Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

FACS-array profiling of striatal projection neuron subtypes in juvenile and adult mouse brains

Abstract

A major challenge in systems neuroscience is to perform precise molecular genetic analyses of a single neuronal population in the context of the complex mammalian brain. Existing technologies for profiling cell type–specific gene expression are largely limited to immature or morphologically identifiable neurons. In this study, we developed a simple method using fluorescent activated cell sorting (FACS) to purify genetically labeled neurons from juvenile and adult mouse brains for gene expression profiling. We identify and verify a new set of differentially expressed genes in the striatonigral and striatopallidal neurons, two functionally and clinically important projection neuron subtypes in the basal ganglia. We further demonstrate that Ebf1 is a lineage-specific transcription factor essential to the differentiation of striatonigral neurons. Our study provides a general approach for profiling cell type–specific gene expression in the mature mammalian brain and identifies a set of genes critical to the function and dysfunction of the striatal projection neuron circuit.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: EGFP expression in subtypes of striatal projection neurons in three BAC transgenic mice.
Figure 2: FACS-array procedure and validation of known striatal genes.
Figure 3: Microarray comparison schematic.
Figure 4: Independent validation of MSN subtype–specific genes.
Figure 5: BAC transgenic validation of Slc35d3 expression in the striatonigral neurons.
Figure 6: Ebf1 is involved in lineage-specific differentiation of striatonigral neurons.
Figure 7: Striatonigral neuron axonal differentiation deficits in P0 Ebf1−/− mice.

Similar content being viewed by others

References

  1. Dougherty, J.D. & Geschwind, D.H. Progress in realizing the promise of microarrays in systems neurobiology. Neuron 45, 183–185 (2005).

    Article  CAS  Google Scholar 

  2. Mirnics, K. & Pevsner, J. Progress in the use of microarray technology to study the neurobiology of disease. Nat. Neurosci. 7, 434–439 (2004).

    Article  CAS  Google Scholar 

  3. Cao, Y. & Dulac, C. Profiling brain transcription: neurons learn a lesson from yeast. Curr. Opin. Neurobiol. 11, 615–620 (2001).

    Article  CAS  Google Scholar 

  4. Tietjen, I. et al. Single-cell transcriptional analysis of neuronal progenitors. Neuron 38, 161–175 (2003).

    Article  CAS  Google Scholar 

  5. Kamme, F. et al. Single-cell microarray analysis in hippocampus CA1: demonstration and validation of cellular heterogeneity. J Neurosci. 23, 3607–3615 (2003).

    Article  CAS  Google Scholar 

  6. Arlotta, P. et al. Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 45, 207–221 (2005).

    Article  CAS  Google Scholar 

  7. Loconto, J. et al. Functional expression of murine V2R pheromone receptors involves selective association with the M10 and M1 families of MHC class Ib molecules. Cell 112, 607–618 (2003).

    Article  CAS  Google Scholar 

  8. Molyneaux, B.J., Arlotta, P., Hirata, T., Hibi, M. & Macklis, J.D. Fezl is required for the birth and specification of corticospinal motor neurons. Neuron 47, 817–831 (2005).

    Article  CAS  Google Scholar 

  9. Heintz, N. BAC to the future: the use of bac transgenic mice for neuroscience research. Nat. Rev. Neurosci. 2, 861–870 (2001).

    Article  CAS  Google Scholar 

  10. Yang, X.W., Model, P. & Heintz, N. Homologous recombination based modification in Escherichia coli and germline transmission in transgenic mice of a bacterial artificial chromosome. Nat. Biotechnol. 15, 859–865 (1997).

    Article  CAS  Google Scholar 

  11. Gong, S., Yang, X.W., Li, C. & Heintz, N. Highly efficient modification of bacterial artificial chromosomes (BACs) using novel shuttle vectors containing the R6Kgamma origin of replication. Genome Res. 12, 1992–1998 (2002).

    Article  CAS  Google Scholar 

  12. Gong, S. et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425, 917–925 (2003).

    Article  CAS  Google Scholar 

  13. Gerfen, C.R. The neostriatal mosaic: multiple levels of compartmental organization. Trends Neurosci. 15, 133–139 (1992).

    Article  CAS  Google Scholar 

  14. Graybiel, A.M. The basal ganglia. Curr. Biol. 10, R509–R511 (2000).

    Article  CAS  Google Scholar 

  15. Packard, M.G. & Knowlton, B.J. Learning and memory functions of the basal ganglia. Annu. Rev. Neurosci. 25, 563–593 (2002).

    Article  CAS  Google Scholar 

  16. Albin, R.L., Young, A.B. & Penney, J.B. The functional anatomy of basal ganglia disorders. Trends Neurosci. 12, 366–375 (1989).

    Article  CAS  Google Scholar 

  17. DeLong, M.R. Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 13, 281–285 (1990).

    Article  CAS  Google Scholar 

  18. Wichmann, T. & DeLong, M.R. Pathophysiology of Parkinson's disease: the MPTP primate model of the human disorder. Ann. NY Acad. Sci. 991, 199–213 (2003).

    Article  CAS  Google Scholar 

  19. Chao, J. & Nestler, E.J. Molecular neurobiology of drug addiction. Annu. Rev. Med. 55, 113–132 (2004).

    Article  CAS  Google Scholar 

  20. Graybiel, A.M. & Rauch, S.L. Toward a neurobiology of obsessive-compulsive disorder. Neuron 28, 343–347 (2000).

    Article  CAS  Google Scholar 

  21. Saka, E. & Graybiel, A.M. Pathophysiology of Tourette's syndrome: striatal pathways revisited. Brain Dev. 25 suppl. Suppl 1, S15–S19 (2003).

    Article  Google Scholar 

  22. Meyer-Lindenberg, A. et al. Reduced prefrontal activity predicts exaggerated striatal dopaminergic function in schizophrenia. Nat. Neurosci. 5, 267–271 (2002).

    Article  CAS  Google Scholar 

  23. Rogers, M.A., Bradshaw, J.L., Pantelis, C. & Phillips, J.G. Frontostriatal deficits in unipolar major depression. Brain Res. Bull. 47, 297–310 (1998).

    Article  CAS  Google Scholar 

  24. Gerfen, C.R. et al. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250, 1429–1432 (1990).

    Article  CAS  Google Scholar 

  25. Hersch, S.M. et al. Electron microscopic analysis of D1 and D2 dopamine receptor proteins in the dorsal striatum and their synaptic relationships with motor corticostriatal afferents. J. Neurosci. 15, 5222–5237 (1995).

    Article  CAS  Google Scholar 

  26. Schiffmann, S.N. & Vanderhaeghen, J.J. Adenosine A2 receptors regulate the gene expression of striatopallidal and striatonigral neurons. J. Neurosci. 13, 1080–1087 (1993).

    Article  CAS  Google Scholar 

  27. Ince, E., Ciliax, B.J. & Levey, A.I. Differential expression of D1 and D2 dopamine and m4 muscarinic acetylcholine receptor proteins in identified striatonigral neurons. Synapse 27, 357–366 (1997).

    Article  CAS  Google Scholar 

  28. Fishell, G. & van der Kooy, D. Pattern formation in the striatum: neurons with early projections to the substantia nigra survive the cell death period. J. Comp. Neurol. 312, 33–42 (1991).

    Article  CAS  Google Scholar 

  29. Sabatti, C., Karsten, S.L. & Geschwind, D.H. Thresholding rules for recovering a sparse signal from microarray experiments. Math. Biosci. 176, 17–34 (2002).

    Article  CAS  Google Scholar 

  30. Dennis, G. Jr. et al. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 4, 3 (2003).

    Article  Google Scholar 

  31. Svenningsson, P. et al. DARPP-32: an integrator of neurotransmission. Annu. Rev. Pharmacol. Toxicol. 44, 269–296 (2004).

    Article  CAS  Google Scholar 

  32. Ishida, N. & Kawakita, M. Molecular physiology and pathology of the nucleotide sugar transporter family (SLC35). Pflugers Arch. 447, 768–775 (2004).

    Article  CAS  Google Scholar 

  33. Goto, S. et al. UDP-sugar transporter implicated in glycosylation and processing of Notch. Nat. Cell Biol. 3, 816–822 (2001).

    Article  CAS  Google Scholar 

  34. Selva, E.M. et al. Dual role of the fringe connection gene in both heparan sulphate and fringe-dependent signalling events. Nat. Cell Biol. 3, 809–815 (2001).

    Article  CAS  Google Scholar 

  35. Berninsone, P. et al. SQV-7, a protein involved in Caenorhabditis elegans epithelial invagination and early embryogenesis, transports UDP-glucuronic acid, UDP-N- acetylgalactosamine, and UDP-galactose. Proc. Natl. Acad. Sci. USA 98, 3738–3743 (2001).

    Article  CAS  Google Scholar 

  36. Warming, S. et al. Evi3, a common retroviral integration site in murine B-cell lymphoma, encodes an EBFAZ-related Kruppel-like zinc finger protein. Blood 101, 1934–1940 (2003).

    Article  CAS  Google Scholar 

  37. Bond, H.M. et al. Early hematopoietic zinc finger protein (EHZF), the human homolog to mouse Evi3, is highly expressed in primitive human hematopoietic cells. Blood 103, 2062–2070 (2004).

    Article  CAS  Google Scholar 

  38. Hentges, K.E. et al. Evi3, a zinc-finger protein related to EBFAZ, regulates EBF activity in B-cell leukemia. Oncogene 24, 1220–1230 (2005).

    Article  CAS  Google Scholar 

  39. Lin, H. & Grosschedl, R. Failure of B-cell differentiation in mice lacking the transcription factor EBF. Nature 376, 263–267 (1995).

    Article  CAS  Google Scholar 

  40. Tsai, R.Y. & Reed, R.R. Cloning and functional characterization of Roaz, a zinc finger protein that interacts with O/E-1 to regulate gene expression: implications for olfactory neuronal development. J. Neurosci. 17, 4159–4169 (1997).

    Article  CAS  Google Scholar 

  41. Hata, A. et al. OAZ uses distinct DNA- and protein-binding zinc fingers in separate BMP-Smad and Olf signaling pathways. Cell 100, 229–240 (2000).

    Article  CAS  Google Scholar 

  42. Garel, S., Marin, F., Grosschedl, R. & Charnay, P. Ebf1 controls early cell differentiation in the embryonic striatum. Development 126, 5285–5294 (1999).

    CAS  Google Scholar 

  43. Prasad, B.C. et al. unc-3, a gene required for axonal guidance in Caenorhabditis elegans, encodes a member of the O/E family of transcription factors. Development 125, 1561–1568 (1998).

    CAS  Google Scholar 

  44. Kim, K., Colosimo, M.E., Yeung, H. & Sengupta, P. The UNC-3 Olf/EBF protein represses alternate neuronal programs to specify chemosensory neuron identity. Dev. Biol. 286, 136–148 (2005).

    Article  CAS  Google Scholar 

  45. de Silva, M.G. et al. Disruption of a novel member of a sodium/hydrogen exchanger family and DOCK3 is associated with an attention deficit hyperactivity disorder-like phenotype. J. Med. Genet. 40, 733–740 (2003).

    Article  CAS  Google Scholar 

  46. Martino, D. & Giovannoni, G. Antibasal ganglia antibodies and their relevance to movement disorders. Curr. Opin. Neurol. 17, 425–432 (2004).

    Article  Google Scholar 

  47. Church, A.J. et al. Anti-basal ganglia antibodies in acute and persistent Sydenham's chorea. Neurology 59, 227–231 (2002).

    Article  CAS  Google Scholar 

  48. Kirvan, C.A., Swedo, S.E., Heuser, J.S. & Cunningham, M.W. Mimicry and autoantibody-mediated neuronal cell signaling in Sydenham chorea. Nat. Med. 9, 914–920 (2003).

    Article  CAS  Google Scholar 

  49. Saeed, A.I. et al. TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34, 374–378 (2003).

    Article  CAS  Google Scholar 

  50. Tecott, L.H., Rubenstein, J.L., Paxinos, G., Evans, C.J., Eberwine, J.H. & Valentino, K.L. Developmental expression of proenkephalin mRNA and peptides in rat striatum. Brain Res. Dev. Brain Res. 49, 75–86 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank N. Heintz (Rockefeller University) and the National Institute of Neurological Disorders and Stroke (NINDS) Gene Expression Nervous System Atlas (GENSAT) program for providing the BAC transgenic mice; R. Grosschedl (Max-Planck-Institute of Immunobiology, Freiburg, Germany) for the Ebf1 knockout mice; M.S. Levine for equipment use; C. Evans for the met-Enkephalin antibody; D. Anderson (California Institute of Technology) for advice on cell dissociation; and S.L. Zipursky, A. Silva, D.E. Krantz, Y.E. Sun, M.S. Levine and members of the Yang lab for discussions. We would like to thank the UCLA Jonsson Comprehensive Cancer Center and Center for AIDS Research Flow Cytometry Core Facility, and UCLA NINDS/National Institute of Mental Health (NIMH) DNA Microarray Core Facility for their services. X.W.Y. is supported by Semel Institute for Neuroscience and Human Behaviors, NINDS (NS049501 and NS047391) and the Hereditary Disease Foundation, and by pilot grants from UCLA Hatos Center for Neuropharmacology (National Institute of Drug Abuse P50DA05010) and UCLA Brain Research Institute (supported by the Employees Charity Organization of Northrup Grumman). M.K.L. and M.G. are supported by UCLA Mental Retardation Research Center training grants (5T32HD007032 from National Institute of Child Health and Human Development). M.G. is also supported by UCLA Center for Neurobehavioral Genetics (5T32NS048004 from NINDS). D.H.G. is supported by NINDS/NIMH U24 NS43562. S.L.K. is supported by the French Foundation for Alzheimer's Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X William Yang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Analysis of cell death and stress related genes in sorted neurons. (PDF 1606 kb)

Supplementary Fig. 2

Gene Ontology analysis identifies enrichment in Signal Transduction (EASE score; p < 0.05). (PDF 398 kb)

Supplementary Fig. 3

A subset of MSN-subtype-specific genes has striatal-enriched expression. (PDF 2956 kb)

Supplementary Fig. 4

Striatonigral neurons are more affected in the dorsal striatum compared to the ventral striatum (nuclear accumbens) in Ebf1−/− mice. (PDF 2856 kb)

Supplementary Fig. 5

Low amounts of starting RNA template yield reproducible and consistent results. (PDF 2031 kb)

Supplementary Table 1

Experimental chart of performed microarray hybridizations. (PDF 53 kb)

Supplementary Table 2

qRT-PCR using Taqman Gene Expression Assays show enrichment of Evi3/Zfp521 and Ebf1 in the striatonigral MSNs. (PDF 64 kb)

Supplementary Table 3

PCR primers used for RT-PCR validation of the striatal MSN-subtype specific genes and to make in situ hybridization probes. (PDF 97 kb)

Supplementary Methods (PDF 125 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lobo, M., Karsten, S., Gray, M. et al. FACS-array profiling of striatal projection neuron subtypes in juvenile and adult mouse brains. Nat Neurosci 9, 443–452 (2006). https://doi.org/10.1038/nn1654

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1654

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing