Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spatiotopic selectivity of BOLD responses to visual motion in human area MT

Abstract

Many neurons in the monkey visual extrastriate cortex have receptive fields that are affected by gaze direction. In humans, psychophysical studies suggest that motion signals may be encoded in a spatiotopic fashion. Here we use functional magnetic resonance imaging to study spatial selectivity in the human middle temporal cortex (area MT or V5), an area that is clearly implicated in motion perception. The results show that the response of MT is modulated by gaze direction, generating a spatial selectivity based on screen rather than retinal coordinates. This area could be the neurophysiological substrate of the spatiotopic representation of motion signals.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The maps highlight regions in the lateral occipitotemporal cortex that responded to optic flow for subject GA.
Figure 2: Time courses of the BOLD response to contralateral (red symbols) and ipsilateral stimuli (blue symbols) in the left V1 and the left retinotopic MT with central and lateral fixation.
Figure 3: Amplitude of BOLD responses in V1 and MT to ipsilateral stimuli plotted against responses to contralateral stimuli.
Figure 4: VI (left) and MT (right) BOLD responses as a function of stimulus position for three different fixations.
Figure 5: Index of spatiotopicity for areas MT and V1 for the left (open squares) and right (filled circles) hemispheres of four observers.

Similar content being viewed by others

References

  1. Andersen, R.A., Essick, G.K. & Siegel, R.M. Encoding of spatial location by posterior parietal neurons. Science 230, 456–458 (1985).

    Article  CAS  Google Scholar 

  2. Zipser, D. & Andersen, R.A. A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature 331, 679–684 (1988).

    Article  CAS  Google Scholar 

  3. Galletti, C., Battaglini, P.P. & Fattori, P. Parietal neurons encoding spatial locations in craniotopic coordinates. Exp. Brain Res. 96, 221–229 (1993).

    Article  CAS  Google Scholar 

  4. Galletti, C., Battaglini, P.P. & Fattori, P. Eye position influence on the parieto-occipital area PO (V6) of the macaque monkey. Eur. J. Neurosci. 7, 2486–2501 (1995).

    Article  CAS  Google Scholar 

  5. Duhamel, J., Bremmer, F., BenHamed, S. & Graf, W. Spatial invariance of visual receptive fields in parietal cortex neurons. Nature 389, 845–848 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Sereno, M.I. & Huang, R.S. A human parietal face area contains aligned head-centered visual and tactile maps. Nat. Neurosci. 9, 1337–1343 (2006).

    Article  CAS  Google Scholar 

  7. Bremmer, F. et al. Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. Neuron 29, 287–296 (2001).

    Article  CAS  Google Scholar 

  8. Buneo, C.A., Jarvis, M.R., Batista, A.P. & Andersen, R.A. Direct visuomotor transformations for reaching. Nature 416, 632–636 (2002).

    Article  CAS  Google Scholar 

  9. Pouget, A., Deneve, S. & Duhamel, J.R. A computational perspective on the neural basis of multisensory spatial representations. Nat. Rev. Neurosci. 3, 741–747 (2002).

    Article  CAS  Google Scholar 

  10. Avillac, M., Deneve, S., Olivier, E., Pouget, A. & Duhamel, J.R. Reference frames for representing visual and tactile locations in parietal cortex. Nat. Neurosci. 8, 941–949 (2005).

    Article  CAS  Google Scholar 

  11. Nakamura, K. & Colby, C.L. Updating of the visual representation in monkey striate and extrastriate cortex during saccades. Proc. Natl. Acad. Sci. USA 99, 4026–4031 (2002).

    Article  CAS  Google Scholar 

  12. Duhamel, J.R., Colby, C.L. & Goldberg, M.E. The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255, 90–92 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Merriam, E.P., Genovese, C.R. & Colby, C.L. Spatial updating in human parietal cortex. Neuron 39, 361–373 (2003).

    Article  CAS  Google Scholar 

  14. Melcher, D. Spatiotopic transfer of visual-form adaptation across saccadic eye movements. Curr. Biol. 15, 1745–1748 (2005).

    Article  CAS  Google Scholar 

  15. Melcher, D. & Morrone, M.C. Spatiotopic temporal integration of visual motion across saccadic eye movements. Nat. Neurosci. 6, 877–881 (2003).

    Article  CAS  Google Scholar 

  16. Zohary, E., Shadlen, M.N. & Newsome, W.T. Correlated neuronal discharge rate and its implications for psychophysical performance. Nature 370, 140–143 (1994).

    Article  CAS  Google Scholar 

  17. Britten, K.H., Shadlen, M.N., Newsome, W.T. & Movshon, J.A. The analysis of visual motion: a comparison of neuronal and psychophysical performance. J. Neurosci. 12, 4745–4765 (1992).

    Article  CAS  Google Scholar 

  18. Zeki, S. et al. A direct demonstration of functional specialization in human visual cortex. J. Neurosci. 11, 641–649 (1991).

    Article  CAS  Google Scholar 

  19. Tootell, R.B. et al. Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging. Nature 375, 139–141 (1995).

    Article  CAS  Google Scholar 

  20. Rees, G., Friston, K. & Koch, C. A direct quantitative relationship between the functional properties of human and macaque V5. Nat. Neurosci. 3, 716–723 (2000).

    Article  CAS  Google Scholar 

  21. Morrone, M.C. et al. A cortical area that responds specifically to optic flow, revealed by fMRI. Nat. Neurosci. 3, 1322–1328 (2000).

    Article  CAS  Google Scholar 

  22. Huk, A.C., Dougherty, R.F. & Heeger, D.J. Retinotopy and functional subdivision of human areas MT and MST. J. Neurosci. 22, 7195–7205 (2002).

    Article  CAS  Google Scholar 

  23. Smith, A.T., Wall, M.B., Williams, A.L. & Singh, K.D. Sensitivity to optic flow in human cortical areas MT and MST. Eur. J. Neurosci. 23, 561–569 (2006).

    Article  CAS  Google Scholar 

  24. DeSouza, J.F., Dukelow, S.P. & Vilis, T. Eye position signals modulate early dorsal and ventral visual areas. Cereb. Cortex 12, 991–997 (2002).

    Article  Google Scholar 

  25. Goossens, J., Dukelow, S.P., Menon, R.S., Vilis, T. & van den Berg, A.V. Representation of head-centric flow in the human motion complex. J. Neurosci. 26, 5616–5627 (2006).

    Article  CAS  Google Scholar 

  26. Bradley, D.C., Maxwell, M., Andersen, R.A., Banks, M.S. & Shenoy, K.V. Mechanisms of heading perception in primate visual cortex. Science 273, 1544–1547 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Denys, K. et al. The processing of visual shape in the cerebral cortex of human and nonhuman primates: a functional magnetic resonance imaging study. J. Neurosci. 24, 2551–2565 (2004).

    Article  Google Scholar 

  28. Bremmer, F., Ilg, U.J., Thiele, A., Distler, C. & Hoffmann, K.P. Eye position effects in monkey cortex. I. Visual and pursuit-related activity in extrastriate areas MT and MST. J. Neurophysiol. 77, 944–961 (1997).

    Article  CAS  Google Scholar 

  29. Zaksas, D. & Pasternak, T. Area MT neurons respond to visual motion distant from their receptive fields. J. Neurophysiol. 94, 4156–4167 (2005).

    Article  Google Scholar 

  30. Nishida, S., Motoyoshi, I., Andersen, R.A. & Shimojo, S. Gaze modulation of visual aftereffects. Vision Res. 43, 639–649 (2003).

    Article  Google Scholar 

  31. Nieman, D.R., Hayashi, R., Andersen, R.A. & Shimojo, S. Gaze direction modulates visual aftereffects in depth and color. Vision Res. 45, 2885–2894 (2005).

    Article  Google Scholar 

  32. Hayhoe, M., Lachter, J. & Feldman, J. Integration of form across saccadic eye movements. Perception 20, 393–402 (1991).

    Article  CAS  Google Scholar 

  33. McKyton, A. & Zohary, E. Beyond retinotopic mapping: the spatial representation of objects in the human lateral occipital complex. Cereb Cortex, published online 3 July 2006 (doi:10.1093/cercor/bh1027).

  34. Talairach, J. & Tournoux, P. Stereotactic Coplanar Atlas of the Human Brain (Thieme Medical Publishers, New York, 1988).

    Google Scholar 

  35. Fox, M.D., Snyder, A.Z., Barch, D.M., Gusnard, D.A. & Raichle, M.E. Transient BOLD responses at block transitions. Neuroimage 28, 956–966 (2005).

    Article  PubMed  Google Scholar 

  36. Boynton, G.M., Engel, S.A., Glover, G.H. & Heeger, D.J. Linear systems analysis of functional magnetic resonance imaging in human V1. J. Neurosci. 16, 4207–4221 (1996).

    Article  CAS  Google Scholar 

  37. Ollinger, J.M., Corbetta, M. & Shulman, G.L. Separating processes within a trial in event-related functional MRI. Neuroimage 13, 218–229 (2001).

    Article  CAS  Google Scholar 

  38. Hasnain, M.K., Fox, P.T. & Woldorff, M.G. Intersubject variability of functional areas in the human visual cortex. Hum. Brain Mapp. 6, 301–315 (1998).

    Article  CAS  Google Scholar 

  39. d'Avossa, G., Shulman, G.L. & Corbetta, M. Identification of cerebral networks by classification of the shape of BOLD responses. J. Neurophysiol. 90, 360–371 (2003).

    Article  Google Scholar 

  40. Van Essen, D.C. et al. An integrated software suite for surface-based analyses of cerebral cortex. J. Am. Med. Inform. Assoc. 8, 443–459 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Snyder and M. McAvoy of the Washington University Neuro-Imaging laboratory for making available the preprocessing and statistical analysis software and for continual technical assistance. The project was supported by the Italian Ministry for Research (Ministero Italiano della Università e Ricerca, Progetti di Ricerca di Interesse Nazionale 2005), the European Commission Sixth Framework Program (New and Emerging Science and Technology grant 'MEMORY') and the Australian National Health and Medical Research Council (NHMRC project grant 303133).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Concetta Morrone.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

d'Avossa, G., Tosetti, M., Crespi, S. et al. Spatiotopic selectivity of BOLD responses to visual motion in human area MT. Nat Neurosci 10, 249–255 (2007). https://doi.org/10.1038/nn1824

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1824

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing