Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Protein kinase A regulates calcium permeability of NMDA receptors

Abstract

Calcium (Ca2+) influx through NMDA receptors (NMDARs) is essential for synaptogenesis, experience-dependent synaptic remodeling and plasticity. The NMDAR-mediated rise in postsynaptic Ca2+ activates a network of kinases and phosphatases that promote persistent changes in synaptic strength, such as long-term potentiation (LTP). Here we show that the Ca2+ permeability of neuronal NMDARs is under the control of the cyclic AMP–protein kinase A (cAMP-PKA) signaling cascade. PKA blockers reduced the relative fractional Ca2+ influx through NMDARs as determined by reversal potential shift analysis and by a combination of electrical recording and Ca2+ influx measurements in rat hippocampal neurons in culture and hippocampal slices from mice. In slices, PKA blockers markedly inhibited NMDAR-mediated Ca2+ rises in activated dendritic spines, with no significant effect on synaptic current. Consistent with this, PKA blockers depressed the early phase of NMDAR-dependent LTP at hippocampal Schaffer collateral–CA1 (Sch-CA1) synapses. Our data link PKA-dependent synaptic plasticity to Ca2+ signaling in spines and thus provide a new mechanism whereby PKA regulates the induction of LTP.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PKA modulates NMDA-elicited currents and Ca2+-dependent desensitization in hippocampal neurons.
Figure 2: PKA modulates Ca2+ and Ba2+ permeation through NMDA channels.
Figure 3: PKA modulates Ca2+ influx through NMDARs.
Figure 4: PKA differentially regulates NR2A versus NR2B receptor–mediated currents.
Figure 5: PKA selectively regulates synaptically induced Ca2+ rises in dendritic spines.
Figure 6: LTP induction is reduced after blocking PKA but can be rescued by increasing extracellular Ca2+ concentration during the tetanus.

Similar content being viewed by others

References

  1. Cull-Candy, S.G., Brickley, S. & Farrant, M. NMDA receptor subunits: diversity, development and disease. Curr. Opin. Neurobiol. 11, 327–335 (2001).

    Article  CAS  Google Scholar 

  2. Carroll, R.C. & Zukin, R.S. NMDA-receptor trafficking and targeting: implications for synaptic transmission and plasticity. Trends Neurosci. 25, 571–577 (2002).

    Article  CAS  Google Scholar 

  3. Cull-Candy, S.G. & Leszkiewicz, D.N. Role of distinct NMDA receptor subtypes at central synapses. Sci. STKE 2004, re16 (2004).

  4. Mayer, M.L. & Westbrook, G.L. Permeation and block of N-methyl-D-aspartic acid receptor channels by divalent cations in mouse cultured central neurones. J. Physiol. (Lond.) 394, 501–527 (1987).

    Article  CAS  Google Scholar 

  5. Schneggenburger, R., Zhou, Z., Konnerth, A. & Neher, E. Fractional contribution of calcium to the cation current through glutamate receptor channels. Neuron 11, 133–143 (1993).

    Article  CAS  Google Scholar 

  6. Burnashev, N., Zhou, Z., Neher, E. & Sakmann, B. Fractional calcium currents through recombinant GluR channels of the NMDA, AMPA and kainate receptor subtypes. J. Physiol. (Lond.) 485, 403–418 (1995).

    Article  CAS  Google Scholar 

  7. Rogers, M. & Dani, J.A. Comparison of quantitative calcium flux through NMDA, ATP, and ACh receptor channels. Biophys. J. 68, 501–506 (1995).

    Article  CAS  Google Scholar 

  8. Garaschuk, O., Schneggenburger, R., Schirra, C., Tempia, F. & Konnerth, A. Fractional Ca2+ currents through somatic and dendritic glutamate receptor channels of rat hippocampal CA1 pyramidal neurones. J. Physiol. (Lond.) 491, 757–772 (1996).

    Article  CAS  Google Scholar 

  9. Malenka, R.C. & Bear, M.F. LTP and LTD: an embarrassment of riches. Neuron 44, 5–21 (2004).

    Article  CAS  Google Scholar 

  10. Scannevin, R.H. & Huganir, R.L. Postsynaptic organization and regulation of excitatory synapses. Nat. Rev. Neurosci. 1, 133–141 (2000).

    Article  CAS  Google Scholar 

  11. Sheng, M. Molecular organization of the postsynaptic specialization. Proc. Natl. Acad. Sci. USA 98, 7058–7061 (2001).

    Article  CAS  Google Scholar 

  12. Winder, D.G. & Sweatt, J.D. Roles of serine/threonine phosphatases in hippocampal synaptic plasticity. Nat. Rev. Neurosci. 2, 461–474 (2001).

    Article  CAS  Google Scholar 

  13. Westphal, R.S. et al. Regulation of NMDA receptors by an associated phosphatase-kinase signaling complex. Science 285, 93–96 (1999).

    Article  CAS  Google Scholar 

  14. Leonard, A.S. & Hell, J.W. Cyclic AMP-dependent protein kinase and protein kinase C phosphorylate N-methyl-D-aspartate receptors at different sites. J. Biol. Chem. 272, 12107–12115 (1997).

    Article  CAS  Google Scholar 

  15. Tingley, W.G. et al. Characterization of protein kinase A and protein kinase C phosphorylation of the N-methyl-D-aspartate receptor NR1 subunit using phosphorylation site-specific antibodies. J. Biol. Chem. 272, 5157–5166 (1997).

    Article  CAS  Google Scholar 

  16. Wang, L.Y., Orser, B.A., Brautigan, D.L. & MacDonald, J.F. Regulation of NMDA receptors in cultured hippocampal neurons by protein phosphatases 1 and 2A. Nature 369, 230–232 (1994).

    Article  CAS  Google Scholar 

  17. Raman, I.M., Tong, G. & Jahr, C.E. Beta-adrenergic regulation of synaptic NMDA receptors by cAMP-dependent protein kinase. Neuron 16, 415–421 (1996).

    Article  CAS  Google Scholar 

  18. Blank, T. et al. The phosphoprotein DARPP-32 mediates cAMP-dependent potentiation of striatal N-methyl-D-aspartate responses. Proc. Natl. Acad. Sci. USA 94, 14859–14864 (1997).

    Article  CAS  Google Scholar 

  19. Snyder, G.L., Fienberg, A.A., Huganir, R.L. & Greengard, P. A dopamine/D1 receptor/protein kinase A/dopamine- and cAMP-regulated phosphoprotein (Mr 32 kDa)/protein phosphatase-1 pathway regulates dephosphorylation of the NMDA receptor. J. Neurosci. 18, 10297–10303 (1998).

    Article  CAS  Google Scholar 

  20. Otmakhova, N.A., Otmakhov, N., Mortenson, L.H. & Lisman, J.E. Inhibition of the cAMP pathway decreases early long-term potentiation at CA1 hippocampal synapses. J. Neurosci. 20, 4446–4451 (2000).

    Article  CAS  Google Scholar 

  21. Yasuda, H., Barth, A.L., Stellwagen, D. & Malenka, R.C. A developmental switch in the signaling cascades for LTP induction. Nat. Neurosci. 6, 15–16 (2003).

    Article  CAS  Google Scholar 

  22. Blitzer, R.D. et al. Gating of CaMKII by cAMP-regulated protein phosphatase activity during LTP. Science 280, 1940–1942 (1998).

    Article  CAS  Google Scholar 

  23. Huang, Y.Y. & Kandel, E.R. Recruitment of long-lasting and protein kinase A-dependent long-term potentiation in the CA1 region of hippocampus requires repeated tetanization. Learn. Mem. 1, 74–82 (1994).

    CAS  PubMed  Google Scholar 

  24. Qi, M. et al. Impaired hippocampal plasticity in mice lacking the Cbeta1 catalytic subunit of cAMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA 93, 1571–1576 (1996).

    Article  CAS  Google Scholar 

  25. Abel, T. et al. Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory. Cell 88, 615–626 (1997).

    Article  CAS  Google Scholar 

  26. Wong, S.T. et al. Calcium-stimulated adenylyl cyclase activity is critical for hippocampus-dependent long-term memory and late phase LTP. Neuron 23, 787–798 (1999).

    Article  CAS  Google Scholar 

  27. Zorumski, C.F., Yang, J. & Fischbach, G.D. Calcium-dependent, slow desensitization distinguishes different types of glutamate receptors. Cell. Mol. Neurobiol. 9, 95–104 (1989).

    Article  CAS  Google Scholar 

  28. Legendre, P., Rosenmund, C. & Westbrook, G.L. Inactivation of NMDA channels in cultured hippocampal neurons by intracellular calcium. J. Neurosci. 13, 674–684 (1993).

    Article  CAS  Google Scholar 

  29. Tong, G., Shepherd, D. & Jahr, C.E. Synaptic desensitization of NMDA receptors by calcineurin. Science 267, 1510–1512 (1995).

    Article  CAS  Google Scholar 

  30. Kaczmarek, L.K., Jennings, K.R. & Strumwasser, F. An early sodium and a late calcium phase in the afterdischarge of peptide-secreting neurons of Aplysia. Brain Res. 238, 105–115 (1982).

    Article  CAS  Google Scholar 

  31. Lan, J.Y. et al. Protein kinase C modulates NMDA receptor trafficking and gating. Nat. Neurosci. 4, 382–390 (2001).

    Article  CAS  Google Scholar 

  32. Quinlan, E.M., Philpot, B.D., Huganir, R.L. & Bear, M.F. Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo. Nat. Neurosci. 2, 352–357 (1999).

    Article  CAS  Google Scholar 

  33. Beaver, C.J., Ji, Q., Fischer, Q.S. & Daw, N.W. Cyclic AMP-dependent protein kinase mediates ocular dominance shifts in cat visual cortex. Nat. Neurosci. 4, 159–163 (2001).

    Article  CAS  Google Scholar 

  34. Hille, B. Ion Channels of Excitable Membranes 3rd edn. (Sinauer Associates, Sunderland, Massachusetts, 2001).

    Google Scholar 

  35. Schneggenburger, R. Simultaneous measurement of Ca2+ influx and reversal potentials in recombinant N-methyl-D-aspartate receptor channels. Biophys. J. 70, 2165–2174 (1996).

    Article  CAS  Google Scholar 

  36. Hoffmann, H., Gremme, T., Hatt, H. & Gottmann, K. Synaptic activity-dependent developmental regulation of NMDA receptor subunit expression in cultured neocortical neurons. J. Neurochem. 75, 1590–1599 (2000).

    Article  CAS  Google Scholar 

  37. Zhong, J., Russell, S.L., Pritchett, D.B., Molinoff, P.B. & Williams, K. Expression of mRNAs encoding subunits of the N-methyl-D-aspartate receptor in cultured cortical neurons. Mol. Pharmacol. 45, 846–853 (1994).

    CAS  PubMed  Google Scholar 

  38. Yuste, R., Majewska, A., Cash, S.S. & Denk, W. Mechanisms of calcium influx into hippocampal spines: heterogeneity among spines, coincidence detection by NMDA receptors, and optical quantal analysis. J. Neurosci. 19, 1976–1987 (1999).

    Article  CAS  Google Scholar 

  39. Yuste, R. & Denk, W. Dendritic spines as basic functional units of neuronal integration. Nature 375, 682–684 (1995).

    Article  CAS  Google Scholar 

  40. Malenka, R.C. Postsynaptic factors control the duration of synaptic enhancement in area CA1 of the hippocampus. Neuron 6, 53–60 (1991).

    Article  CAS  Google Scholar 

  41. Cummings, J.A., Mulkey, R.M., Nicoll, R.A. & Malenka, R.C. Ca2+ signaling requirements for long-term depression in the hippocampus. Neuron 16, 825–833 (1996).

    Article  CAS  Google Scholar 

  42. Sobczyk, A., Scheuss, V. & Svoboda, K. NMDA receptor subunit-dependent [Ca2+] signaling in individual hippocampal dendritic spines. J. Neurosci. 25, 6037–6046 (2005).

    Article  CAS  Google Scholar 

  43. Thomas, M.J., Moody, T.D., Makhinson, M. & O'Dell, T.J. Activity-dependent beta-adrenergic modulation of low frequency stimulation induced LTP in the hippocampal CA1 region. Neuron 17, 475–482 (1996).

    Article  CAS  Google Scholar 

  44. Otmakhova, N.A. & Lisman, J.E. D1/D5 dopamine receptor activation increases the magnitude of early long-term potentiation at CA1 hippocampal synapses. J. Neurosci. 16, 7478–7486 (1996).

    Article  CAS  Google Scholar 

  45. Lieberman, D.N. & Mody, I. Regulation of NMDA channel function by endogenous Ca(2+)-dependent phosphatase. Nature 369, 235–239 (1994).

    Article  CAS  Google Scholar 

  46. Scemes, E., Suadicani, S.O. & Spray, D.C. Intercellular communication in spinal cord astrocytes: fine tuning between gap junctions and P2 nucleotide receptors in calcium wave propagation. J. Neurosci. 20, 1435–1445 (2000).

    Article  CAS  Google Scholar 

  47. Matsuzaki, M. et al. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat. Neurosci. 4, 1086–1092 (2001).

    Article  CAS  Google Scholar 

  48. Wang, S.S. & Augustine, G.J. Confocal imaging and local photolysis of caged compounds: dual probes of synaptic function. Neuron 15, 755–760 (1995).

    Article  CAS  Google Scholar 

  49. Lin, Y., Skeberdis, V.A., Francesconi, A., Bennett, M.V. & Zukin, R.S. Postsynaptic density protein-95 regulates NMDA channel gating and surface expression. J. Neurosci. 24, 10138–10148 (2004).

    Article  CAS  Google Scholar 

  50. Majewska, A., Yiu, G. & Yuste, R. A custom-made two-photon microscope and deconvolution system. Pflugers Arch. 441, 398–408 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank K. Svoboda for helpful scientific discussions, G. Bassell for neuronal cultures, G. Hjelmstad for the IgorPro procedures for data acquisition and L. Formisano for technical assistance. This work was supported by the US National Institutes of Health (grants NS20752 to R.S.Z., DA17392 to P.E.C., MH65495 supporting S.O.S. and NS45287 to M.V.L.B.). P.E.C. is a Pew Biomedical Scholar. M.V.L.B. is the Sylvia and Robert S. Olnick Professor of Neuroscience and Distinguished Professor at the Albert Einstein College of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Suzanne Zukin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

PKA inhibitors and activators do not alter NMDA-elicited currents in Xenopus oocytes expressing recombinant NMDARs. (PDF 159 kb)

Supplementary Fig. 2

PKA does not modulate NMDAR surface expression in cortical neurons. (PDF 103 kb)

Supplementary Fig. 3

PKA inhibitors and activators modulate Ca2+ influx through NMDARs. (PDF 97 kb)

Supplementary Fig. 4

PKA does not act presynaptically to inhibit LTP at the Schaffer collateral-CA1 synapse. (PDF 102 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skeberdis, V., Chevaleyre, V., Lau, C. et al. Protein kinase A regulates calcium permeability of NMDA receptors. Nat Neurosci 9, 501–510 (2006). https://doi.org/10.1038/nn1664

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1664

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing