Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Functional dissection of circuitry in a neural integrator

An Erratum to this article was published on 01 June 2007

This article has been updated

Abstract

In neural integrators, transient inputs are accumulated into persistent firing rates that are a neural correlate of short-term memory. Integrators often contain two opposing cell populations that increase and decrease sustained firing as a stored parameter value rises. A leading hypothesis for the mechanism of persistence is positive feedback through mutual inhibition between these opposing populations. We tested predictions of this hypothesis in the goldfish oculomotor velocity-to-position integrator by measuring the eye position and firing rates of one population, while pharmacologically silencing the opposing one. In complementary experiments, we measured responses in a partially silenced single population. Contrary to predictions, induced drifts in neural firing were limited to half of the oculomotor range. We built network models with synaptic-input thresholds to demonstrate a new hypothesis suggested by these data: mutual inhibition between the populations does not provide positive feedback in support of integration, but rather coordinates persistent activity intrinsic to each population.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Traditional model of feedback for opposing populations.
Figure 2: Eye position after inactivation of one population.
Figure 3: Firing rates in the right population after inactivation of the left.
Figure 4: Analysis of rate drift after complete left inactivation.
Figure 5: Firing rates in the right population after inactivation of caudal neurons.
Figure 6: Analysis of rate drift after caudal inactivation.
Figure 7: Models with activation thresholds can explain the asymmetric effects of unilateral inactivations.
Figure 8: Loss of coordination after loss of mutual inhibition.

Similar content being viewed by others

Change history

  • 02 May 2007

    panels c and d

Notes

  1. *NOTE: In the version of this article initially published, the labels for the x-axes in figure 8, panels c and d are incorrect. The correct labels should be “Rate, left”. This error has been corrected in the HTML and PDF versions of the article.

References

  1. Taube, J.S. & Bassett, J.P. Persistent neural activity in head direction cells. Cereb. Cortex 13, 1162–1172 (2003).

    Article  Google Scholar 

  2. Mazurek, M.E., Roitman, J.D., Ditterich, J. & Shadlen, M.N. A role for neural integrators in perceptual decision making. Cereb. Cortex 13, 1257–1269 (2003).

    Article  Google Scholar 

  3. Major, G. & Tank, D. Persistent neural activity: prevalence and mechanisms. Curr. Opin. Neurobiol. 14, 675–684 (2004).

    Article  CAS  Google Scholar 

  4. Lopez-Barneo, J., Darlot, C., Berthoz, A. & Baker, R. Neuronal activity in prepositus nucleus correlated with eye movement in the alert cat. J. Neurophysiol. 47, 329–352 (1982).

    Article  CAS  Google Scholar 

  5. McFarland, J.L. & Fuchs, A.F. Discharge patterns in nucleus prepositus hypoglossi and adjacent medial vestibular nucleus during horizontal eye movement in behaving macaques. J. Neurophysiol. 68, 319–332 (1992).

    Article  CAS  Google Scholar 

  6. Aksay, E., Baker, R., Seung, H.S. & Tank, D.W. Anatomy and discharge properties of pre-motor neurons in the goldfish medulla that have eye position signals during fixations. J. Neurophysiol. 84, 1035–1049 (2000).

    Article  CAS  Google Scholar 

  7. Romo, R., Brody, C.D., Hernandez, A. & Lemus, L. Neuronal correlates of parametric working memory in the prefrontal cortex. Nature 399, 470–473 (1999).

    Article  CAS  Google Scholar 

  8. Miller, P., Brody, C.D., Romo, R. & Wang, X.J. A recurrent network model of somatosensory parametric working memory in the prefrontal cortex. Cereb. Cortex 13, 1208–1218 (2003).

    Article  Google Scholar 

  9. Shadlen, M.N. & Newsome, W.T. Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J. Neurophysiol. 86, 1916–1936 (2001).

    Article  CAS  Google Scholar 

  10. Huk, A.C. & Shadlen, M.N. Neural activity in macaque parietal cortex reflects temporal integration of visual motion signals during perceptual decision making. J. Neurosci. 25, 10420–10436 (2005).

    Article  CAS  Google Scholar 

  11. McCrea, R.A. & Horn, A.K. Nucleus prepositus. Prog. Brain Res. 151, 205–230 (2005).

    Article  Google Scholar 

  12. Escudero, M., de La Cruz, R.R. & Delgado-Garcia, J.M. A physiological study of vestibular and prepositus hypoglossi neurones projecting to the abducens nucleus in the alert cat. J. Physiol. (Lond.) 458, 539–560 (1992).

    Article  CAS  Google Scholar 

  13. Aksay, E., Baker, R., Seung, H.S. & Tank, D.W. Correlated discharge among cell pairs within the oculomotor horizontal velocity-to-position integrator. J. Neurosci. 23, 10852–10858 (2003).

    Article  CAS  Google Scholar 

  14. Machens, C.K., Romo, R. & Brody, C.D. Flexible control of mutual inhibition: a neural model of two-interval discrimination. Science 307, 1121–1124 (2005).

    Article  CAS  Google Scholar 

  15. Hanks, T.D., Ditterich, J. & Shadlen, M.N. Microstimulation of macaque area LIP affects decision-making in a motion discrimination task. Nat. Neurosci. 9, 682–689 (2006).

    Article  CAS  Google Scholar 

  16. Cannon, S.C., Robinson, D.A. & Shamma, S. A proposed neural network for the integrator of the oculomotor system. Biol. Cybern. 49, 127–136 (1983).

    Article  CAS  Google Scholar 

  17. Galiana, H.L. & Outerbridge, J.S. A bilateral model for central neural pathways in vestibuloocular reflex. J. Neurophysiol. 51, 210–241 (1984).

    Article  CAS  Google Scholar 

  18. Arnold, D.B. & Robinson, D.A. The oculomotor integrator: testing of a neural network model. Exp. Brain Res. 113, 57–74 (1997).

    Article  CAS  Google Scholar 

  19. Usher, M. & McClelland, J.L. The time course of perceptual choice: the leaky, competing accumulator model. Psychol. Rev. 108, 550–592 (2001).

    Article  CAS  Google Scholar 

  20. Sklavos, S.G. & Moschovakis, A.K. Neural network simulations of the primate oculomotor system IV. A distributed bilateral stochastic model of the neural integrator of the vertical saccadic system. Biol. Cybern. 86, 97–109 (2002).

    Article  CAS  Google Scholar 

  21. Brown, E. et al. Simple neural networks that optimize decisions. Int. J. Bifurc. Chaos 15, 803–826 (2005).

    Article  Google Scholar 

  22. Aksay, E., Gamkrelidze, G., Seung, H.S., Baker, R. & Tank, D.W. In vivo intracellular recording and perturbation of persistent activity in a neural integrator. Nat. Neurosci. 4, 184–193 (2001).

    Article  CAS  Google Scholar 

  23. Goldman-Rakic, P.S. Cellular basis of working memory. Neuron 14, 477–485 (1995).

    Article  CAS  Google Scholar 

  24. Pesaran, B., Pezaris, J.S., Sahani, M., Mitra, P.P. & Andersen, R.A. Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nat. Neurosci. 5, 805–811 (2002).

    Article  CAS  Google Scholar 

  25. Seung, H.S., Lee, D.D., Reis, B.Y. & Tank, D.W. Stability of the memory of eye position in a recurrent network of conductance-based model neurons. Neuron 26, 259–271 (2000).

    Article  CAS  Google Scholar 

  26. Egorov, A.V., Hamam, B.N., Fransen, E., Hasselmo, M.E. & Alonso, A.A. Graded persistent activity in entorhinal cortex neurons. Nature 420, 173–178 (2002).

    Article  CAS  Google Scholar 

  27. Navarro-Lopez Jde, D. et al. A cholinergic synaptically triggered event participates in the generation of persistent activity necessary for eye fixation. J. Neurosci. 24, 5109–5118 (2004).

    Article  Google Scholar 

  28. Kiehn, O. & Eken, T. Functional role of plateau potentials in vertebrate motor neurons. Curr. Opin. Neurobiol. 8, 746–752 (1998).

    Article  CAS  Google Scholar 

  29. Idoux, E. et al. Oscillatory and intrinsic membrane properties of guinea pig nucleus prepositus hypoglossi neurons in vitro. J. Neurophysiol. 96, 175–196 (2006).

    Article  Google Scholar 

  30. Camperi, M. & Wang, X.J. A model of visuospatial working memory in prefrontal cortex: recurrent network and cellular bistability. J. Comput. Neurosci. 5, 383–405 (1998).

    Article  CAS  Google Scholar 

  31. Koulakov, A.A., Raghavachari, S., Kepecs, A. & Lisman, J.E. Model for a robust neural integrator. Nat. Neurosci. 5, 775–782 (2002).

    Article  CAS  Google Scholar 

  32. Goldman, M.S., Levine, J.H., Major, G., Tank, D.W. & Seung, H.S. Dendritic hysteresis adds robustness to persistent neural activity in a model neural integrator. Cereb. Cortex 13, 1185–1195 (2003).

    Article  Google Scholar 

  33. Loewenstein, Y. & Sompolinsky, H. Temporal integration by calcium dynamics in a model neuron. Nat. Neurosci. 6, 961–967 (2003).

    Article  CAS  Google Scholar 

  34. Fransen, E., Tahvildari, B., Egorov, A.V., Hasselmo, M.E. & Alonso, A.A. Mechanism of graded persistent cellular activity of entorhinal cortex layer V neurons. Neuron 49, 735–746 (2006).

    Article  CAS  Google Scholar 

  35. Fall, C.P. & Rinzel, J. An intracellular Ca2+ subsystem as a biologically plausible source of intrinsic conditional bistability in a network model of working memory. J. Comput. Neurosci. 20, 97–107 (2006).

    Article  Google Scholar 

  36. Pastor, A.M., de La Cruz, R.R. & Baker, R. Eye position and eye velocity integrators reside in separate brainstem nuclei. Proc. Natl. Acad. Sci. USA 91, 807–811 (1994).

    Article  CAS  Google Scholar 

  37. Seung, H.S. Amplification, Attenuation, and Integration. in The Handbook of Brain Theory and Neural Networks 2nd edn. (ed. Arbib, M. A.) 94–97 (MIT Press, Cambridge, 2003).

  38. Cheron, G., Godaux, E., Laune, J.M. & Vanderkelen, B. Lesions in the cat prepositus complex: effects on the vestibulo-ocular reflex and saccades. J. Physiol. (Lond.) 372, 75–94 (1986).

    Article  CAS  Google Scholar 

  39. Cannon, S.C. & Robinson, D.A. Loss of the neural integrator of the oculomotor system from brain stem lesions in monkey. J. Neurophysiol. 57, 1383–1409 (1987).

    Article  CAS  Google Scholar 

  40. Crawford, J.D. & Vilis, T. Modularity and parallel processing in the oculomotor integrator. Exp. Brain Res. 96, 443–456 (1993).

    Article  CAS  Google Scholar 

  41. Mettens, P., Godaux, E., Cheron, G. & Galiana, H.L. Effect of muscimol microinjections into the prepositus hypoglossi and the medial vestibular nuclei on cat eye movements. J. Neurophysiol. 72, 785–802 (1994).

    Article  CAS  Google Scholar 

  42. Kaneko, C.R.S. Eye movement deficits after ibotenic acid lesions of the nucleus prepositus hypoglossi in monkeys. I. Saccades and fixation. J. Neurophysiol. 78, 1753–1768 (1997).

    Article  CAS  Google Scholar 

  43. Arnold, D.B., Robinson, D.A. & Leigh, R.J. Nystagmus induced by pharmacological inactivation of the brainstem ocular motor integrator in monkey. Vision Res. 39, 4286–4295 (1999).

    Article  CAS  Google Scholar 

  44. Major, G., Baker, R., Aksay, E., Seung, H.S. & Tank, D.W. Plasticity and tuning of the time course of analog persistent firing in a neural integrator. Proc. Natl. Acad. Sci. USA 101, 7745–7750 (2004).

    Article  CAS  Google Scholar 

  45. Aksay, E. et al. History dependence of rate covariation between neurons during persistent activity in an oculomotor integrator. Cereb. Cortex 13, 1173–1184 (2003).

    Article  Google Scholar 

  46. Wilson, R.I. & Nicoll, R.A. Endocannabinoid signaling in the brain. Science 296, 678–682 (2002).

    Article  CAS  Google Scholar 

  47. Diana, M.A. & Marty, A. Endocannabinoid-mediated short-term synaptic plasticity: depolarization-induced suppression of inhibition (DSI) and depolarization-induced suppression of excitation (DSE). Br. J. Pharmacol. 142, 9–19 (2004).

    Article  CAS  Google Scholar 

  48. Nicoll, R.A. & Schmitz, D. Synaptic plasticity at hippocampal mossy fibre synapses. Nat. Rev. Neurosci. 6, 863–876 (2005).

    Article  CAS  Google Scholar 

  49. Grillner, S. The motor infrastructure: from ion channels to neuronal networks. Nat. Rev. Neurosci. 4, 573–586 (2003).

    Article  CAS  Google Scholar 

  50. Kiehn, O. Locomotor circuits in the mammalian spinal cord. Annu. Rev. Neurosci. 29, 279–306 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H.S. Seung, C. Brody and J. Raymond for helpful discussions and critique. The experimental phase of this work was supported by Bell Laboratories. E.A. holds a Career Award at the Scientific Interface from the Burroughs Wellcome Fund. M.S.G. holds a Brachmann–Hoffman Fellowship from Wellesley College. All authors received support from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

D.W.T. supervised the experimental component of the project. E.A., R.B. and D.W.T. conceived the experiments. E.A. and D.W.T. developed the instrumentation. E.A. collected and analyzed the data with assistance by B.M. M.S.G. supervised the theoretical component of the project. E.A., I.O., R.B., M.S.G. and D.W.T. provide data interpretation and coordination between experiments and modeling. I.O. and M.S.G. developed the mathematical models and performed the simulations. E.A., M.S.G. and D.W.T. wrote the paper.

Corresponding authors

Correspondence to Emre Aksay or Mark S Goldman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Model tuning curves defined by experimentally measured rate versus position relationships. (PDF 200 kb)

Supplementary Fig. 2

Method for functional dissection of a circuit. (PDF 1071 kb)

Supplementary Table 1

Change in position drift for each complete left inactivation. (PDF 123 kb)

Supplementary Table 2

Change in rate drift for each complete left inactivation. (PDF 92 kb)

Supplementary Table 3

Change in rate drift for each caudal right inactivation. (PDF 89 kb)

Supplementary Table 4

Values of η for the model simulations. (PDF 119 kb)

Supplementary Methods (PDF 122 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aksay, E., Olasagasti, I., Mensh, B. et al. Functional dissection of circuitry in a neural integrator. Nat Neurosci 10, 494–504 (2007). https://doi.org/10.1038/nn1877

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1877

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing