Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo

Abstract

Although astrocytes are the most abundant cell type in the brain, evidence for their activation during physiological sensory activity is lacking. Here we show that whisker stimulation evokes increases in astrocytic cytosolic calcium (Ca2+) within the barrel cortex of adult mice. Increases in astrocytic Ca2+ were a function of the frequency of stimulation, occurred within several seconds and were inhibited by metabotropic glutamate receptor antagonists. To distinguish between synaptic input and output, local synaptic activity in cortical layer 2 was silenced by iontophoresis of AMPA and NMDA receptor antagonists. The antagonists did not reduce astrocytic Ca2+ responses despite a marked reduction in excitatory postsynaptic currents in response to whisker stimulation. These findings indicate that astrocytes respond to synaptic input, by means of spillover or ectopic release of glutamate, and that increases in astrocytic Ca2+ occur independently of postsynaptic excitatory activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Whisker stimulation evokes astrocytic Ca2+ increases in barrel cortex.
Figure 2: Temporal relationship between LFP signals and increases in astrocytic Ca2+ in response to whisker stimulation.
Figure 3: Astrocytic responses to whisker stimulation do not require activation of postsynaptic AMPA and NMDA receptors.
Figure 4: Increases in astrocytic Ca2+ in response to whisker stimulation are mediated by mGluRs.
Figure 5: Dependence of astrocytic Ca2+ responses on frequency of whisker stimulation.

Similar content being viewed by others

References

  1. Dani, J.W., Chernjavsky, A. & Smith, S.J. Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron 8, 429–440 (1992).

    Article  CAS  Google Scholar 

  2. Kang, J., Jiang, L., Goldman, S. & Nedergaard, M. Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat. Neurosci. 1, 683–692 (1998).

    Article  CAS  Google Scholar 

  3. Kettenmann, H. Physiology of glial cells. Adv. Neurol. 79, 565–571 (1999).

    CAS  PubMed  Google Scholar 

  4. Volterra, A. & Meldolesi, J. Astrocytes, from brain glue to communication elements: the revolution continues. Nat. Rev. Neurosci. 6, 626–640 (2005).

    Article  CAS  Google Scholar 

  5. Cornell-Bell, A.H., Finkbeiner, S.M., Cooper, M.S. & Smith, S.J. Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247, 470–473 (1990).

    Article  CAS  Google Scholar 

  6. Arcuino, G. et al. Intercellular calcium signaling mediated by point-source burst release of ATP. Proc. Natl. Acad. Sci. USA 99, 9840–9845 (2002).

    Article  CAS  Google Scholar 

  7. Cotrina, M. & Nedergaard, M. Intracellular calcium control mechanisms in glia. in Neuroglia. (eds. Kettenmann, H. & Ransom, B.R.) Ch. 17, 229–239 (Oxford Univ. Press, New York, 2005).

  8. Zhang, J.M. et al. ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron 40, 971–982 (2003).

    Article  CAS  Google Scholar 

  9. Pascual, O. et al. Astrocytic purinergic signaling coordinates synaptic networks. Science 310, 113–116 (2005).

    Article  CAS  Google Scholar 

  10. Dunwiddie, T.V., Diao, L. & Proctor, W.R. Adenine nucleotides undergo rapid, quantitative conversion to adenosine in the extracellular space in rat hippocampus. J. Neurosci. 17, 7673–7682 (1997).

    Article  CAS  PubMed Central  Google Scholar 

  11. Zonta, M. et al. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat. Neurosci. 6, 43–50 (2003).

    Article  CAS  PubMed Central  Google Scholar 

  12. Araque, A., Sanzgiri, R.P., Parpura, V. & Haydon, P.G. Calcium elevation in astrocytes causes an NMDA receptor-dependent increase in the frequency of miniature synaptic currents in cultured hippocampal neurons. J. Neurosci. 18, 6822–6829 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  13. Rzigalinski, B.A., Weber, J.T., Willoughby, K.A. & Ellis, E.F. Intracellular free calcium dynamics in stretch-injured astrocytes. J. Neurochem. 70, 2377–2385 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  14. Venance, L., Stella, N., Glowinski, J. & Giaume, C. Mechanism involved in initiation and propagation of receptor-induced intercellular calcium signaling in cultured rat astrocytes. J. Neurosci. 17, 1981–1992 (1997).

    Article  CAS  PubMed Central  Google Scholar 

  15. Newman, E.A. Calcium increases in retinal glial cells evoked by light-induced neuronal activity. J. Neurosci. 25, 5502–5510 (2005).

    Article  CAS  PubMed Central  Google Scholar 

  16. Hirase, H., Qian, L., Bartho, P. & Buzsaki, G. Calcium dynamics of cortical astrocytic networks in vivo. PLoS Biol. 2, E96 (2004).

    Article  PubMed Central  Google Scholar 

  17. Tian, G.F. et al. An astrocytic basis of epilepsy. Nat. Med. 11, 973–981 (2005).

    Article  CAS  PubMed Central  Google Scholar 

  18. Nimmerjahn, A., Kirchhoff, F., Kerr, J.N.D. & Helmchen, F. Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nature Methods 1, 31–37 (2004).

    Article  CAS  PubMed Central  Google Scholar 

  19. Petersen, C.C., Grinvald, A. & Sakmann, B. Spatiotemporal dynamics of sensory responses in layer 2/3 of rat barrel cortex measured in vivo by voltage-sensitive dye imaging combined with whole-cell voltage recordings and neuron reconstructions. J. Neurosci. 23, 1298–1309 (2003).

    Article  CAS  PubMed Central  Google Scholar 

  20. Petersen, C.C. & Sakmann, B. Functionally independent columns of rat somatosensory barrel cortex revealed with voltage-sensitive dye imaging. J. Neurosci. 21, 8435–8446 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  21. Feldmeyer, D., Lubke, J., Silver, R.A. & Sakmann, B. Synaptic connections between layer 4 spiny neurone-layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column. J. Physiol. (Lond.) 538, 803–822 (2002).

    Article  CAS  Google Scholar 

  22. Brickley, S.G., Farrant, M. & Swanson, G.T. & Cull-Candy, S.G. CNQX increases GABA-mediated synaptic transmission in the cerebellum by an AMPA/kainate receptor-independent mechanism. Neuropharmacology 41, 730–736 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  23. Fellin, T. et al. Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors. Neuron 43, 729–743 (2004).

    Article  CAS  Google Scholar 

  24. Takano, T. et al. Astrocyte-mediated control of cerebral blood flow. Nat. Neurosci. 9, 260–267 (2006).

    Article  CAS  PubMed Central  Google Scholar 

  25. Kew, J.N. & Kemp, J.A. Ionotropic and metabotropic glutamate receptor structure and pharmacology. Psychopharmacology (Berl.) 179, 4–29 (2005).

    Article  CAS  Google Scholar 

  26. Mathiesen, C., Caesar, K., Akgoren, N. & Lauritzen, M. Modification of activity-dependent increases of cerebral blood flow by excitatory synaptic activity and spikes in rat cerebellar cortex. J. Physiol. (Lond.) 512, 555–566 (1998).

    Article  CAS  Google Scholar 

  27. Chung, S., Li, X. & Nelson, S.B. Short-term depression at thalamocortical synapses contributes to rapid adaptation of cortical sensory responses in vivo. Neuron 34, 437–446 (2002).

    Article  CAS  PubMed Central  Google Scholar 

  28. Porter, J.T. & McCarthy, K.D. GFAP-positive hippocampal astrocytes in situ respond to glutamatergic neuroligands with increases in [Ca2+]i. Glia 13, 101–112 (1995).

    Article  CAS  PubMed Central  Google Scholar 

  29. Huang, Y.H. & Bergles, D.E. Glutamate transporters bring competition to the synapse. Curr. Opin. Neurobiol. 14, 346–352 (2004).

    Article  CAS  PubMed Central  Google Scholar 

  30. Matsui, K. & Jahr, C.E. Ectopic release of synaptic vesicles. Neuron 40, 1173–1183 (2003).

    Article  CAS  Google Scholar 

  31. Duffy, S. & MacVicar, B.A. Adrenergic calcium signaling in astrocyte networks within the hippocampal slice. J. Neurosci. 15, 5535–5550 (1995).

    Article  CAS  Google Scholar 

  32. Perea, G. & Araque, A. Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes. J. Neurosci. 25, 2192–2203 (2005).

    Article  CAS  Google Scholar 

  33. Nilsson, M., Hansson, E. & Ronnback, L. Adrenergic and 5–HT2 receptors on the same astroglial cell. A microspectrofluorimetric study on cytosolic Ca2+ responses in single cells in primary culture. Brain Res. Dev. Brain Res. 63, 33–41 (1991).

    Article  CAS  Google Scholar 

  34. Stout, C. & Charles, A. Modulation of intercellular calcium signaling in astrocytes by extracellular calcium and magnesium. Glia 43, 265–273 (2003).

    Article  Google Scholar 

  35. Pasti, L., Volterra, A., Pozzan, T. & Carmignoto, G. Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J. Neurosci. 17, 7817–7830 (1997).

    Article  CAS  Google Scholar 

  36. Liu, Q.S., Xu, Q., Arcuino, G., Kang, J. & Nedergaard, M. Astrocyte-mediated activation of neuronal kainate receptors. Proc. Natl. Acad. Sci. USA 101, 3172–3177 (2004).

    Article  CAS  Google Scholar 

  37. Parri, H.R., Gould, T.M. & Crunelli, V. Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR-mediated neuronal excitation. Nat. Neurosci. 4, 803–812 (2001).

    Article  CAS  Google Scholar 

  38. Angulo, M.C., Kozlov, A.S., Charpak, S. & Audinat, E. Glutamate released from glial cells synchronizes neuronal activity in the hippocampus. J. Neurosci. 24, 6920–6927 (2004).

    Article  CAS  Google Scholar 

  39. Schuchmann, S., Albrecht, D., Heinemann, U. & von Bohlen und Halbach, O. Nitric oxide modulates low-Mg2+-induced epileptiform activity in rat hippocampal-entorhinal cortex slices. Neurobiol. Dis. 11, 96–105 (2002).

    Article  CAS  Google Scholar 

  40. Ye, Z.C., Wyeth, M.S., Baltan-Tekkok, S. & Ransom, B.R. Functional hemichannels in astrocytes: a novel mechanism of glutamate release. J. Neurosci. 23, 3588–3596 (2003).

    Article  CAS  PubMed Central  Google Scholar 

  41. Fiacco, T.A. & McCarthy, K.D. Intracellular astrocyte calcium waves in situ increase the frequency of spontaneous AMPA receptor currents in CA1 pyramidal neurons. J. Neurosci. 24, 722–732 (2004).

    Article  CAS  PubMed Central  Google Scholar 

  42. Logothetis, N.K. The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Phil. Trans. R. Soc. Lond. B 357, 1003–1037 (2002).

    Article  Google Scholar 

  43. Magistretti, P.J. & Pellerin, L. Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Phil. Trans. R. Soc. Lond. B 354, 1155–1163 (1999).

    Article  CAS  Google Scholar 

  44. Kasischke, K.A., Vishwasrao, H.D., Fisher, P.J., Zipfel, W.R. & Webb, W.W. Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science 305, 99–103 (2004).

    Article  CAS  PubMed Central  Google Scholar 

  45. Nett, W.J., Oloff, S.H. & McCarthy, K.D. Hippocampal astrocytes in situ exhibit calcium oscillations that occur independent of neuronal activity. J. Neurophysiol. 87, 528–537 (2002).

    Article  Google Scholar 

  46. Haydon, P.G. GLIA: listening and talking to the synapse. Nat. Rev. Neurosci. 2, 185–193 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  47. Nedergaard, M., Ransom, B. & Goldman, S.A. New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci. 26, 523–530 (2003).

    Article  CAS  Google Scholar 

  48. Zlokovic, B.V. Neurovascular mechanisms of Alzheimer's neurodegeneration. Trends Neurosci. 28, 202–208 (2005).

    Article  CAS  Google Scholar 

  49. Ahissar, E., Sosnik, R. & Haidarliu, S. Transformation from temporal to rate coding in a somatosensory thalamocortical pathway. Nature 406, 302–306 (2000).

    Article  CAS  Google Scholar 

  50. Battaglia, G. et al. Endogenous activation of mGlu5 metabotropic glutamate receptors contributes to the development of nigro-striatal damage induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. J. Neurosci. 24, 828–835 (2004).

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Goldman, K. Kasischke, E. Vates, L. Bekar and N. Oberheim for their comments on the manuscript and D. Pinto for discussion. This work was supported in part by grants NS30007 and NS38073 from the US National Institutes of Health and the National Institute of Neurological Disorders and Stroke (to M.N.) and the Phillip Morris External Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maiken Nedergaard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Spontaneous astrocytic Ca2+ activity in anesthetized mice. (PDF 414 kb)

Supplementary Fig. 2

The frequency of astrocytic Ca2+ oscillations was artificially increased with increased 2-photon laser power. (PDF 455 kb)

Supplementary Fig. 3

Astrocytic Ca2+ responses to whisker stimulation are not modulated by 2-photon excitation when laser power is low. (PDF 502 kb)

Supplementary Fig. 4

1 Hz whisker stimulation failed to induce astrocytic Ca2+ increase. (PDF 287 kb)

Supplementary Video 1

Z step imaging of adult FVB mouse loaded with fluo-4/am. (MOV 1913 kb)

Supplementary Video 2

Spontaneous astrocytic Ca2+ signaling in barrel cortex layer 2. (MOV 2393 kb)

Supplementary Video 3

Whisker stimulation repeatedly triggered astrocytic Ca2+ increases in barrel cortex layer 2. (MOV 2386 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Lou, N., Xu, Q. et al. Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat Neurosci 9, 816–823 (2006). https://doi.org/10.1038/nn1703

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1703

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing