Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microglia: active sensor and versatile effector cells in the normal and pathologic brain

Abstract

Microglial cells constitute the resident macrophage population of the CNS. Recent in vivo studies have shown that microglia carry out active tissue scanning, which challenges the traditional notion of 'resting' microglia in the normal brain. Transformation of microglia to reactive states in response to pathology has been known for decades as microglial activation, but seems to be more diverse and dynamic than ever anticipated—in both transcriptional and nontranscriptional features and functional consequences. This may help to explain why engagement of microglia can be either neuroprotective or neurotoxic, resulting in containment or aggravation of disease progression. Moreover, little is known about the heterogeneity of microglial responses in different pathologic contexts that results from regional adaptations or from the progression of a disease. In this review, we focus on several key observations that illustrate the multi-faceted activities of microglia in the normal and pathologic brain.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Activity states of microglia.

Jessica Iannuzzi

Figure 2: Microglial activity states throughout the activation process.

Jessica Iannuzzi

Similar content being viewed by others

References

  1. Kim, S.U. & de Vellis, J. Microglia in health and disease. J. Neurosci. Res. 81, 302–313 (2005).

    CAS  PubMed  Google Scholar 

  2. Denes, A. et al. Proliferating resident microglia after focal cerebral ischaemia in mice. J. Cereb. Blood Flow Metab., published online 18 April 2007 (doi:10.1038/sj.jcbfm.9600495).

    CAS  Google Scholar 

  3. Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308, 1314–1318 (2005).

    CAS  PubMed  Google Scholar 

  4. Davalos, D. et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8, 752–758 (2005).

    CAS  PubMed  Google Scholar 

  5. Haynes, S.E. et al. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat. Neurosci. 9, 1512–1519 (2006).

    CAS  PubMed  Google Scholar 

  6. Kreutzberg, G.W. Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 19, 312–318 (1996).

    CAS  PubMed  Google Scholar 

  7. Nakamura, Y. Regulating factors for microglial activation. Biol. Pharm. Bull. 25, 945–953 (2002).

    CAS  PubMed  Google Scholar 

  8. van Rossum, D. & Hanisch, U.K. Microglia. Metab. Brain Dis. 19, 393–411 (2004).

    PubMed  Google Scholar 

  9. Block, M.L., Zecca, L. & Hong, J.S. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat. Rev. Neurosci. 8, 57–69 (2007).

    CAS  PubMed  Google Scholar 

  10. Olson, J.K. & Miller, S.D. Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J. Immunol. 173, 3916–3924 (2004).

    CAS  PubMed  Google Scholar 

  11. Trinchieri, G. & Sher, A. Cooperation of Toll-like receptor signals in innate immune defence. Nat. Rev. Immunol. 7, 179–190 (2007).

    CAS  PubMed  Google Scholar 

  12. Hoek, R.M. et al. Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 290, 1768–1771 (2000).

    CAS  PubMed  Google Scholar 

  13. Wright, G.J. et al. Lymphoid/neuronal cell surface OX2 glycoprotein recognizes a novel receptor on macrophages implicated in the control of their function. Immunity 13, 233–242 (2000).

    CAS  PubMed  Google Scholar 

  14. Cardona, A.E. et al. Control of microglial neurotoxicity by the fractalkine receptor. Nat. Neurosci. 9, 917–924 (2006).

    CAS  PubMed  Google Scholar 

  15. Bessis, A., Bechade, C., Bernard, D. & Roumier, A. Microglial control of neuronal death and synaptic properties. Glia 55, 233–238 (2007).

    PubMed  Google Scholar 

  16. Hamerman, J.A. et al. Cutting edge: inhibition of TLR and FcR responses in macrophages by triggering receptor expressed on myeloid cells (TREM)-2 and DAP12. J. Immunol. 177, 2051–2055 (2006).

    CAS  PubMed  Google Scholar 

  17. Färber, K. & Kettenmann, H. Purinergic signaling and microglia. Pflugers Arch. 452, 615–621 (2006).

    PubMed  Google Scholar 

  18. Pocock, J.M. & Kettenmann, H. Neurotransmitter receptors on microglia. Trends Neurosci. (in the press).

  19. Hanisch, U.K. et al. The protein tyrosine kinase inhibitor AG126 prevents the massive microglial cytokine induction by pneumococcal cell walls. Eur. J. Immunol. 31, 2104–2115 (2001).

    CAS  PubMed  Google Scholar 

  20. Häusler, K.G. et al. Interferon-γ differentially modulates the release of cytokines and chemokines in lipopolysaccharide- and pneumococcal cell wall-stimulated mouse microglia and macrophages. Eur. J. Neurosci. 16, 2113–2122 (2002).

    PubMed  Google Scholar 

  21. Magnus, T., Chan, A., Grauer, O., Toyka, K.V. & Gold, R. Microglial phagocytosis of apoptotic inflammatory T cells leads to down-regulation of microglial immune activation. J. Immunol. 167, 5004–5010 (2001).

    CAS  PubMed  Google Scholar 

  22. Liu, Y. et al. Suppression of microglial inflammatory activity by myelin phagocytosis: role of p47-PHOX-mediated generation of reactive oxygen species. J. Neurosci. 26, 12904–12913 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Butovsky, O. et al. Induction and blockage of oligodendrogenesis by differently activated microglia in an animal model of multiple sclerosis. J. Clin. Invest. 116, 905–915 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Butovsky, O. et al. Microglia activated by IL-4 or IFN-γ differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol. Cell. Neurosci. 31, 149–160 (2006).

    CAS  PubMed  Google Scholar 

  25. Butovsky, O., Talpalar, A.E., Ben-Yaakov, K. & Schwartz, M. Activation of microglia by aggregated beta-amyloid or lipopolysaccharide impairs MHC-II expression and renders them cytotoxic whereas IFN-γ and IL-4 render them protective. Mol. Cell. Neurosci. 29, 381–393 (2005).

    CAS  PubMed  Google Scholar 

  26. Ziv, Y. et al. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat. Neurosci. 9, 268–275 (2006).

    CAS  PubMed  Google Scholar 

  27. Glanzer, J.G. et al. Genomic and proteomic microglial profiling: pathways for neuroprotective inflammatory responses following nerve fragment clearance and activation. J. Neurochem. 3, 627–645 (2007).

    Google Scholar 

  28. Kitamura, Y., Taniguchi, T., Kimura, H., Nomura, Y. & Gebicke-Haerter, P.J. Interleukin-4-inhibited mRNA expression in mixed rat glial and in isolated microglial cultures. J. Neuroimmunol. 106, 95–104 (2000).

    CAS  PubMed  Google Scholar 

  29. Yang, M.S. et al. Interleukin-13 and -4 induce death of activated microglia. Glia 38, 273–280 (2002).

    PubMed  Google Scholar 

  30. Serhan, C.N. & Savill, J. Resolution of inflammation: the beginning programs the end. Nat. Immunol. 6, 1191–1197 (2005).

    CAS  PubMed  Google Scholar 

  31. Kim, H.J. et al. Type 2 monocyte and microglia differentiation mediated by glatiramer acetate therapy in patients with multiple sclerosis. J. Immunol. 172, 7144–7153 (2004).

    CAS  PubMed  Google Scholar 

  32. Boucsein, C. et al. Purinergic receptors on microglial cells: functional expression in acute brain slices and modulation of microglial activation in vitro. Eur. J. Neurosci. 17, 2267–2276 (2003).

    PubMed  Google Scholar 

  33. Stout, R.D. & Suttles, J. Functional plasticity of macrophages: reversible adaptation to changing microenvironments. J. Leukoc. Biol. 76, 509–513 (2004).

    CAS  PubMed  Google Scholar 

  34. Stout, R.D. et al. Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J. Immunol. 175, 342–349 (2005).

    CAS  PubMed  Google Scholar 

  35. Porcheray, F. et al. Macrophage activation switching: an asset for the resolution of inflammation. Clin. Exp. Immunol. 142, 481–489 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Schwartz, M., Butovsky, O., Bruck, W. & Hanisch, U.K. Microglial phenotype: is the commitment reversible? Trends Neurosci. 29, 68–74 (2006).

    CAS  PubMed  Google Scholar 

  37. Rezaie, P. & Male, D. Mesoglia & microglia–a historical review of the concept of mononuclear phagocytes within the central nervous system. J. Hist. Neurosci. 11, 325–374 (2002).

    PubMed  Google Scholar 

  38. Chan, W.Y., Kohsaka, S. & Rezaie, P. The origin and cell lineage of microglia: new concepts. Brain Res. Rev. 53, 344–354 (2007).

    CAS  PubMed  Google Scholar 

  39. Gordon, S. & Taylor, P.R. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 5, 953–964 (2005).

    CAS  PubMed  Google Scholar 

  40. Lawson, L.J., Perry, V.H. & Gordon, S. Turnover of resident microglia in the normal adult mouse brain. Neuroscience 48, 405–415 (1992).

    CAS  PubMed  Google Scholar 

  41. Ladeby, R. et al. Microglial cell population dynamics in the injured adult central nervous system. Brain Res. Brain Res. Rev. 48, 196–206 (2005).

    CAS  PubMed  Google Scholar 

  42. Flügel, A., Bradl, M., Kreutzberg, G.W. & Graeber, M.B. Transformation of donor-derived bone marrow precursors into host microglia during autoimmune CNS inflammation and during the retrograde response to axotomy. J. Neurosci. Res. 66, 74–82 (2001).

    PubMed  Google Scholar 

  43. Djukic, M. et al. Circulating monocytes engraft in the brain, differentiate into microglia and contribute to the pathology following meningitis in mice. Brain 129, 2394–2403 (2006).

    PubMed  Google Scholar 

  44. Priller, J. et al. Early and rapid engraftment of bone marrow-derived microglia in scrapie. J. Neurosci. 26, 11753–11762 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Xu, H., Chen, M., Mayer, E.J., Forrester, J.V. & Dick, A.D. Turnover of resident retinal microglia in the normal adult mouse. Glia 55, 1189–1198 (2007).

    PubMed  Google Scholar 

  46. Bechmann, I. et al. Turnover of rat brain perivascular cells. Exp. Neurol. 168, 242–249 (2001).

    CAS  PubMed  Google Scholar 

  47. Bechmann, I. et al. Immune surveillance of mouse brain perivascular spaces by blood-borne macrophages. Eur. J. Neurosci. 14, 1651–1658 (2001).

    CAS  PubMed  Google Scholar 

  48. Streit, W.J. Microglial senescence: does the brain's immune system have an expiration date? Trends Neurosci. 29, 506–510 (2006).

    CAS  PubMed  Google Scholar 

  49. Sierra, A., Gottfried-Blackmore, A.C., McEwen, B.S. & Bulloch, K. Microglia derived from aging mice exhibit an altered inflammatory profile. Glia 55, 412–424 (2007).

    PubMed  Google Scholar 

  50. Thomas, W.E. Brain macrophages: on the role of pericytes and perivascular cells. Brain Res. Brain Res. Rev. 31, 42–57 (1999).

    CAS  PubMed  Google Scholar 

  51. Binstadt, B.A. et al. Particularities of the vasculature can promote the organ specificity of autoimmune attack. Nat. Immunol. 7, 284–292 (2006).

    CAS  PubMed  Google Scholar 

  52. Galea, I., Bechmann, I. & Perry, V.H. What is immune privilege (not)? Trends Immunol. 28, 12–18 (2007).

    CAS  PubMed  Google Scholar 

  53. Polazzi, E. & Contestabile, A. Reciprocal interactions between microglia and neurons: from survival to neuropathology. Rev. Neurosci. 13, 221–242 (2002).

    PubMed  Google Scholar 

  54. Ren, L., Lubrich, B., Biber, K. & Gebicke-Haerter, P.J. Differential expression of inflammatory mediators in rat microglia cultured from different brain regions. Brain Res. Mol. Brain Res. 65, 198–205 (1999).

    CAS  PubMed  Google Scholar 

  55. Elkabes, S., Cicco-Bloom, E.M. & Black, I.B. Brain microglia/macrophages express neurotrophins that selectively regulate microglial proliferation and function. J. Neurosci. 16, 2508–2521 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Sriram, K. et al. Deficiency of TNF receptors suppresses microglial activation and alters the susceptibility of brain regions to MPTP-induced neurotoxicity: role of TNF-α. FASEB J. 20, 670–682 (2006).

    CAS  PubMed  Google Scholar 

  57. Kuwabara, Y. et al. Two populations of microglial cells isolated from rat primary mixed glial cultures. J. Neurosci. Res. 73, 22–30 (2003).

    CAS  PubMed  Google Scholar 

  58. Wirenfeldt, M. et al. Reactive microgliosis engages distinct responses by microglial subpopulations after minor central nervous system injury. J. Neurosci. Res. 82, 507–514 (2005).

    CAS  PubMed  Google Scholar 

  59. Levy, O. Innate immunity of the newborn: basic mechanisms and clinical correlates. Nat. Rev. Immunol. 7, 379–390 (2007).

    CAS  PubMed  Google Scholar 

  60. Jack, C., Ruffini, F., Bar-Or, A. & Antel, J.P. Microglia and multiple sclerosis. J. Neurosci. Res. 81, 363–373 (2005).

    CAS  PubMed  Google Scholar 

  61. Huitinga, I., van Rooijen, N., de Groot, C.J., Uitdehaag, B.M. & Dijkstra, C.D. Suppression of experimental allergic encephalomyelitis in Lewis rats after elimination of macrophages. J. Exp. Med. 172, 1025–1033 (1990).

    CAS  PubMed  Google Scholar 

  62. Heppner, F.L. et al. Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat. Med. 11, 146–152 (2005).

    CAS  PubMed  Google Scholar 

  63. Kotter, M.R., Zhao, C., van Rooijen, N. & Franklin, R.J.M. Macrophage-depletion induced impairment of experimental CNS remyelination is associated with a reduced oligodendrocyte progenitor cell response and altered growth factor expression. Neurobiol. Dis. 18, 166–175 (2005).

    CAS  PubMed  Google Scholar 

  64. Stadelmann, C. et al. BDNF and gp145trkB in multiple sclerosis brain lesions: neuroprotective interactions between immune and neuronal cells? Brain 125, 75–85 (2002).

    PubMed  Google Scholar 

  65. Bartnik, B.L., Juurlink, B.H. & Devon, R.M. Macrophages: their myelinotrophic or neurotoxic actions depend upon tissue oxidative stress. Mult. Scler. 6, 37–42 (2000).

    CAS  PubMed  Google Scholar 

  66. Makranz, C. et al. Phosphatidylinositol 3-kinase, phosphoinositide-specific phospholipase-Cγ and protein kinase-C signal myelin phagocytosis mediated by complement receptor-3 alone and combined with scavenger receptor-AI/II in macrophages. Neurobiol. Dis. 15, 279–286 (2004).

    CAS  PubMed  Google Scholar 

  67. Filbin, M.T. Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat. Rev. Neurosci. 4, 703–713 (2003).

    CAS  PubMed  Google Scholar 

  68. Reichert, F. & Rotshenker, S. Complement-receptor-3 and scavenger-receptor-AI/II mediated myelin phagocytosis in microglia and macrophages. Neurobiol. Dis. 12, 65–72 (2003).

    CAS  PubMed  Google Scholar 

  69. Liu, B. Modulation of microglial pro-inflammatory and neurotoxic activity for the treatment of Parkinson's disease. AAPS J. 8, E606–E621 (2006).

    PubMed  PubMed Central  Google Scholar 

  70. Mount, M.P. et al. Involvement of interferon-gamma in microglial-mediated loss of dopaminergic neurons. J. Neurosci. 27, 3328–3337 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Qian, L., Hong, J.S. & Flood, P.M. Role of microglia in inflammation-mediated degeneration of dopaminergic neurons: neuroprotective effect of interleukin 10. J. Neural Transm. Suppl. 367–371 (2006).

  72. Simard, A.R. & Rivest, S. Bone marrow stem cells have the ability to populate the entire central nervous system into fully differentiated parenchymal microglia. FASEB J. 18, 998–1000 (2004).

    CAS  PubMed  Google Scholar 

  73. Majumdar, A. et al. Activation of microglia acidifies lysosomes and leads to degradation of Alzheimer amyloid fibrils. Mol. Biol. Cell 18, 1490–1496 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. El Khoury, J. et al. Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat. Med. 13, 432–438 (2007).

    CAS  PubMed  Google Scholar 

  75. Takata, K. et al. Microglial transplantation increases amyloid-β clearance in Alzheimer model rats. FEBS Lett. 581, 475–478 (2007).

    CAS  PubMed  Google Scholar 

  76. Koenigsknecht-Talboo, J. & Landreth, G.E. Microglial phagocytosis induced by fibrillar β-amyloid and IgGs are differentially regulated by proinflammatory cytokines. J. Neurosci. 25, 8240–8249 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Fan, R. et al. Minocycline reduces microglial activation and improves behavioral deficits in a transgenic model of cerebral microvascular amyloid. J. Neurosci. 27, 3057–3063 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Nathan, C. et al. Protection from Alzheimer's-like disease in the mouse by genetic ablation of inducible nitric oxide synthase. J. Exp. Med. 202, 1163–1169 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Ramirez, B.G., Blázquez, C., Gómez del Pulgar, T., Guzmán, M. & de Ceballos, M.L. Prevention of Alzheimer's disease pathology by cannabinoids: neuroprotection mediated by blockade of microglial activation. J. Neurosci. 25, 1904–1913 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Lyons, S.A. et al. Distinct physiologic properties of microglia and blood-borne cells in rat brain slices after permanent middle cerebral artery occlusion. J. Cereb. Blood Flow Metab. 20, 1537–1549 (2000).

    CAS  PubMed  Google Scholar 

  81. Lalancette-Hebert, M., Gowing, G., Simard, A., Weng, Y.C. & Kriz, J. Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J. Neurosci. 27, 2596–2605 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Imai, F. et al. Neuroprotective effect of exogenous microglia in global brain ischemia. J. Cereb. Blood Flow Metab. 27, 488–500 (2007).

    CAS  PubMed  Google Scholar 

  83. Kitamura, Y. et al. Intracerebroventricular injection of microglia protects against focal brain ischemia. J. Pharmacol. Sci. 94, 203–206 (2004).

    CAS  PubMed  Google Scholar 

  84. Glezer, I., Simard, A.R. & Rivest, S. Neuroprotective role of the innate immune system by microglia. Neuroscience 147, 867–883 (2007).

    CAS  PubMed  Google Scholar 

  85. Persson, M., Brantefjord, M., Hansson, E. & Ronnback, L. Lipopolysaccharide increases microglial GLT-1 expression and glutamate uptake capacity in vitro by a mechanism dependent on TNF-α. Glia 51, 111–120 (2005).

    PubMed  Google Scholar 

  86. Shaked, I. et al. Protective autoimmunity: interferon-γ enables microglia to remove glutamate without evoking inflammatory mediators. J. Neurochem. 92, 997–1009 (2005).

    CAS  PubMed  Google Scholar 

  87. Markovic, D.S., Glass, R., Synowitz, M., Rooijen, N. & Kettenmann, H. Microglia stimulate the invasiveness of glioma cells by increasing the activity of metalloprotease-2. J. Neuropathol. Exp. Neurol. 64, 754–762 (2005).

    CAS  PubMed  Google Scholar 

  88. Sliwa, M. et al. The invasion promoting effect of microglia on glioblastoma cells is inhibited by cyclosporin A. Brain 130, 476–489 (2007).

    PubMed  Google Scholar 

  89. Synowitz, M. et al. A1 adenosine receptors in microglia control glioblastoma-host interaction. Cancer Res. 66, 8550–8557 (2006).

    CAS  PubMed  Google Scholar 

  90. Marin-Teva, J.L. et al. Microglia promote the death of developing Purkinje cells. Neuron 41, 535–547 (2004).

    CAS  PubMed  Google Scholar 

  91. Monje, M.L., Toda, H. & Palmer, T.D. Inflammatory blockade restores adult hippocampal neurogenesis. Science 302, 1760–1765 (2003).

    CAS  PubMed  Google Scholar 

  92. Ekdahl, C.T., Claasen, J.H., Bonde, S., Kokaia, Z. & Lindvall, O. Inflammation is detrimental for neurogenesis in adult brain. Proc. Natl. Acad. Sci. USA 100, 13632–13637 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Kempermann, G. & Neumann, H. Neuroscience. Microglia: the enemy within? Science 302, 1689–1690 (2003).

    CAS  PubMed  Google Scholar 

  94. Yokoyama, A., Yang, L., Itoh, S., Mori, K. & Tanaka, J. Microglia, a potential source of neurons, astrocytes, and oligodendrocytes. Glia 45, 96–104 (2004).

    PubMed  Google Scholar 

  95. Yokoyama, A., Sakamoto, A., Kameda, K., Imai, Y. & Tanaka, J. NG2 proteoglycan-expressing microglia as multipotent neural progenitors in normal and pathologic brains. Glia 53, 754–768 (2006).

    PubMed  Google Scholar 

  96. Butovsky, O., Bukshpan, S., Kunis, G., Jung, S. & Schwartz, M. Microglia can be induced by IFN-γ or IL-4 to express neural or dendritic-like markers. Mol. Cell. Neurosci. 35, 490–500 (2007).

    CAS  PubMed  Google Scholar 

  97. Eglitis, M.A. & Mezey, E. Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc. Natl. Acad. Sci. USA 94, 4080–4085 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Trapp, B.D. et al. Evidence for synaptic stripping by cortical microglia. Glia 55, 360–368 (2007).

    PubMed  Google Scholar 

  99. Cullheim, S. & Thams, S. The microglial networks of the brain and their role in neuronal network plasticity after lesion. Brain Res. Rev. 55, 89–96 (2007).

    CAS  PubMed  Google Scholar 

  100. Rappert, A. et al. CXCR3-dependent microglial recruitment is essential for dendrite loss after brain lesion. J. Neurosci. 24, 8500–8509 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support of the German Research Foundation (SFB507).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Kettenmann.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanisch, UK., Kettenmann, H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10, 1387–1394 (2007). https://doi.org/10.1038/nn1997

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1997

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing