Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Switching from automatic to controlled action by monkey medial frontal cortex

This article has been updated

Abstract

Human behavior is mostly composed of habitual actions that require little conscious control. Such actions may become invalid if the environment changes, at which point individuals need to switch behavior by overcoming habitual actions that are otherwise triggered automatically. It is unknown how the brain controls this type of behavioral switching. Here we show that the presupplementary motor area (pre-SMA) in the medial frontal cortex has a function in switching from automatic to volitionally controlled action in rhesus macaque monkeys. We found that a group of pre-SMA neurons was selectively activated when subjects successfully switched to a controlled alternative action. Electrical stimulation in the pre-SMA replaced automatic incorrect responses with slower correct responses. A further test suggested that the pre-SMA enabled switching by first suppressing an automatic unwanted action and then boosting a controlled desired action. Our data suggest that the pre-SMA resolves response conflict so that the desired action can be selected.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Behavioral task and animal performance.
Figure 2: Switch-selective activity of pre-SMA neurons.
Figure 3: Effects of electrical stimulation in the pre-SMA on performance of the cue-switch trials.
Figure 4: Characterization of pre-SMA switch neurons using the saccade go or no-go task.

Similar content being viewed by others

Change history

  • 13 February 2007

    replaced

References

  1. Norman, D.A. & Shallice, T. Attention to action: Willed and automatic control of behavior. in Consciousness and Self Regulation: Advances in Research and Theory Vol. 4 (eds. Davidson, R., Schwartz, G. & Shapiro, D.) 1–18 (Plenum, New York, 1986).

    Google Scholar 

  2. Schneider, W. & Chein, J.M. Controlled & automatic processing: behavior, theory, and biological mechanisms. Cogn. Sci. 27, 525–559 (2003).

    Article  Google Scholar 

  3. Monsell, S. Task switching. Trends Cogn. Sci. 7, 134–140 (2003).

    Article  Google Scholar 

  4. Shiffrin, R.M. & Schneider, W. Controlled and automatic human information processing. II. Percepual learning, automatic attending and a general theory. Psychol. Rev. 84, 127–190 (1977).

    Article  Google Scholar 

  5. Logan, G.D. Attention and automaticity in Stroop and priming tasks: theory and data. Cognit. Psychol. 12, 523–553 (1980).

    Article  CAS  Google Scholar 

  6. Picard, N. & Strick, P.L. Motor areas of the medial wall: a review of their location and functional activation. Cereb. Cortex 6, 342–353 (1996).

    Article  CAS  Google Scholar 

  7. Nakamura, K., Sakai, K. & Hikosaka, O. Neuronal activity in medial frontal cortex during learning of sequential procedures. J. Neurophysiol. 80, 2671–2687 (1998).

    Article  CAS  Google Scholar 

  8. Picard, N. & Strick, P.L. Imaging the premotor areas. Curr. Opin. Neurobiol. 11, 663–672 (2001).

    Article  CAS  Google Scholar 

  9. Tanji, J. Sequential organization of multiple movements: involvement of cortical motor areas. Annu. Rev. Neurosci. 24, 631–651 (2001).

    Article  CAS  Google Scholar 

  10. Schall, J.D., Stuphorn, V. & Brown, J.W. Monitoring and control of action by the frontal lobes. Neuron 36, 309–322 (2002).

    Article  CAS  Google Scholar 

  11. Husain, M., Parton, A., Hodgson, T.L., Mort, D. & Rees, G. Self-control during response conflict by human supplementary eye field. Nat. Neurosci. 6, 117–118 (2003).

    Article  CAS  Google Scholar 

  12. Botvinick, M.M., Cohen, J.D. & Carter, C.S. Conflict monitoring and anterior cingulate cortex: an update. Trends Cogn. Sci. 8, 539–546 (2004).

    Article  Google Scholar 

  13. Lau, H.C., Rogers, R.D., Haggard, P. & Passingham, R.E. Attention to intention. Science 303, 1208–1210 (2004).

    Article  CAS  Google Scholar 

  14. Ridderinkhof, K.R., Ullsperger, M., Crone, E.A. & Nieuwenhuis, S. The role of the medial frontal cortex in cognitive control. Science 306, 443–447 (2004).

    Article  CAS  Google Scholar 

  15. Rushworth, M.F., Walton, M.E., Kennerley, S.W. & Bannerman, D.M. Action sets and decisions in the medial frontal cortex. Trends Cogn. Sci. 8, 410–417 (2004).

    Article  CAS  Google Scholar 

  16. Luppino, G., Matelli, M., Camarda, R.M., Gallese, V. & Rizzolatti, G. Multiple representations of body movements in mesial area 6 and the adjacent cingulate cortex: an intracortical microstimulation study in the macaque monkey. J. Comp. Neurol. 311, 463–482 (1991).

    Article  CAS  Google Scholar 

  17. Matsuzaka, Y., Aizawa, H. & Tanji, J. A motor area rostral to the supplementary motor area (presupplementary motor area) in the monkey: neuronal activity during a learned motor task. J. Neurophysiol. 68, 653–662 (1992).

    Article  CAS  Google Scholar 

  18. Matsuzaka, Y. & Tanji, J. Changing directions of forthcoming arm movements: neuronal activity in the presupplementary and supplementary motor area of monkey cerebral cortex. J. Neurophysiol. 76, 2327–2342 (1996).

    Article  CAS  Google Scholar 

  19. Shima, K., Mushiake, H., Saito, N. & Tanji, J. Role for cells in the presupplementary motor area in updating motor plans. Proc. Natl. Acad. Sci. USA 93, 8694–8698 (1996).

    Article  CAS  Google Scholar 

  20. Dove, A., Pollmann, S., Schubert, T., Wiggins, C.J. & von Cramon, D.Y. Prefrontal cortex activation in task switching: an event-related fMRI study. Brain Res. Cogn. Brain Res. 9, 103–109 (2000).

    Article  CAS  Google Scholar 

  21. Rushworth, M.F., Hadland, K.A., Paus, T. & Sipila, P.K. Role of the human medial frontal cortex in task switching: a combined fMRI and TMS study. J. Neurophysiol. 87, 2577–2592 (2002).

    Article  CAS  Google Scholar 

  22. Ullsperger, M. & von Cramon, D.Y. Subprocesses of performance monitoring: a dissociation of error processing and response competition revealed by event-related fMRI and ERPs. Neuroimage 14, 1387–1401 (2001).

    Article  CAS  Google Scholar 

  23. Garavan, H., Ross, T.J., Kaufman, J. & Stein, E.A. A midline dissociation between error-processing and response-conflict monitoring. Neuroimage 20, 1132–1139 (2003).

    Article  CAS  Google Scholar 

  24. Nachev, P., Rees, G., Parton, A., Kennard, C. & Husain, M. Volition and conflict in human medial frontal cortex. Curr. Biol. 15, 122–128 (2005).

    Article  CAS  Google Scholar 

  25. Stuphorn, V., Taylor, T.L. & Schall, J.D. Performance monitoring by the supplementary eye field. Nature 408, 857–860 (2000).

    Article  CAS  Google Scholar 

  26. Yeung, N., Cohen, J.D. & Botvinick, M.M. The neural basis of error detection: conflict monitoring and the error-related negativity. Psychol. Rev. 111, 931–959 (2004).

    Article  Google Scholar 

  27. Stuphorn, V. & Schall, J.D. Executive control of countermanding saccades by the supplementary eye field. Nat. Neurosci. 9, 925–931 (2006).

    Article  CAS  Google Scholar 

  28. Shima, K. & Tanji, J. Role for cingulate motor area cells in voluntary movement selection based on reward. Science 282, 1335–1338 (1998).

    Article  CAS  Google Scholar 

  29. Isoda, M. Context-dependent stimulation effects on saccade initiation in the presupplementary motor area of the monkey. J. Neurophysiol. 93, 3016–3022 (2005).

    Article  Google Scholar 

  30. Luppino, G., Matelli, M., Camarda, R. & Rizzolatti, G. Corticocortical connections of area F3 (SMA-proper) and area F6 (pre-SMA) in the macaque monkey. J. Comp. Neurol. 338, 114–140 (1993).

    Article  CAS  Google Scholar 

  31. Inase, M., Tokuno, H., Nambu, A., Akazawa, T. & Takada, M. Corticostriatal and corticosubthalamic input zones from the presupplementary motor area in the macaque monkey: comparison with the input zones from the supplementary motor area. Brain Res. 833, 191–201 (1999).

    Article  CAS  Google Scholar 

  32. Burman, D.D. & Bruce, C.J. Suppression of task-related saccades by electrical stimulation in the primate's frontal eye field. J. Neurophysiol. 77, 2252–2267 (1997).

    Article  CAS  Google Scholar 

  33. Izawa, Y., Suzuki, H. & Shinoda, Y. Suppression of visually and memory-guided saccades induced by electrical stimulation of the monkey frontal eye field. I. Suppression of ipsilateral saccades. J. Neurophysiol. 92, 2248–2260 (2004).

    Article  Google Scholar 

  34. Izawa, Y., Suzuki, H. & Shinoda, Y. Suppression of visually and memory-guided saccades induced by electrical stimulation of the monkey frontal eye field. II. Suppression of bilateral saccades. J. Neurophysiol. 92, 2261–2273 (2004).

    Article  Google Scholar 

  35. Huerta, M.F., Krubitzer, L.A. & Kaas, J.H. Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys. II. Cortical connections. J. Comp. Neurol. 265, 332–361 (1987).

    Article  CAS  Google Scholar 

  36. Parthasarathy, H.B., Schall, J.D. & Graybiel, A.M. Distributed but convergent ordering of corticostriatal projections: analysis of the frontal eye field and the supplementary eye field in the macaque monkey. J. Neurosci. 12, 4468–4488 (1992).

    Article  CAS  Google Scholar 

  37. Bates, J.F. & Goldman-Rakic, P.S. Prefrontal connections of medial motor areas in the rhesus monkey. J. Comp. Neurol. 336, 211–228 (1993).

    Article  CAS  Google Scholar 

  38. Wang, Y., Isoda, M., Matsuzaka, Y., Shima, K. & Tanji, J. Prefrontal cortical cells projecting to the supplementary eye field and presupplementary motor area in the monkey. Neurosci. Res. 53, 1–7 (2005).

    Article  Google Scholar 

  39. Mink, J.W. The basal ganglia: focused selection and inhibition of competing motor programs. Prog. Neurobiol. 50, 381–425 (1996).

    Article  CAS  Google Scholar 

  40. Hikosaka, O., Takikawa, Y. & Kawagoe, R. Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol. Rev. 80, 953–978 (2000).

    Article  CAS  Google Scholar 

  41. Nambu, A., Tokuno, H. & Takada, M. Functional significance of the cortico-subthalamo-pallidal 'hyperdirect' pathway. Neurosci. Res. 43, 111–117 (2002).

    Article  Google Scholar 

  42. Parent, A., Bouchard, C. & Smith, Y. The striatopallidal and striatonigral projections: two distinct fiber systems in primate. Brain Res. 303, 385–390 (1984).

    Article  CAS  Google Scholar 

  43. Hikosaka, O., Sakamoto, M. & Miyashita, N. Effects of caudate nucleus stimulation on substantia nigra cell activity in monkey. Exp. Brain Res. 95, 457–472 (1993).

    Article  CAS  Google Scholar 

  44. Nambu, A. et al. Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. J. Neurophysiol. 84, 289–300 (2000).

    Article  CAS  Google Scholar 

  45. Aron, A.R. & Poldrack, R.A. Cortical and subcortical contributions to Stop signal response inhibition: role of the subthalamic nucleus. J. Neurosci. 26, 2424–2433 (2006).

    Article  CAS  Google Scholar 

  46. Ding, L. & Hikosaka, O. Comparison of reward modulation in the frontal eye field and caudate of the macaque. J. Neurosci. 26, 6695–6703 (2006).

    Article  CAS  Google Scholar 

  47. Fujii, N., Mushiake, H. & Tanji, J. Distribution of eye- and arm-movement-related neuronal activity in the SEF and in the SMA and Pre-SMA of monkeys. J. Neurophysiol. 87, 2158–2166 (2002).

    Article  Google Scholar 

  48. Yamamoto, J. et al. Human eye fields in the frontal lobe as studied by epicortical recording of movement-related cortical potentials. Brain 127, 873–887 (2004).

    Article  Google Scholar 

  49. Efron, B. & Tibshirani, R.J. An Introduction to the Bootstrap (Chapman & Hall/CRC, Boca Raton, Florida, USA, 1993).

    Book  Google Scholar 

  50. Thompson, K.G., Hanes, D.P., Bichot, N.P. & Schall, J.D. Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search. J. Neurophysiol. 76, 4040–4055 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to B.G. Cumming for help in statistical analysis, R.H. Wurtz, R.J. Leigh, K. Nakamura, L. Ding and M. Matsumoto for comments and discussions and M.K. Smith, J.W. McClurkin, T.W. Ruffner, A.M. Nichols, A.V. Hays and L.P. Jensen for technical assistance. This work was supported by the intramural research program of the National Eye Institute.

Author information

Authors and Affiliations

Authors

Contributions

M.I. and O.H. jointly designed the study, performed the experiments, conducted the data analyses and wrote the manuscript.

Corresponding author

Correspondence to Masaki Isoda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Estimation of the pre-SMA efferent conduction delay. (PDF 25 kb)

Supplementary Figure 2

Schematic illustration of the locations of neuronal recording and electrical stimulation. (PDF 178 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isoda, M., Hikosaka, O. Switching from automatic to controlled action by monkey medial frontal cortex. Nat Neurosci 10, 240–248 (2007). https://doi.org/10.1038/nn1830

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1830

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing