Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A functional link between area MSTd and heading perception based on vestibular signals

Abstract

Recent findings of vestibular responses in part of the visual cortex—the dorsal medial superior temporal area (MSTd)—indicate that vestibular signals might contribute to cortical processes that mediate the perception of self-motion. We tested this hypothesis in monkeys trained to perform a fine heading discrimination task solely on the basis of inertial motion cues. The sensitivity of the neuronal responses was typically lower than that of psychophysical performance, and only the most sensitive neurons rivaled behavioral performance. Responses recorded in MSTd were significantly correlated with perceptual decisions, and the correlations were strongest for the most sensitive neurons. These results support a functional link between MSTd and heading perception based on inertial motion cues. These cues seem mainly to be of vestibular origin, as labyrinthectomy produced a marked elevation of psychophysical thresholds and abolished MSTd responses. This study provides evidence that links single-unit activity to spatial perception mediated by vestibular signals, and supports the idea that the role of MSTd in self-motion perception extends beyond optic flow processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental setup and stimuli.
Figure 2: Psychophysical performance in the heading discrimination task.
Figure 3: Visual and vestibular tuning for heading.
Figure 4: Quantification and summary of neuronal sensitivity.
Figure 5: Comparison of psychophysical and neuronal thresholds for all individual experiments.
Figure 6: Trial-to-trial covariation between neural activity and behavioral choices (that is, CP).
Figure 7: Dependence of average neuronal thresholds and CPs on the temporal analysis window used to compute mean firing rates.
Figure 8: Comparison between dark free viewing variant (n = 26) and standard fixation version (n = 21) of the heading discrimination task.

Similar content being viewed by others

References

  1. Fernandez, C. & Goldberg, J.M. Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system. J. Neurophysiol. 34, 661–675 (1971).

    Article  CAS  Google Scholar 

  2. Fernandez, C. & Goldberg, J.M. Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. II. Directional selectivity and force-response relations. J. Neurophysiol. 39, 985–995 (1976).

    Article  CAS  Google Scholar 

  3. Angelaki, D.E. & Hess, B.J. Self motion–induced eye movements: effects on visual acuity and navigation. Nat. Rev. Neurosci. 6, 966–976 (2005).

    Article  CAS  Google Scholar 

  4. Raphan, T. & Cohen, B. The vestibulo-ocular reflex in three dimensions. Exp. Brain Res. 145, 1–27 (2002).

    Article  Google Scholar 

  5. Nashner, L.M. Adapting reflexes controlling the human posture. Exp. Brain Res. 26, 59–72 (1976).

    Article  CAS  Google Scholar 

  6. Goldberg, J.M. Afferent diversity and the organization of central vestibular pathways. Exp. Brain Res. 130, 277–297 (2000).

    Article  CAS  Google Scholar 

  7. Angelaki, D.E. Eyes on target: what neurons must do for the vestibuloocular reflex during linear motion. J. Neurophysiol. 92, 20–35 (2004).

    Article  Google Scholar 

  8. Harris, L.R., Jenkin, M. & Zikovitz, D.C. Visual and non-visual cues in the perception of linear self-motion. Exp. Brain Res. 135, 12–21 (2000).

    Article  CAS  Google Scholar 

  9. Ohmi, M. Egocentric perception through interaction among many sensory systems. Brain Res. Cogn. Brain Res. 5, 87–96 (1996).

    Article  CAS  Google Scholar 

  10. Telford, L., Howard, I.P. & Ohmi, M. Heading judgments during active and passive self-motion. Exp. Brain Res. 104, 502–510 (1995).

    Article  CAS  Google Scholar 

  11. Smith, S.T., Bush, G.A. & Stone, L.S. Amplitude response of human vestibular heading estimation. Soc. Neurosci. Abstr. 56.1 (2002).

  12. Luna, R., Hernandez, A., Brody, C.D. & Romo, R. Neural codes for perceptual discrimination in primary somatosensory cortex. Nat. Neurosci. 8, 1210–1219 (2005).

    Article  CAS  Google Scholar 

  13. Parker, A.J. & Newsome, W.T. Sense and the single neuron: probing the physiology of perception. Annu. Rev. Neurosci. 21, 227–277 (1998).

    Article  CAS  Google Scholar 

  14. Grusser, O.J., Pause, M. & Schreiter, U. Localization and responses of neurones in the parieto-insular vestibular cortex of awake monkeys (Macaca fascicularis). J. Physiol. (Lond.) 430, 537–557 (1990).

    Article  CAS  Google Scholar 

  15. Fukushima, K. Corticovestibular interactions: anatomy, electrophysiology and functional considerations. Exp. Brain Res. 117, 1–16 (1997).

    Article  CAS  Google Scholar 

  16. Tanaka, K. & Saito, H. Analysis of motion of the visual field by direction, expansion/contraction; and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. J. Neurophysiol. 62, 626–641 (1989).

    Article  CAS  Google Scholar 

  17. Duffy, C.J. & Wurtz, R.H. Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. J. Neurophysiol. 65, 1329–1345 (1991).

    Article  CAS  Google Scholar 

  18. Komatsu, H. & Wurtz, R.H. Relation of cortical areas MT and MST to pursuit eye movements. I. Localization and visual properties of neurons. J. Neurophysiol. 60, 580–603 (1988).

    Article  CAS  Google Scholar 

  19. Ben Hamed, S., Page, W., Duffy, C. & Pouget, A. MSTd neuronal basis functions for the population encoding of heading direction. J. Neurophysiol. 90, 549–558 (2003).

    Article  CAS  Google Scholar 

  20. Page, W.K. & Duffy, C.J. Heading representation in MST: sensory interactions and population encoding. J. Neurophysiol. 89, 1994–2013 (2003).

    Article  Google Scholar 

  21. Perrone, J.A. & Stone, L.S. A model of self-motion estimation within primate extrastriate visual cortex. Vision Res. 34, 2917–2938 (1994).

    Article  CAS  Google Scholar 

  22. Lappe, M., Bremmer, F., Pekel, M., Thiele, A. & Hoffmann, K.P. Optic flow processing in monkey STS: a theoretical and experimental approach. J. Neurosci. 16, 6265–6285 (1996).

    Article  CAS  Google Scholar 

  23. Britten, K.H. & van Wezel, R.J. Electrical microstimulation of cortical area MST biases heading perception in monkeys. Nat. Neurosci. 1, 59–63 (1998).

    Article  CAS  Google Scholar 

  24. Britten, K.H. & Van Wezel, R.J. Area MST and heading perception in macaque monkeys. Cereb. Cortex 12, 692–701 (2002).

    Article  Google Scholar 

  25. Gu, Y., Watkins, P.V., Angelaki, D.E. & DeAngelis, G.C. Visual and nonvisual contributions to three-dimensional heading selectivity in the medial superior temporal area. J. Neurosci. 26, 73–85 (2006).

    Article  CAS  Google Scholar 

  26. Duffy, C.J. MST neurons respond to optic flow and translational movement. J. Neurophysiol. 80, 1816–1827 (1998).

    Article  CAS  Google Scholar 

  27. Bremmer, F., Kubischik, M., Pekel, M., Lappe, M. & Hoffmann, K.P. Linear vestibular self-motion signals in monkey medial superior temporal area. Ann. NY Acad. Sci. 871, 272–281 (1999).

    Article  CAS  Google Scholar 

  28. Britten, K.H., Newsome, W.T., Shadlen, M.N., Celebrini, S. & Movshon, J.A. A relationship between behavioral choice and the visual responses of neurons in macaque MT. Vis. Neurosci. 13, 87–100 (1996).

    Article  CAS  Google Scholar 

  29. Celebrini, S. & Newsome, W.T. Neuronal and psychophysical sensitivity to motion signals in extrastriate area MST of the macaque monkey. J. Neurosci. 14, 4109–4124 (1994).

    Article  CAS  Google Scholar 

  30. Takahashi, K., Gu, Y., Newlands, S.D., DeAngelis, G.C. & Angelaki, D.E. Visual-vestibular signal convergence in area MSTd during rotation and translation. Soc. Neurosci. Abstr. 437.13 (2006).

  31. Britten, K.H., Shadlen, M.N., Newsome, W.T. & Movshon, J.A. The analysis of visual motion: a comparison of neuronal and psychophysical performance. J. Neurosci. 12, 4745–4765 (1992).

    Article  CAS  Google Scholar 

  32. Purushothaman, G. & Bradley, D.C. Neural population code for fine perceptual decisions in area MT. Nat. Neurosci. 8, 99–106 (2005).

    Article  CAS  Google Scholar 

  33. Uka, T. & DeAngelis, G.C. Contribution of area MT to stereoscopic depth perception: choice-related response modulations reflect task strategy. Neuron 42, 297–310 (2004).

    Article  CAS  Google Scholar 

  34. Karunaratne, A.D. et al. Response dynamics of MSTd neurons during inertial motion. Soc. Neurosci. Abstr. 437.14/G8 (2006).

  35. Lappe, M., Bremmer, F. & van den Berg, A.V. Perception of self-motion from visual flow. Trends Cogn. Sci. 3, 329–336 (1999).

    Article  CAS  Google Scholar 

  36. Uka, T. & DeAngelis, G.C. Contribution of middle temporal area to coarse depth discrimination: comparison of neuronal and psychophysical sensitivity. J. Neurosci. 23, 3515–3530 (2003).

    Article  CAS  Google Scholar 

  37. Prince, S.J., Pointon, A.D., Cumming, B.G. & Parker, A.J. The precision of single neuron responses in cortical area V1 during stereoscopic depth judgments. J. Neurosci. 20, 3387–3400 (2000).

    Article  CAS  Google Scholar 

  38. Uka, T. & DeAngelis, G.C. Linking neural representation to function in stereoscopic depth perception: roles of the middle temporal area in coarse versus fine disparity discrimination. J. Neurosci. 26, 6791–6802 (2006).

    Article  CAS  Google Scholar 

  39. Osborne, L.C., Bialek, W. & Lisberger, S.G. Time course of information about motion direction in visual area MT of macaque monkeys. J. Neurosci. 24, 3210–3222 (2004).

    Article  CAS  Google Scholar 

  40. Seung, H.S. & Sompolinsky, H. Simple models for reading neuronal population codes. Proc. Natl. Acad. Sci. USA 90, 10749–10753 (1993).

    Article  CAS  Google Scholar 

  41. Fernandez, C. & Goldberg, J.M. Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. I. Response to static tilts and to long-duration centrifugal force. J. Neurophysiol. 39, 970–984 (1976).

    Article  CAS  Google Scholar 

  42. Chen-Huang, C. & Peterson, B.W. Three-dimensional spatial-temporal convergence of otolith related signals in vestibular only neurons in squirrel monkeys. Exp. Brain Res. 168, 410–426 (2006).

    Article  Google Scholar 

  43. Shaikh, A.G., Ghasia, F.F., Dickman, J.D. & Angelaki, D.E. Properties of cerebellar fastigial neurons during translation, rotation, and eye movements. J. Neurophysiol. 93, 853–863 (2005).

    Article  Google Scholar 

  44. Angelaki, D.E. & Dickman, J.D. Spatiotemporal processing of linear acceleration: primary afferent and central vestibular neuron responses. J. Neurophysiol. 84, 2113–2132 (2000).

    Article  CAS  Google Scholar 

  45. Uka, T., Tanabe, S., Watanabe, M. & Fujita, I. Neural correlates of fine depth discrimination in monkey inferior temporal cortex. J. Neurosci. 25, 10796–10802 (2005).

    Article  CAS  Google Scholar 

  46. Heuer, H.W. & Britten, K.H. Optic flow signals in extrastriate area MST: comparison of perceptual and neuronal sensitivity. J. Neurophysiol. 91, 1314–1326 (2004).

    Article  Google Scholar 

  47. Xu, H.P.W. & Bradley, D.C. Neural basis of heading discrimination in macaque area MSTd. Soc. Neurosci. Abstr. 306.7 (2006).

  48. Gu, Y., Angelaki, D.E. & DeAngelis, G.C. Role of area MSTd in cue integration for heading discrimination: I. Comparison of neuronal and psychophysical sensitivity to visual and vestibular cues. J. Vis. 6, 409a (2006).

    Article  Google Scholar 

  49. Newlands, S.D., Hesse, S.V., Haque, A. & Angelaki, D.E. Head unrestrained horizontal gaze shifts after unilateral labyrinthectomy in the rhesus monkey. Exp. Brain Res. 140, 25–33 (2001).

    Article  CAS  Google Scholar 

  50. Guedry, F.J. Handbook of Sensory Physiology — Vestibular System — Psychophysics, Applied Aspects and General Interpretations part 2 (ed. Guedry, F.E. Jr) 1–154 (Springer, Berlin, 1974).

    Google Scholar 

Download references

Acknowledgements

We would like to thank S. Newlands for performing the bilateral labyrinthectomies, K. Takahashi for collecting the neural data after labyrinthectomy, A. Turner and E. White for monkey care and training, and S. Lisberger for comments on the manuscript. This work was supported by US National Institutes of Health grants EY017866 and DC04260 to D.E.A. and EY016178 to G.C.D., as well as the EJLB Foundation (G.C.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dora E Angelaki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9, Methods (PDF 773 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, Y., DeAngelis, G. & Angelaki, D. A functional link between area MSTd and heading perception based on vestibular signals. Nat Neurosci 10, 1038–1047 (2007). https://doi.org/10.1038/nn1935

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1935

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing