin, P., Zatorre, R.J. & Ahad, P. Human temporal-lobe response to vocal sounds. Brain Res. Cogn. Brain Res. 13, 17–26 (2002).

    Article  Google Scholar 

  5. Fecteau, S., Armony, J.L., Joanette, Y. & Belin, P. Is voice processing species-specific in human auditory cortex? An fMRI study. Neuroimage 23, 840–848 (2004).

    Article  Google Scholar 

  6. Altmann, C.F., Doehrmann, O. & Kaiser, J. Selectivity for animal vocalizations in the human auditory cortex. Cereb Cortex 17, 2601–2608 (2007).

    Article  Google Scholar 

  7. Belin, P. & Zatorre, R.J. Adaptation to speaker's voice in right anterior temporal lobe. Neuroreport 14, 2105–2109 (2003).

    Article  Google Scholar 

  8. Tanaka, K., Saito, H., Fukada, Y. & Moriya, M. Coding visual images of objects in the inferotemporal cortex of the macaque monkey. J. Neurophysiol. 66, 170–189 (1991).

    Article  CAS  Google Scholar 

  9. Sergent, J., Ohta, S. & MacDonald, B. Functional neuroanatomy of face and object processing. A positron emission tomography study. Brain 115, 15–36 (1992).

    Article  Google Scholar 

  10. Kanwisher, N., McDermott, J. & Chun, M.M. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997).

    Article  CAS  Google Scholar 

  11. Tsao, D.Y., Freiwald, W.A., Tootell, R.B. & Livingstone, M.S. A cortical region consisting entirely of face-selective cells. Science 311, 670–674 (2006).

    Article  CAS  Google Scholar 

  12. Uppenkamp, S., Johnsrude, I.S., Norris, D., Marslen-Wilson, W. & Patterson, R.D. Locating the initial stages of speech-sound processing in human temporal cortex. Neuroimage 31, 1284–1296 (2006).

    Article  Google Scholar 

  13. Obleser, J. et al. Vowel sound extraction in anterior superior temporal cortex. Hum. Brain Mapp. 27, 562–571 (2006).

    Article  Google Scholar 

  14. Hauser, M.D., Chomsky, N. & Fitch, W.T. The faculty of language: what is it, who has it, and how did it evolve? Science 298, 1569–1579 (2002).

    Article  CAS  Google Scholar 

  15. Masataka, N. Development of vocal recognition of mothers in infant Japanese macaques. Dev. Psychobiol. 18, 107–114 (1985).

    Article  CAS  Google Scholar 

  16. Rendall, D., Owren, M.J. & Rodman, P.S. The role of vocal tract filtering in identity cueing in rhesus monkey (Macaca mulatta) vocalizations. J. Acoust. Soc. Am. 103, 602–614 (1998).

    Article  CAS  Google Scholar 

  17. Ghazanfar, A.A. et al. Vocal-tract resonances as indexical cues in rhesus monkeys. Curr. Biol. 17, 425–430 (2007).

    Article  CAS  Google Scholar 

  18. Winter, P. & Funkenstein, H.H. The effect of species-specific vocalization on the discharge of auditory cortical cells in the awake squirrel monkey. (Saimiri sciureus). Exp. Brain Res. 18, 489–504 (1973).

    CAS  PubMed  Google Scholar 

  19. Suga, N., Niwa, H., Taniguchi, I. & Margoliash, D. The personalized auditory cortex of the mustached bat: adaptation for echolocation. J. Neurophysiol. 58, 643–654 (1987).

    Article  CAS  Google Scholar 

  20. Tian, B., Reser, D., Durham, A., Kustov, A. & Rauschecker, J.P. Functional specialization in rhesus monkey auditory cortex. Science 292, 290–293 (2001).

    Article  CAS  Google Scholar 

  21. Wang, X. & Kadia, S.C. Differential representation of species-specific primate vocalizations in the auditory cortices of marmoset and cat. J. Neurophysiol. 86, 2616–2620 (2001).

    Article  CAS  Google Scholar 

  22. Belin, P. Voice processing in human and non-human primates. Phil. Trans. R. Soc. Lond. B 361, 2091–2107 (2006).

    Article  Google Scholar 

  23. Poremba, A. et al. Species-specific calls evoke asymmetric activity in the monkey's temporal poles. Nature 427, 448–451 (2004).

    Article  CAS  Google Scholar 

  24. Gil-da-Costa, R. et al. Toward an evolutionary perspective on conceptual representation: species-specific calls activate visual and affective processing systems in the macaque. Proc. Natl. Acad. Sci. USA 101, 17516–17521 (2004).

    Article  CAS  Google Scholar 

  25. Gil-da-Costa, R. et al. Species-specific calls activate homologs of Broca's and Wernicke's areas in the macaque. Nat. Neurosci. 9, 1064–1070 (2006).

    Article  CAS  Google Scholar 

  26. Petkov, C.I., Kayser, C., Augath, M. & Logothetis, N.K. Functional imaging reveals numerous fields in the monkey auditory cortex. PLoS Biol. 4, e215 (2006).

    Article  Google Scholar 

  27. Kayser, C., Petkov, C.I., Augath, M. & Logothetis, N.K. Functional imaging reveals visual modulation of specific fields in auditory cortex. J. Neurosci. 27, 1824–1835 (2007).

    Article  CAS  Google Scholar 

  28. Rauschecker, J.P. Parallel processing in the auditory cortex of primates. Audiol. Neurootol. 3, 86–103 (1998).

    Article  CAS  Google Scholar 

  29. Romanski, L.M. et al. Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nat. Neurosci. 2, 1131–1136 (1999).

    Article  CAS  Google Scholar 

  30. Kaas, J.H. & Hackett, T.A. 'What' and 'where' processing in auditory cortex. Nat. Neurosci. 2, 1045–1047 (1999).

    Article  CAS  Google Scholar 

  31. Rauschecker, J.P. & Tian, B. Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proc. Natl. Acad. Sci. USA 97, 11800–11806 (2000).

    Article  CAS  Google Scholar 

  32. Rauschecker, J.P., Tian, B. & Hauser, M. Processing of complex sounds in the macaque nonprimary auditory cortex. Science 268, 111–114 (1995).

    Article  CAS  Google Scholar 

  33. Wessinger, C.M. et al. Hierarchical organization of the human auditory cortex revealed by functional magnetic resonance imaging. J. Cogn. Neurosci. 13, 1–7 (2001).

    Article  CAS  Google Scholar 

  34. Pandya, D.N. & Sanides, F. Architectonic parcellation of the temporal operculum in rhesus monkey and its projection pattern. Z. Anat. Entwicklungsgesch. 139, 127–161 (1973).

    Article  CAS  Google Scholar 

  35. Hackett, T.A., Stepniewska, I. & Kaas, J.H. Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys. J. Comp. Neurol. 394, 475–495 (1998).

    Article  CAS  Google Scholar 

  36. Kaas, J.H. & Hackett, T.A. Subdivisions of auditory cortex and processing streams in primates. Proc. Natl. Acad. Sci. USA 97, 11793–11799 (2000).

    Article  CAS  Google Scholar 

  37. Grill-Spector, K. & Malach, R. fMR-adaptation: a tool for studying the functional properties of human cortical neurons. Acta Psychol. (Amst.) 107, 293–321 (2001).

    Article  CAS  Google Scholar 

  38. Hauser, M.D. & Marler, P. Food-associated calls in rhesus macaques (Macaca mulatta). I. Socioecological factors. Behav. Ecol. 4, 194–205 (1993).

    Article  Google Scholar 

  39. Formisano, E. et al. Mirror-symmetric tonotopic maps in human primary auditory cortex. Neuron 40, 859–869 (2003).

    Article  CAS  Google Scholar 

  40. Ghazanfar, A.A. & Miller, C.T. Language evolution: loquacious monkey brains? Curr. Biol. 16, R879–R881 (2006).

    Article  CAS  Google Scholar 

  41. Alain, C., Arnott, S.R., Hevenor, S., Graham, S. & Grady, C.L. “What” and “where” in the human auditory system. Proc. Natl. Acad. Sci. USA 98, 12301–12306 (2001).

    Article  CAS  Google Scholar 

  42. Scott, S.K., Blank, C.C., Rosen, S. & Wise, R.J. Identification of a pathway for intelligible speech in the left temporal lobe. Brain 123, 2400–2406 (2000).

    Article  Google Scholar 

  43. Kayser, C., Petkov, C.I., Augath, M. & Logothetis, N. Integration of touch and sound in auditory cortex. Neuron 48, 373–384 (2005).

    Article  CAS  Google Scholar 

  44. Ghazanfar, A.A., Maier, J.X., Hoffman, K.L. & Logothetis, N.K. Multisensory integration of dynamic faces and voices in rhesus monkey auditory cortex. J. Neurosci. 25, 5004–5012 (2005).

    Article  CAS  Google Scholar 

  45. Mullette-Gillman, O.A., Cohen, Y.E. & Groh, J.M. Eye-centered, head-centered, and complex coding of visual and auditory targets in the intraparietal sulcus. J. Neurophysiol. 94, 2331–2352 (2005).

    Article  Google Scholar 

  46. Schroeder, C.E. & Foxe, J. Multisensory contributions to low-level, 'unisensory' processing. Curr. Opin. Neurobiol. 15, 454–458 (2005).

    Article  CAS  Google Scholar 

  47. Hackett, T.A., Preuss, T.M. & Kaas, J.H. Architectonic identification of the core region in auditory cortex of macaques, chimpanzees and humans. J. Comp. Neurol. 441, 197–222 (2001).

    Article  CAS  Google Scholar 

  48. Fullerton, B.C. & Pandya, D.N. Architectonic analysis of the auditory-related areas of the superior temporal region in human brain. J. Comp. Neurol. 504, 470–498 (2007).

    Article  Google Scholar 

  49. Leopold, D.A., Bondar, I.V. & Giese, M.A. Norm-based face encoding by single neurons in the monkey inferotemporal cortex. Nature 442, 572–575 (2006).

    Article  CAS  Google Scholar 

  50. Sereno, M.I. & Tootell, R.B. From monkeys to humans: what do we now know about brain homologies? Curr. Opin. Neurobiol. 15, 135–144 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to P. Belin, T. Hackett, D. Leopold, M. Mishkin and K. Tanji for useful discussions and suggestions throughout the study. We recognize the contribution of the nonhuman primates. This work was supported by the Max-Planck Society, the Deutsche Forschungsgemeinschaft and the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Contributions

C.I.P. conceived and designed the experiments. C.I.P., C.K., T.S. and M.A. carried out the experiments. C.I.P. analyzed the data and wrote the paper. C.K. and N.K.L. contributed conceptually and with data analysis. C.I.P., C.K., T.S., K.W., M.A. and N.K.L. provided materials and analysis tools.

Corresponding author

Correspondence to Christopher I Petkov.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Methods (PDF 214 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petkov, C., Kayser, C., Steudel, T. et al. A voice region in the monkey brain. Nat Neurosci 11, 367–374 (2008). https://doi.org/10.1038/nn2043

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn2043

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing