Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selective vulnerability and pruning of phasic motoneuron axons in motoneuron disease alleviated by CNTF

Abstract

Neurodegenerative diseases can have long preclinical phases and insidious progression patterns, but the mechanisms of disease progression are poorly understood. Because quantitative accounts of neuronal circuitry affected by disease have been lacking, it has remained unclear whether disease progression reflects processes of stochastic loss or temporally defined selective vulnerabilities of distinct synapses or axons. Here we derive a quantitative topographic map of muscle innervation in the hindlimb. We show that in two mouse models of motoneuron disease (G93A SOD1 and G85R SOD1), axons of fast-fatiguable motoneurons are affected synchronously, long before symptoms appear. Fast-fatigue-resistant motoneuron axons are affected at symptom-onset, whereas axons of slow motoneurons are resistant. Axonal vulnerability leads to synaptic vesicle stalling and accumulation of BC12a1-a, an anti-apoptotic protein. It is alleviated by ciliary neurotrophic factor and triggers proteasome-dependent pruning of peripheral axon branches. Thus, motoneuron disease involves predictable, selective vulnerability patterns by physiological subtypes of axons, episodes of abrupt pruning in the target region and compensation by resistant axons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Quantitative topographic map of the motor units innervating the LGC muscle in the mouse.
Figure 2: Analysis of subcompartment denervation patterns in hindlimb muscles of G93A SOD1 mice reveals grouping into three distinct classes.
Figure 3: Identification of motoneuron subtypes vulnerable and resistant to axon pruning in G93A SOD1mice.
Figure 4: Selective vulnerability of FF and FR motoneuron axons in G93A SOD1 mice.
Figure 5: Early stalling and loss of synaptic vesicles from intramuscular axons and NMJs in motoneuron disease.
Figure 6: Closely comparable patterns of selective FF and FR axon pruning in two FALS models with distinct disease onset times.
Figure 7: Local applications of CNTF alleviate FALS-associated axonal vulnerability.
Figure 8: CNTF-sensitive axonal vulnerability is followed by lactacystin-sensitive peripheral axon pruning.

Similar content being viewed by others

References

  1. Coleman, P.D. & Yao, P.J. Synaptic slaughter in Alzheimer's disease. Neurobiol. Aging 24, 1023–1027 (2003).

    Article  CAS  Google Scholar 

  2. Gurney, M.E. et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 264, 1772–1775 (1994).

    Article  CAS  Google Scholar 

  3. Bruijn, L.I., Miller, T.M. & Cleveland, D.W. Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu. Rev. Neurosci. 27, 723–749 (2004).

    Article  CAS  Google Scholar 

  4. Frey, D. et al. Early and selective loss of neuromuscular synapse subtypes with low sprouting competence in motoneuron diseases. J. Neurosci. 20, 2534–2542 (2000).

    Article  CAS  Google Scholar 

  5. Fischer, L.R. et al. Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp. Neurol. 185, 232–240 (2004).

    Article  Google Scholar 

  6. Lino, M.M., Schneider, C. & Caroni, P. Accumulation of SOD1 mutants in postnatal motoneurons does not cause motoneuron pathology or motoneuron disease. J. Neurosci. 22, 4825–4832 (2002).

    Article  CAS  Google Scholar 

  7. Clement, A.M. et al. Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science 302, 113–117 (2003).

    Article  CAS  Google Scholar 

  8. Liu, J. et al. Toxicity of familial ALS-linked SOD1 mutants from selective recruitment to spinal mitochondria. Neuron 43, 5–17 (2004).

    Article  CAS  Google Scholar 

  9. Pasinelli, P. et al. Amyotrophic lateral sclerosis-associated SOD1 mutant proteins bind and aggregate with Bcl-2 in spinal cord mitochondria. Neuron 43, 19–30 (2004).

    Article  CAS  Google Scholar 

  10. Wong, P.C. et al. An adverse property of a familial ALS-linked SOD1 mutation causes motoneuron disease characterized by vacuolar degeneration of mitochondria. Neuron 14, 1105–1116 (1995).

    Article  CAS  Google Scholar 

  11. Collard, J.F., Cote, F. & Julien, J.P. Defective axonal transport in a transgenic mouse model of amyotrophic lateral sclerosis. Nature 375, 61–64 (1995).

    Article  CAS  Google Scholar 

  12. Zhang, B., Tu, P., Abtahian, F., Trojanowski, J.Q. & Lee, V.M. Neurofilaments and orthograde transport are reduced in ventral root axons of transgenic mice that express human SOD1 with a G93A mutation. J. Cell Biol. 139, 1307–1315 (1997).

    Article  CAS  Google Scholar 

  13. Williamson, T.L. & Cleveland, D.W. Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons. Nat. Neurosci. 2, 50–56 (1999).

    Article  CAS  Google Scholar 

  14. Pinter, M.J., Waldeck, R.F., Wallace, N. & Crok, L.C. Motor unit behavior in canine motor neuron disease. J. Neurosci. 15, 3447–3457 (1995).

    Article  CAS  Google Scholar 

  15. Kostic, V., Jackson-Lewis, V., de Bilbao, F., Dubois-Dauphin, M. & Przedborski, S. Bcl-2: prolonging life in a transgenic mouse model of familial amyotrophic lateral sclerosis. Science 277, 559–562 (1997).

    Article  CAS  Google Scholar 

  16. Sagot, Y. et al. Bcl-2 overexpression prevents motoneuron cell body loss but not axonal degeneration in a mouse model of a neurodegenerative disease. J. Neurosci. 15, 7727–7733 (1995).

    Article  CAS  Google Scholar 

  17. Lobsiger, C.S., Garcia, M.L., Ward, C.M. & Cleveland, D.W. Altered axonal architecture by removal of the heavily phosphorylated neurofilament tail domains strongly slows superoxide dismutase 1 mutant-mediated ALS. Proc. Natl. Acad. Sci. USA 102, 10351–10356 (2005).

    Article  CAS  Google Scholar 

  18. Sagot, Y., Rosse, T., Vejsada, R., Perrelet, D. & Kato, A.C. Differential effects of neurotrophic factors on motoneuron retrograde labeling in a murine model of motoneuron disease. J. Neurosci. 18, 1132–1141 (1998).

    Article  CAS  Google Scholar 

  19. Burke, R.E. Physiology of motor units. in Myology (eds. Engel, A.G. & Franzini-Armstrong, C.) 464–484 (McGraw-Hill, New York, 1994).

  20. De Paola, V., Arber, S. & Caroni, P. AMPA receptors regulate dynamic equilibrium of presynaptic terminals in mature hippocampal networks. Nat. Neurosci. 6, 491–500 (2003).

    Article  CAS  Google Scholar 

  21. Stokin, G.B. et al. Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease. Science 307, 1282–1288 (2005).

    Article  CAS  Google Scholar 

  22. Gunawardena, S. & Goldstein, L.S. Polyglutamine diseases and transport problems: deadly traffic jams on neuronal highways. Arch. Neurol. 62, 46–51 (2005).

    Article  Google Scholar 

  23. Nguyen, Q.T., Sanes, J.R. & Lichtman, J.W. Pre-existing pathways promote precise projection patterns. Nat. Neurosci. 5, 861–867 (2002).

    Article  CAS  Google Scholar 

  24. Watts, R.J., Hoopfer, E.D. & Luo, L. Axon pruning during Drosophila metamorphosis: evidence for local degeneration and requirement of the ubiquitin-proteasome system. Neuron 38, 871–885 (2003).

    Article  CAS  Google Scholar 

  25. Zhai, Q. et al. Involvement of the ubiquitin-proteasome system in the early stages of Wallerian degeneration. Neuron 39, 217–225 (2003).

    Article  CAS  Google Scholar 

  26. Raff, M.C., Whitmore, A.V. & Finn, J.T. Axonal self-destruction and neurodegeneration. Science 296, 868–871 (2002).

    Article  CAS  Google Scholar 

  27. Bruijn, L.I. et al. ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 18, 327–338 (1997).

    Article  CAS  Google Scholar 

  28. Bommel, H. et al. Missense mutation in the tubulin-specific chaperone E (Tbce) gene in the mouse mutant progressive motor neuronopathy, a model of human motoneuron disease. J. Cell Biol. 159, 563–569 (2002).

    Article  CAS  Google Scholar 

  29. Williamson, T.L. et al. Absence of neurofilaments reduces the selective vulnerability of motor neurons and slows disease caused by a familial amyotrophic lateral sclerosis-linked superoxide dismutase 1 mutant. Proc. Natl. Acad. Sci. USA 95, 9631–9636 (1998).

    Article  CAS  Google Scholar 

  30. Couillard-Despres, S. et al. Protective effect of neurofilament heavy gene overexpression in motor neuron disease induced by mutant superoxide dismutase. Proc. Natl. Acad. Sci. USA 95, 9626–9630 (1998).

    Article  CAS  Google Scholar 

  31. Peterson, W.M., Wang, Q., Tzekova, R. & Wiegand, S.J. Ciliary neurotrophic factor and stress stimuli activate the Jak-STAT pathway in retinal neurons and glia. J. Neurosci. 20, 4081–4090 (2000).

    Article  CAS  Google Scholar 

  32. Park, K., Luo, J.M., Hisheh, S., Harvey, A.R. & Cui, Q. Cellular mechanisms associated with spontaneous and ciliary neurotrophic factor-cAMP-induced survival and axonal regeneration of adult retinal ganglion cells. J. Neurosci. 24, 10806–10815 (2004).

    Article  CAS  Google Scholar 

  33. Lee, H.H., Dadgostar, H., Cheng, Q., Shu, J. & Cheng, G. NF-kappaB-mediated up-regulation of Bcl-x and Bfl-1/A1 is required for CD40 survival signaling in B lymphocytes. Proc. Natl. Acad. Sci. USA 96, 9136–9141 (1999).

    Article  CAS  Google Scholar 

  34. Delio, D.A., Fiori, M.G. & Lowndes, H.E. Motor unit function during evolution of proximal axon swellings. J. Neurol. Sci. 109, 30–40 (1992).

    Article  CAS  Google Scholar 

  35. LaMonte, B.H. et al. Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late-onset progressive degeneration. Neuron 34, 715–727 (2002).

    Article  CAS  Google Scholar 

  36. Xia, C.H. et al. Abnormal neurofilament transport caused by targeted disruption of neuronal kinesin heavy chain KIF5A. J. Cell Biol. 161, 55–66 (2003).

    Article  CAS  Google Scholar 

  37. Al-Chalabi, A. et al. Ciliary neurotrophic factor genotype does not influence clinical phenotype in amyotrophic lateral sclerosis. Ann. Neurol. 54, 130–134 (2003).

    Article  Google Scholar 

  38. Giess, R. et al. Early onset of severe familial amyotrophic lateral sclerosis with a SOD-1 mutation: potential impact of CNTF as a candidate modifier gene. Am. J. Hum. Genet. 70, 1277–1286 (2002).

    Article  CAS  Google Scholar 

  39. Schaefer, A.M., Sanes, J.R. & Lichtman, J.W. A compensatory subpopulation of motor neurons in a mouse model of amyotrophic lateral sclerosis. J. Comp. Neurol. 490, 209–219 (2005).

    Article  Google Scholar 

  40. Atkin, J.D. et al. Properties of slow- and fast-twitch muscle fibres in a mouse model of amyotrophic lateral sclerosis. Neuromuscul. Disord. 15, 377–388 (2005).

    Article  Google Scholar 

  41. Raoul, C, (2002) Motoneuron death triggered by a specific pathway downstream of Fas: potentiation by ALS-linked SOD1 mutations. Neuron 35, 1067–1083 (2002).

    Article  CAS  Google Scholar 

  42. Dengler, R. et al. Amyotrophic lateral sclerosis: macro-EMG and twitch forces of single motor units. Muscle Nerve 13, 545–550 (1990).

    Article  CAS  Google Scholar 

  43. Larsson, L., Li, X., Tollback, A. & Grimby, L. Contractile properties in single muscle fibers from chronically overused motor units in relation to motoneuron firing properties in prior polio patients. J. Neurol. Sci. 132, 182–192 (1995).

    Article  CAS  Google Scholar 

  44. Nguyen, M.D., Lariviere, R.C. & Julien, J.P. Reduction of axonal caliber does not alleviate motor neuron disease caused by mutant superoxide dismutase 1. Proc. Natl. Acad. Sci. USA 97, 12306–12311 (2000).

    Article  CAS  Google Scholar 

  45. Shaw, P.J. & Eggett, C.J. Molecular factors underlying selective vulnerability of motor neurons to neurodegeneration in amyotrophic lateral sclerosis. J. Neurol. 247, I17–I27 (2000).

    Article  Google Scholar 

  46. von Lewinski, F. & Keller, B.U. Ca2+, mitochondria and selective motoneuron vulnerability: implications for ALS. Trends Neurosci. 28, 494–500 (2005).

    Article  CAS  Google Scholar 

  47. Kuo, J.J. et al. Hyperexcitability of cultured spinal motoneurons from presymptomatic ALS mice. J. Neurophysiol. 91, 571–575 (2004).

    Article  Google Scholar 

  48. Gunawardena, S. & Goldstein, L.S. Disruption of axonal transport and neuronal viability by amyloid precursor protein mutations in Drosophila. Neuron 32, 389–401 (2001).

    Article  CAS  Google Scholar 

  49. Gunawardena, S. et al. Disruption of axonal transport by loss of huntingtin or expression of pathogenic polyQ proteins in Drosophila. Neuron 40, 25–40 (2003).

    Article  CAS  Google Scholar 

  50. Mittoux, V. et al. Restoration of cognitive and motor functions by ciliary neurotrophic factor in a primate model of Huntington's disease. Hum. Gene Ther. 11, 1177–1187 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to C. Schneider (Friedrich Miescher Institut) for technical assistance, S. Lefler (Friedrich Miescher Institut) for myosin heavy chain (MHC) labeling data, M.T. Carri (University of Rome, Tor Vergata, Italy) for sharing with us their results on Bc12a1-a induction in FALS and S. Arber (Friedrich Miescher Institut and Biozentrum, University of Basel) for comments on the manuscript. S.S. was supported by EU FP6 (NeuroNE). The Friedrich Miescher Institut is part of the Novartis Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pico Caroni.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pun, S., Santos, A., Saxena, S. et al. Selective vulnerability and pruning of phasic motoneuron axons in motoneuron disease alleviated by CNTF. Nat Neurosci 9, 408–419 (2006). https://doi.org/10.1038/nn1653

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1653

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing