Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cannabinoids reveal importance of spike timing coordination in hippocampal function

Abstract

Cannabinoids impair hippocampus-dependent memory in both humans and animals, but the network mechanisms responsible for this effect are unknown. Here we show that the cannabinoids Δ9-tetrahydrocannabinol and CP55940 decreased the power of theta, gamma and ripple oscillations in the hippocampus of head-restrained and freely moving rats. These effects were blocked by a CB1 antagonist. The decrease in theta power correlated with memory impairment in a hippocampus-dependent task. By simultaneously recording from large populations of single units, we found that CP55940 severely disrupted the temporal coordination of cell assemblies in short time windows (<100 ms) yet only marginally affected population firing rates of pyramidal cells and interneurons. The decreased power of local field potential oscillations correlated with reduced temporal synchrony but not with firing rate changes. We hypothesize that reduced spike timing coordination and the associated impairment of physiological oscillations are responsible for cannabinoid-induced memory deficits.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CB1 receptor activation decreases the power of the LFP oscillations.
Figure 2: Cannabinoid-induced decrease of theta power is independent of locomotion speed of the rat and correlates with behavioral impairment in the hippocampus-dependent, delayed alternation memory task.
Figure 3: Δ9-THC produces effects on LFP oscillations similar to CP55940.
Figure 4: Intrahippocampal injection of CP55940 decreases ripple power.
Figure 5: Cannabinoid-induced decrease of power cannot be explained by firing rate changes.
Figure 6: Cannabinoid-induced alteration of firing patterns of hippocampal cells.
Figure 7: CP55940 destroys cell assembly organization.
Figure 8: During 'flat' LFP epochs, CP55940 decreases spike synchrony while preserving average firing rates.

Similar content being viewed by others

References

  1. Freund, T.F., Katona, I. & Piomelli, D. Role of endogenous cannabinoids in synaptic signaling. Physiol. Rev. 83, 1017–1066 (2003).

    Article  CAS  Google Scholar 

  2. Ameri, A. The effects of cannabinoids on the brain. Prog. Neurobiol. 58, 315–348 (1999).

    Article  CAS  Google Scholar 

  3. Ilan, A.B., Smith, M.E. & Gevins, A. Effects of marijuana on neurophysiological signals of working and episodic memory. Psychopharmacology (Berl.) 176, 214–222 (2004).

    Article  CAS  Google Scholar 

  4. Curran, H.V., Brignell, C., Fletcher, S., Middleton, P. & Henry, J. Cognitive and subjective dose-response effects of acute oral delta 9-tetrahydrocannabinol (THC) in infrequent cannabis users. Psychopharmacology (Berl.) 164, 61–70 (2002).

    Article  CAS  Google Scholar 

  5. Miller, L.L. & Branconnier, R.J. Cannabis: effects on memory and the cholinergic limbic system. Psychol. Bull. 93, 441–456 (1983).

    Article  CAS  Google Scholar 

  6. Squire, L.R., Stark, C.E. & Clark, R.E. The medial temporal lobe. Annu. Rev. Neurosci. 27, 279–306 (2004).

    Article  CAS  Google Scholar 

  7. Lichtman, A.H. & Martin, B.R. Delta 9-tetrahydrocannabinol impairs spatial memory through a cannabinoid receptor mechanism. Psychopharmacology (Berl.) 126, 125–131 (1996).

    Article  CAS  Google Scholar 

  8. Lichtman, A.H., Dimen, K.R. & Martin, B.R. Systemic or intrahippocampal cannabinoid administration impairs spatial memory in rats. Psychopharmacology (Berl.) 119, 282–290 (1995).

    Article  CAS  Google Scholar 

  9. Hampson, R.E. & Deadwyler, S.A. Role of cannabinoid receptors in memory storage. Neurobiol. Dis. 5, 474–482 (1998).

    Article  CAS  Google Scholar 

  10. Buonamici, M., Young, G.A. & Khazan, N. Effects of acute delta 9-THC administration on EEG and EEG power spectra in the rat. Neuropharmacology 21, 825–829 (1982).

    Article  CAS  Google Scholar 

  11. Constoe, P.F., Jones, B.C. & Chin, L. Delta-9-tetrahydrocannabinol, EEG and behavior:the importance of adaptation to the testing milieu. Pharmacol. Biochem. Behav. 3, 173–177 (1975).

    Article  CAS  Google Scholar 

  12. Willinsky, M.D., Loizzo, A. & Longo, V.G. EEG spectral analysis for the evaluation of the central effects of delta6-tetrahydrocannabinol in rabbits. Psychopharmacologia 41, 123–126 (1975).

    Article  CAS  Google Scholar 

  13. Hajos, N. et al. Cannabinoids inhibit hippocampal GABAergic transmission and network oscillations. Eur. J. Neurosci. 12, 3239–3249 (2000).

    Article  CAS  Google Scholar 

  14. Buzsáki, G., Traub, R.D. & Pedley, T. The cellular synaptic generation of EEG. in Current Practice of Clinical Encephalography (eds. J.S. Ebersole and T.A. Pedley) 1–11 (Lippincott-Williams and Wilkins, Philadelphia, 2003).

  15. Siapas, A.G., Lubenov, E.V. & Wilson, M.A. Prefrontal phase locking to hippocampal theta oscillations. Neuron 46, 141–151 (2005).

    Article  CAS  Google Scholar 

  16. Lee, H., Simpson, G.V., Logothetis, N.K. & Rainer, G. Phase locking of single neuron activity to theta oscillations during working memory in monkey extrastriate visual cortex. Neuron 45, 147–156 (2005).

    Article  CAS  Google Scholar 

  17. Hasselmo, M.E., Bodelon, C. & Wyble, B.P. A proposed function for hippocampal theta rhythm: separate phases of encoding and retrieval enhance reversal of prior learning. Neural Comput. 14, 793–817 (2002).

    Article  Google Scholar 

  18. Buzsaki, G. The hippocampo-neocortical dialogue. Cereb. Cortex 6, 81–92 (1996).

    Article  CAS  Google Scholar 

  19. Kudrimoti, H.S., Barnes, C.A. & McNaughton, B.L. Reactivation of hippocampal cell assemblies: effects of behavioral state, experience and EEG dynamics. J. Neurosci. 19, 4090–4101 (1999).

    Article  CAS  Google Scholar 

  20. Chrobak, J.J. & Buzsaki, G. High-frequency oscillations in the output networks of the hippocampal-entorhinal axis of the freely behaving rat. J. Neurosci. 16, 3056–3066 (1996).

    Article  CAS  Google Scholar 

  21. Csicsvari, J., Hirase, H., Mamiya, A. & Buzsaki, G. Ensemble patterns of hippocampal CA3-CA1 neurons during sharp wave-associated population events. Neuron 28, 585–594 (2000).

    Article  CAS  Google Scholar 

  22. Nunez, P.L. et al. EEG coherency. I: Statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. Electroencephalogr. Clin. Neurophysiol. 103, 499–515 (1997).

    Article  CAS  Google Scholar 

  23. Destexhe, A., Rudolph, M. & Pare, D. The high-conductance state of neocortical neurons in vivo. Nat. Rev. Neurosci. 4, 739–751 (2003).

    Article  CAS  Google Scholar 

  24. Hampson, R.E. & Deadwyler, S.A. Cannabinoids reveal the necessity of hippocampal neural encoding for short-term memory in rats. J. Neurosci. 20, 8932–8942 (2000).

    Article  CAS  Google Scholar 

  25. Lisman, J.E. Bursts as a unit of neural information: making unreliable synapses reliable. Trends Neurosci. 20, 38–43 (1997).

    Article  CAS  Google Scholar 

  26. Harris, K.D., Hirase, H., Leinekugel, X., Henze, D.A. & Buzsaki, G. Temporal interaction between single spikes and complex spike bursts in hippocampal pyramidal cells. Neuron 32, 141–149 (2001).

    Article  CAS  Google Scholar 

  27. Freund, T.F. & Buzsaki, G. Interneurons of the hippocampus. Hippocampus. 6, 347–470 (1996).

    Article  CAS  Google Scholar 

  28. Robson, P. Therapeutic aspects of cannabis and cannabinoids. Br. J. Psychiatry. 178, 107–115 (2001).

    Article  CAS  Google Scholar 

  29. Pisanu, A., Acquas, E., Fenu, S. & Di Chiara, G. Modulation of Δ9-THC-induced increase of cortical and hippocampal acetylcholine release by μ opioid and D1 dopamine receptors. Neuropharmacology 50, 661–670 (2006).

    Article  CAS  Google Scholar 

  30. Tzavara, E.T., Wade, M. & Nomikos, G.G. Biphasic effects of cannabinoids on acetylcholine release in the hippocampus: site and mechanism of action. J. Neurosci. 23, 9374–9384 (2003).

    Article  CAS  Google Scholar 

  31. Egashira, N. et al. Involvement of 5-hydroxytryptamine neuronal system in Δ9-tetrahydrocannabinol-induced impairment of spatial memory. Eur. J. Pharmacol. 445, 221–229 (2002).

    Article  CAS  Google Scholar 

  32. Bland, B.H. The physiology and pharmacology of hippocampal formation theta rhythms. Prog. Neurobiol. 26, 1–54 (1986).

    Article  CAS  Google Scholar 

  33. Behrens, C.J., van den Boom, L.P., de, H.L., Friedman, A. & Heinemann, U. Induction of sharp wave-ripple complexes in vitro and reorganization of hippocampal networks. Nat. Neurosci. 8, 1560–1567 (2005).

    Article  CAS  Google Scholar 

  34. Klausberger, T. et al. Complementary roles of cholecystokinin- and parvalbumin-expressing GABAergic neurons in hippocampal network oscillations. J. Neurosci. 25, 9782–9793 (2005).

    Article  CAS  Google Scholar 

  35. Csicsvari, J., Jamieson, B., Wise, K.D. & Buzsaki, G. Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron. 37, 311–322 (2003).

    Article  CAS  Google Scholar 

  36. Fisahn, A., Pike, F.G., Buhl, E.H. & Paulsen, O. Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro. Nature. 394, 186–189 (1998).

    Article  CAS  Google Scholar 

  37. Buzsaki, G. Theta oscillations in the hippocampus. Neuron. 33, 325–340 (2002).

    Article  CAS  Google Scholar 

  38. Kawamura, Y. et al. The CB1 cannabinoid receptor is the major cannabinoid receptor at excitatory presynaptic sites in the hippocampus and cerebellum. J. Neurosci. 26, 2991–3001 (2006).

    Article  CAS  Google Scholar 

  39. Takahashi, K.A. & Castillo, P.E. The CB1 cannabinoid receptor mediates glutamatergic synaptic suppression in the hippocampus. Neuroscience 139, 795–802 (2006).

    Article  CAS  Google Scholar 

  40. Katona, I. et al. Molecular composition of the endocannabinoid system at glutamatergic synapses. J. Neurosci. 26, 5628–5637 (2006).

    Article  CAS  Google Scholar 

  41. Hoffman, A.F., Riegel, A.C. & Lupica, C.R. Functional localization of cannabinoid receptors and endogenous cannabinoid production in distinct neuron populations of the hippocampus. Eur. J. Neurosci. 18, 524–534 (2003).

    Article  Google Scholar 

  42. Traub, R.D., Whittington, M.A., Stanford, I.M. & Jefferys, J.G. A mechanism for generation of long-range synchronous fast oscillations in the cortex. Nature 383, 621–624 (1996).

    Article  CAS  Google Scholar 

  43. Givens, B.S. & Olton, D.S. Cholinergic and GABAergic modulation of medial septal area: effect on working memory. Behav. Neurosci. 104, 849–855 (1990).

    Article  CAS  Google Scholar 

  44. Mizumori, S.J., Perez, G.M., Alvarado, M.C., Barnes, C.A. & McNaughton, B.L. Reversible inactivation of the medial septum differentially affects two forms of learning in rats. Brain Res. 528, 12–20 (1990).

    Article  CAS  Google Scholar 

  45. Olpe, H.-R., Glatt, A. & Bencze, W. Electrophysiological manifestations of supraspinal actions of baclofen. Brain Res. Bull. 5, 507–511 (1980).

    Article  CAS  Google Scholar 

  46. Konig, P., Engel, A.K. & Singer, W. Integrator or coincidence detector? The role of the cortical neuron revisited. Trends Neurosci. 19, 130–137 (1996).

    Article  CAS  Google Scholar 

  47. Monory, K. et al. The endocannabinoid system controls key epileptogenic circuits in the hippocampus. Neuron 51, 455–466 (2006).

    Article  CAS  Google Scholar 

  48. Marsicano, G. et al. CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science 302, 84–88 (2003).

    Article  CAS  Google Scholar 

  49. Bernard, C. et al. Altering cannabinoid signaling during development disrupts neuronal activity. Proc. Natl. Acad. Sci. USA 102, 9388–9393 (2005).

    Article  CAS  Google Scholar 

  50. Hazan, L., Zugaro, M. & Buzsaki, G. Klusters, NeuroScope, NDManager: a free software suite for neurophysiological data processing and visualization. J. Neurosci. Methods 155, 207–216 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

We thank C. Geisler, K.D. Harris, H. Hirase, A. Sirota and M. Zugaro for their help with data analysis and A. Amarasingham, S.A. Deadwyler, K. Diba and O.J. Manzoni for comments on earlier versions of this manuscript. Supported by grants from the NIH (G.B.: NS34994, NS43157, MH54671; B.L.M.: NS20331) and the Human Science Program Organization and the European Molecular Biology Organization (D.R.).

Author information

Authors and Affiliations

Authors

Contributions

D.R. conducted the recordings in head-restrained, anesthetized and freely moving (n= 3) rats and did most of the data analysis. S.M.M. conducted recordings in freely moving rats (n= 2) and designed the covariance analysis test. P.E.R.-O. participated in the recordings of two freely moving rats. A.T. conducted and B.L.M. supervised the Δ9-THC experiments. G.B. supervised the project and cowrote the manuscript with D.R. and S.M.M.

Corresponding author

Correspondence to György Buzsaki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

The CB1 receptor antagonist SR141716A (1.5 mg kg−1) did not significantly affect network properties or firing patterns of single neurons. (PDF 6318 kb)

Supplementary Fig. 2

Parallel recording and clustering of unit activity in the CA1 pyramidal layer by an 8-shank, 64-site silicon probe. (PDF 2116 kb)

Supplementary Fig. 3

Effect of CP55940 on interspike intervals distribution (ISI) of hippocampal CA1 cells. (PDF 45 kb)

Supplementary Fig. 4

Cannabinoid-induced alteration of firing patterns of hippocampal cells. (PDF 148 kb)

Supplementary Methods (PDF 89 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robbe, D., Montgomery, S., Thome, A. et al. Cannabinoids reveal importance of spike timing coordination in hippocampal function. Nat Neurosci 9, 1526–1533 (2006). https://doi.org/10.1038/nn1801

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1801

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing