Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RGS2 modulates coupling between GABAB receptors and GIRK channels in dopamine neurons of the ventral tegmental area

This article has been updated

Abstract

Agonists of GABAB receptors exert a bi-directional effect on the activity of dopamine (DA) neurons of the ventral tegmental area, which can be explained by the fact that coupling between GABAB receptors and G protein-gated inwardly rectifying potassium (GIRK) channels is significantly weaker in DA neurons than in GABA neurons. Thus, low concentrations of agonists preferentially inhibit GABA neurons and thereby disinhibit DA neurons. This disinhibition might confer reinforcing properties on addictive GABAB receptor agonists such as γ-hydroxybutyrate (GHB) and its derivatives. Here we show that, in DA neurons of mice, the low coupling efficiency reflects the selective expression of heteromeric GIRK2/3 channels and is dynamically modulated by a member of the regulator of G protein signaling (RGS) protein family. Moreover, repetitive exposure to GHB increases the GABAB receptor-GIRK channel coupling efficiency through downregulation of RGS2. Finally, oral self-administration of GHB at a concentration that is normally rewarding becomes aversive after chronic exposure. On the basis of these results, we propose a mechanism that might underlie tolerance to GHB.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Baclofen-evoked currents in DA and GABA neurons of the VTA.
Figure 2: Cell-type-specific subcellular localization of GIRK subunits.
Figure 3: Contribution of GIRK channel subunits to total outward current in DA neurons of the VTA.
Figure 4: GABAB-GIRK coupling efficiency in DA neurons is determined by GIRK subunit expression.
Figure 5: Inhibition of RGS proteins increases the GABAB-GIRK coupling efficiency in DA neurons.
Figure 6: RGS2 modulates GABAB-GIRK coupling in DA neurons.
Figure 7: Close association between RGS2 proteins and GIRK3 channels.
Figure 8: Exposure to GHB and morphine modulates GABAB-GIRK coupling efficiency by reducing the transcription level of RGS2.
Figure 9: Bi-directional effects of GABAB receptor agonists on the firing rate of DA neurons in the VTA.
Figure 10: Previous chronic exposure to GHB alters preference for oral self-administration of GHB.

Similar content being viewed by others

Change history

  • 14 November 2007

    In the version of this article initially published online, the corresponding author's email address was incorrect. The correct email address is Christian.Luscher@medecine.unige.ch. The error has been corrected for all versions of the article.

References

  1. Lüscher, C., Jan, L.Y., Stoffel, M., Malenka, R.C. & Nicoll, R.A. G protein-coupled inwardly rectifying K+ channels (GIRKs) mediate postsynaptic but not presynaptic transmitter actions in hippocampal neurons. Neuron 19, 687–695 (1997).

    Article  Google Scholar 

  2. Dascal, N. et al. Atrial G protein-activated K+ channel: expression cloning and molecular properties. Proc. Natl. Acad. Sci. USA 90, 10235–10239 (1993).

    Article  CAS  Google Scholar 

  3. Krapivinsky, G. et al. The G-protein-gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K(+)-channel proteins. Nature 374, 135–141 (1995).

    Article  CAS  Google Scholar 

  4. Kubo, Y., Reuveny, E., Slesinger, P.A., Jan, Y.N. & Jan, L.Y. Primary structure and functional expression of a rat G-protein-coupled muscarinic potassium channel. Nature 364, 802–806 (1993).

    Article  CAS  Google Scholar 

  5. Lesage, F. et al. Cloning provides evidence for a family of inward rectifier and G-protein-coupled K+ channels in the brain. FEBS Lett. 353, 37–42 (1994).

    Article  CAS  Google Scholar 

  6. Liao, Y.J., Jan, Y.N. & Jan, L.Y. Heteromultimerization of G-protein-gated inwardly rectifying K+ channel proteins GIRK1 and GIRK2 and their altered expression in weaver brain. J. Neurosci. 16, 7137–7150 (1996).

    Article  CAS  Google Scholar 

  7. Jelacic, T.M., Kennedy, M.E., Wickman, K. & Clapham, D.E. Functional and biochemical evidence for G-protein-gated inwardly rectifying K+ (GIRK) channels composed of GIRK2 and GIRK3. J. Biol. Chem. 275, 36211–36216 (2000).

    Article  CAS  Google Scholar 

  8. Inanobe, A. et al. Characterization of G-protein-gated K+ channels composed of Kir3.2 subunits in dopaminergic neurons of the substantia nigra. J. Neurosci. 19, 1006–1017 (1999).

    Article  CAS  Google Scholar 

  9. Schoots, O. et al. Co-expression of human Kir3 subunits can yield channels with different functional properties. Cell. Signal. 11, 871–883 (1999).

    Article  CAS  Google Scholar 

  10. Slesinger, P.A. et al. Functional effects of the mouse weaver mutation on G protein-gated inwardly rectifying K+ channels. Neuron 16, 321–331 (1996).

    Article  CAS  Google Scholar 

  11. Karschin, C., Dissmann, E., Stuhmer, W. & Karschin, A. IRK(1–3) and GIRK(1–4) inwardly rectifying K+ channel mRNAs are differentially expressed in the adult rat brain. J. Neurosci. 16, 3559–3570 (1996).

    Article  CAS  Google Scholar 

  12. Wickman, K., Karschin, C., Karschin, A., Picciotto, M.R. & Clapham, D.E. Brain localization and behavioral impact of the G-protein-gated K+ channel subunit GIRK4. J. Neurosci. 20, 5608–5615 (2000).

    Article  CAS  Google Scholar 

  13. Snead, O.C., III & Gibson, K.M. Gamma-hydroxybutyric acid. N. Engl. J. Med. 352, 2721–2732 (2005).

    Article  CAS  Google Scholar 

  14. Crunelli, V., Emri, Z. & Leresche, N. Unravelling the brain targets of gamma-hydroxybutyric acid. Curr. Opin. Pharmacol. 6, 44–52 (2006).

    Article  CAS  Google Scholar 

  15. Nestler, E.J. Is there a common molecular pathway for addiction? Nat. Neurosci. 8, 1445–1449 (2005).

    Article  CAS  Google Scholar 

  16. Luscher, C. & Ungless, M.A. The mechanistic classification of addictive drugs. PLoS Med. 3, e437 (2006).

    Article  Google Scholar 

  17. Colombo, G. et al. Oral self-administration of gamma-hydroxybutyric acid in the rat. Eur. J. Pharmacol. 285, 103–107 (1995).

    Article  CAS  Google Scholar 

  18. Martellotta, M.C., Fattore, L., Cossu, G. & Fratta, W. Rewarding properties of gamma-hydroxybutyric acid: an evaluation through place preference paradigm. Psychopharmacology (Berl.) 132, 1–5 (1997).

    Article  CAS  Google Scholar 

  19. Brebner, K., Childress, A.R. & Roberts, D.C. A potential role for GABA(B) agonists in the treatment of psychostimulant addiction. Alcohol Alcohol. 37, 478–484 (2002).

    Article  CAS  Google Scholar 

  20. Cousins, M.S., Roberts, D.C. & de Wit, H. GABA(B) receptor agonists for the treatment of drug addiction: a review of recent findings. Drug Alcohol Depend. 65, 209–220 (2002).

    Article  CAS  Google Scholar 

  21. Andriamampandry, C. et al. Cloning and characterization of a rat brain receptor that binds the endogenous neuromodulator gamma-hydroxybutyrate (GHB). FASEB J. 17, 1691–1693 (2003).

    Article  CAS  Google Scholar 

  22. Kaupmann, K. et al. Specific γ-hydroxybutyrate (GHB) binding sites but loss of pharmacological effects of GHB in GABAB(1)-deficient mice. Eur. J. Neurosci. 18, 2722–2730 (2003).

    Article  Google Scholar 

  23. Cruz, H.G. et al. Bi-directional effects of GABA(B) receptor agonists on the mesolimbic dopamine system. Nat. Neurosci. 7, 153–159 (2004).

    Article  CAS  Google Scholar 

  24. Shea, L. & : Linderman, J.J. Mechanistic model of G-protein signal transduction. Determinants of efficacy and effect of precoupled receptors. Biochem. Pharmacol. 53, 519–530 (1997).

    Article  CAS  Google Scholar 

  25. Doupnik, C.A., Jaen, C. & Zhang, Q. Measuring the modulatory effects of RGS proteins on GIRK channels. Methods Enzymol. 389, 131–154 (2004).

    Article  CAS  Google Scholar 

  26. Ford, C.P., Mark, G.P. & Williams, J.T. Properties and opioid inhibition of mesolimbic dopamine neurons vary according to target location. J. Neurosci. 26, 2788–2797 (2006).

    Article  CAS  Google Scholar 

  27. Margolis, E.B. et al. Kappa opioids selectively control dopaminergic neurons projecting to the prefrontal cortex. Proc. Natl. Acad. Sci. USA 103, 2938–2942 (2006).

    Article  CAS  Google Scholar 

  28. Wallen, A. & Perlmann, T. Transcriptional control of dopamine neuron development. Ann. NY Acad. Sci. 991, 48–60 (2003).

    Article  CAS  Google Scholar 

  29. Zhao, S. et al. Generation of embryonic stem cells and transgenic mice expressing green fluorescence protein in midbrain dopaminergic neurons. Eur. J. Neurosci. 19, 1133–1140 (2004).

    Article  Google Scholar 

  30. Tamamaki, N. et al. Green fluorescent protein expression and colocalization with calretinin, parvalbumin and somatostatin in the GAD67-GFP knock-in mouse. J. Comp. Neurol. 467, 60–79 (2003).

    Article  CAS  Google Scholar 

  31. Torrecilla, M. : et al. G-protein-gated potassium channels containing Kir3.2 and Kir3.3 subunits mediate the acute inhibitory effects of opioids on locus ceruleus neurons. J. Neurosci. 22, 4328–4334 (2002).

    Article  CAS  Google Scholar 

  32. Popov, S.G., Krishna, U.M., Falck, J.R. & Wilkie, T.M. Ca2+/Calmodulin reverses phosphatidylinositol 3,4,5-trisphosphate-dependent inhibition of regulators of G protein-signaling GTPase-activating protein activity. J. Biol. Chem. 275, 18962–18968 (2000).

    Article  CAS  Google Scholar 

  33. Traynor, J.R. & Neubig, R.R. Regulator of G protein signaling and drugs of abuse. Mol. Interv. 5, 30–41 (2005).

    Article  CAS  Google Scholar 

  34. Rahman, Z. et al. RGS9 modulates dopamine signaling in the basal ganglia. Neuron 38, 941–952 (2003).

    Article  CAS  Google Scholar 

  35. Gold, S.J., Ni, Y.G., Dohlman, H.G. & Nestler, E.J. Regulators of G-protein signaling (RGS) proteins: region-specific expression of nine subtypes in rat brain. J. Neurosci. 17, 8024–8037 (1997).

    Article  CAS  Google Scholar 

  36. Axelrod, D., Thompson, N.L. & Burghardt, T.P. Total internal inflection fluorescent microscopy. J. Microsc. 129, 19–28 (1983).

    Article  CAS  Google Scholar 

  37. Takanishi, C.L., Bykova, E.A., Cheng, W. & Zheng, J. GFP-based FRET analysis in live cells. Brain Res. 1091, 132–139 (2006).

    Article  CAS  Google Scholar 

  38. Fowler, C.E., Aryal, P., Suen, K.F. & Slesinger, P.A. Evidence for association of GABA(B) receptors with Kir3 channels and regulators of G protein signalling (RGS4) proteins. J. Physiol. 580, 51–65 (2007).

    Article  CAS  Google Scholar 

  39. Kaupmann, K. et al. GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature 396, 683–687 (1998).

    Article  CAS  Google Scholar 

  40. Pfaff, T. et al. Alternative splicing generates a novel isoform of the rat metabotropic GABA(B)R1 receptor. Eur. J. Neurosci. 11, 2874–2882 (1999).

    Article  CAS  Google Scholar 

  41. Chuang, H.H., Yu, M., Jan, Y.N. & Jan, L.Y. Evidence that the nucleotide exchange and hydrolysis cycle of G proteins causes acute desensitization of G-protein-gated inward rectifier K+ channels. Proc. Natl. Acad. Sci. USA 95, 11727–11732 (1998).

    Article  CAS  Google Scholar 

  42. Jaen, C. & Doupnik, C.A. RGS3 and RGS4 differentially associate with G protein-coupled receptor-Kir3 channel signaling complexes revealing two modes of RGS modulation. Precoupling and collision coupling. J. Biol. Chem. 281, 34549–34560 (2006).

    Article  CAS  Google Scholar 

  43. Riven, I., Iwanir, S. & Reuveny, E. GIRK channel activation involves a local rearrangement of a preformed G protein channel complex. Neuron 51, 561–573 (2006).

    Article  CAS  Google Scholar 

  44. Gold, S.J. et al. Regulation of RGS proteins by chronic morphine in rat locus coeruleus. Eur. J. Neurosci. 17, 971–980 (2003).

    Article  Google Scholar 

  45. Zachariou, V. et al. Essential role for RGS9 in opiate action. Proc. Natl. Acad. Sci. USA 100, 13656–13661 (2003).

    Article  CAS  Google Scholar 

  46. Taymans, J.M., Leysen, J.E. & Langlois, X. Striatal gene expression of RGS2 and RGS4 is specifically mediated by dopamine D1 and D2 receptors: clues for RGS2 and RGS4 functions. J. Neurochem. 84, 1118–1127 (2003).

    Article  CAS  Google Scholar 

  47. Bettahi, I., Marker, C.L., Roman, M.I. & Wickman, K. Contribution of the Kir3.1 subunit to the muscarinic-gated atrial potassium channel IKACh. J. Biol. Chem. 277, 48282–48288 (2002).

    Article  CAS  Google Scholar 

  48. Signorini, S., Liao, Y.J., Duncan, S.A., Jan, L.Y. & Stoffel, M. Normal cerebellar development but susceptibility to seizures in mice lacking G protein–coupled, inwardly rectifying K+ channel GIRK2. Proc. Natl. Acad. Sci. USA 94, 923–927 (1997).

    Article  CAS  Google Scholar 

  49. Koyrakh, L. et al. Molecular and cellular diversity of neuronal G protein–gated potassium channels. J. Neurosci. 25, 11468–11478 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Serafin and the members of the Lüscher lab for discussions, F. Loctin and M. J. Cabañero for technical assistance and V. Ossipow for help with the real-time PCR. We thank M. Stoffel for the GIRK2−/− mice and J. Penninger for the RGS2−/− mice. CFP-Kir3.4 and Kir3.1-YFP cDNAs were provided by E. Reuveny. This work was supported by the Swiss National Science Foundation (C.L.), NIDA (P.A.S. and C.L.), and a grant from the Spanish Ministry of Education and Science (R.L.). Additional support comes from DA011806 and MH61933 (K.W.), and by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology and the Ministry of Health, Labour and Welfare, Japan (Y.Y.).

Author information

Authors and Affiliations

Authors

Contributions

G.L., M. Lomazzi and H.G.C. carried out all the electrophysiology experiments and participated in the preparation of the manuscript. G.L. performed the stereotactic viral injections. M. Lomazzi did all the PCR experiments. C.C. carried out the behavioral experiments. R.L. did the light microscope immunohistochemistry and the double-labeling electron microscope immunoreactions using an antibody raised by M.W., M. Li, Y.Y., K.O. and K.W. provided transgenic mouse lines. S.B.B. did the FRET experiments. C.L. designed the study in collaboration with P.A.S. and wrote the core of the manuscript.

Corresponding author

Correspondence to Christian Lüscher.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1, Table 1 and Methods (PDF 735 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Labouèbe, G., Lomazzi, M., Cruz, H. et al. RGS2 modulates coupling between GABAB receptors and GIRK channels in dopamine neurons of the ventral tegmental area. Nat Neurosci 10, 1559–1568 (2007). https://doi.org/10.1038/nn2006

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn2006

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing