Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Signaling protein complexes associated with neuronal ion channels

Abstract

The pore-forming subunits of many ion channels exist in the membrane as one component of a regulatory protein complex, which may also contain one or more signaling proteins that contribute to the modulation of channel properties. Here I review this field, with emphasis on several different kinds of neuronal potassium channels for which the evidence for ion channel signaling complexes is most compelling. A key challenge for the future is to determine the roles of such signaling protein complexes in neuronal physiology and behavior.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ion channel signaling protein complexes.

Jessica Iannuzzi

Figure 2: Three ways of assembling an ion channel signaling protein complex.

Jessica Iannuzzi

Figure 3: A KCNQ channel signaling protein complex.

Jessica Iannuzzi

Similar content being viewed by others

References

  1. Hille, B. Ion Channels of Excitable Membranes (Sinauer Associates, Sunderland, Massachusetts, 2001).

    Google Scholar 

  2. Yu, F.H. & Catterall, W.A. The VGL-Chanome: a protein superfamily specialized for electrical signaling and ionic homeostasis. Sci. STKE 2004, re15 (2004).

    PubMed  Google Scholar 

  3. Valderrama, R., Weill, C.L., McNamee, M. & Karlin, A. Isolation and properties of acetylcholine receptors from Electrophorus and Torpedo. Ann. NY Acad. Sci. 274, 108–115 (1976).

    Article  CAS  PubMed  Google Scholar 

  4. Hucho, F. & Changeux, J.P. Molecular weight and quaternary structure of the cholinergic receptor protein extracted by detergents from Electrophorus electricus electric tissue. FEBS Lett. 38, 11–15 (1973).

    Article  CAS  PubMed  Google Scholar 

  5. Sigel, E., Stephenson, F.A., Mamalaki, C. & Barnard, E.A. A gamma-aminobutyric acid/benzodiazepine receptor complex of bovine cerebral cortex. J. Biol. Chem. 258, 6965–6971 (1983).

    CAS  PubMed  Google Scholar 

  6. Barchi, R.L. Protein components of the purified sodium channel from rat skeletal muscle sarcolemma. J. Neurochem. 40, 1377–1385 (1983).

    Article  CAS  PubMed  Google Scholar 

  7. Hartshorne, R.P. & Catterall, W.A. The sodium channel from rat brain: purification and subunit composition. J. Biol. Chem. 259, 1667–1675 (1984).

    CAS  PubMed  Google Scholar 

  8. Curtis, B.M. & Catterall, W.A. Purification of the calcium antagonist receptor of the voltage-sensitive calcium channel from skeletal muscle transverse tubules. Biochemistry 23, 2113–2118 (1984).

    Article  CAS  PubMed  Google Scholar 

  9. Dolly, J.O. et al. Oligomeric and subunit structures of neuronal voltage-sensitive K+ channels. Biochem. Soc. Trans. 22, 473–478 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Noda, M. et al. Expression of functional sodium channels from cloned cDNA. Nature 322, 826–828 (1986).

    Article  CAS  PubMed  Google Scholar 

  11. Krafte, D.S., Snutch, T.P., Leonard, J.P., Davidson, N. & Lester, H.A. Evidence for the involvement of more than one mRNA species in controlling the inactivation process of rat and rabbit brain Na channels expressed in Xenopus oocytes. J. Neurosci. 8, 2859–2868 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Isom, L.L., De Jongh, K.S. & Catterall, W.A. Auxiliary subunits of voltage-gated ion channels. Neuron 12, 1183–1194 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Rehm, H. et al. Dendrotoxin-binding brain membrane protein displays a K+ channel activity that is stimulated by both cAMP-dependent and endogenous phosphorylations. Biochemistry 28, 6455–6460 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. Chung, S.K., Reinhart, P.H., Martin, B.L., Brautigan, D. & Levitan, I.B. Protein kinase activity closely associated with a reconstituted calcium-activated potassium channel. Science 253, 560–562 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Reinhart, P.H. & Levitan, I.B. Kinase and phosphatase activities intimately associated with a reconstituted calcium-dependent potassium channel. J. Neurosci. 15, 4572–4579 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ferris, C.D., Cameron, A.M., Bredt, D.S., Huganir, R.L. & Snyder, S.H. Autophosphorylation of inositol 1,4,5-trisphosphate receptors. J. Biol. Chem. 267, 7036–7041 (1992).

    CAS  PubMed  Google Scholar 

  17. Holmes, T.C., Fadool, D.A., Ren, R. & Levitan, I.B. Association of Src tyrosine kinase with a human potassium channel mediated by SH3 domain. Science 274, 2089–2091 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Fuhrer, C. & Hall, Z.W. Functional interaction of Src family kinases with the acetylcholine receptor in C2 myotubes. J. Biol. Chem. 271, 32474–32481 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Yu, X.-M., Askalan, R., Keil, G.J. & Salter, M.W. NMDA channel regulation by channel-associated protein tyrosine kinase Src. Science 275, 674–678 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Wang, J., Zhou, Y., Wen, H. & Levitan, I.B. Simultaneous binding of two protein kinases to a calcium-dependent potassium channel. J. Neurosci. 19 RC4, 1–7 (1999).

    Google Scholar 

  21. Wong, W. & Scott, J.D. AKAP signalling complexes: focal points in space and time. Nat. Rev. Mol. Cell Biol. 5, 959–970 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Tibbs, V.C., Gray, P.C., Catterall, W.A. & Murphy, B.J. AKAP15 anchors cAMP-dependent protein kinase to brain sodium channels. J. Biol. Chem. 273, 25783–25788 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Klauck, T.M. et al. Coordination of three signaling enzymes by AKAP79, a mammalian scaffold protein. Science 271, 1589–1592 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Pawson, T. & Scott, J.D. Signaling through scaffold, anchoring, and adaptor proteins. Science 278, 2075–2080 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Logothetis, D.E., Kurachi, Y., Galper, J., Neer, E.J. & Clapham, D.E. The βΓ subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature 325, 321–326 (1987).

    Article  CAS  PubMed  Google Scholar 

  26. Reuveny, E. et al. Activation of the cloned muscarinic potassium channel by G protein βΓ subunits. Nature 370, 143–146 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Dolphin, A.C. G protein modulation of voltage-gated calcium channels. Pharmacol. Rev. 55, 607–627 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Huang, C.L., Jan, Y.N. & Jan, L.Y. Binding of the G protein betagamma subunit to multiple regions of G protein-gated inward-rectifying K+ channels. FEBS Lett. 405, 291–298 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Chin, D. & Means, A.R. Calmodulin: a prototypical calcium sensor. Trends Cell Biol. 10, 322–328 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Levitan, I.B. It is calmodulin after all! Mediator of the calcium modulation of multiple ion channels. Neuron 22, 645–648 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Saimi, Y. & Kung, C. Calmodulin as an ion channel subunit. Annu. Rev. Physiol. 64, 289–311 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Picton, C., Klee, C.B. & Cohen, P. Phosphorylase kinase from rabbit skeletal muscle: identification of the calmodulin-binding subunits. Eur. J. Biochem. 111, 553–561 (1980).

    Article  CAS  PubMed  Google Scholar 

  33. Bonigk, W., Muller, F., Middendorff, R., Weyand, I. & Kaupp, U.B. Two alternatively spliced forms of the cGMP-gated channel alpha-subunit from cone photoreceptor are expressed in the chick pineal organ. J. Neurosci. 16, 7458–7468 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen, T.-Y. & Yau, K.-W. Direct modulation by Ca2+-calmodulin of cyclic nucleotide-activated channel of rat olfactory receptor neurons. Nature 368, 545–548 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Gordon, S.E., Downing-Park, J. & Zimmerman, A.L. Modulation of the cGMP-gated ion channel in frog rods by calmodulin and an endogenous inhibitory factor. J. Physiol. (Lond.) 486, 533–546 (1995).

    Article  CAS  Google Scholar 

  36. Hsu, Y.-T. & Molday, R.S. Modulation of the cGMP-gated channel of rod photoreceptor cells by calmodulin. Nature 361, 76–79 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Lee, A. et al. Ca2+/calmodulin binds to and modulates P/Q-type calcium channels. Nature 399, 155–159 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Peterson, B.Z., DeMaria, C.D., Adelman, J.P. & Yue, D.T. Calmodulin is the Ca2+ sensor for Ca2+ -dependent inactivation of L-type calcium channels. Neuron 22, 549–558 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Qin, N., Olcese, R., Bransby, M., Lin, T. & Birnbaumer, L. Ca2+-induced inhibition of the cardiac Ca2+ channel depends on calmodulin. Proc. Natl. Acad. Science. USA 96, 2435–2438 (1999).

    Article  CAS  Google Scholar 

  40. Zuhlke, R.D., Pitt, G.S., Deisseroth, K., Tsien, R.W. & Reuter, H. Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature 399, 159–162 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Ehlers, M.D., Zhang, S., Bernhardt, J.P. & Huganir, R.L. Inactivation of NMDA receptors by direct interaction of calmodulin with the NR1 subunit. Cell 84, 745–755 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Krupp, J.J., Vissel, B., Thomas, C.G., Heinemann, S.F. & Westbrook, G.L. Interactions of calmodulin and α-actinin with the NR1 subunit modulate Ca2+-dependent inactivation of NMDA receptors. J. Neurosci. 19, 1165–1178 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fanger, C.M. et al. Calmodulin mediates calcium-dependent activation of the intermediate conductance KCa channel, IKCa1. J. Biol. Chem. 274, 5746–5754 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Xia, X.M. et al. Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature 395, 503–507 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Lee, A., Scheuer, T. & Catterall, W.A. Ca2+/calmodulin-dependent facilitation and inactivation of P/Q-type Ca2+ channels. J. Neurosci. 20, 6830–6838 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mori, M. et al. Novel interaction of the voltage-dependent sodium channel (VDSC) with calmodulin: does VDSC acquire calmodulin-mediated Ca2+-sensitivity? Biochemistry 39, 1316–1323 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Young, K.A. & Caldwell, J.H. Modulation of skeletal and cardiac voltage-gated sodium channels by calmodulin. J. Physiol. (Lond.) 565, 349–370 (2005).

    Article  CAS  Google Scholar 

  48. Rettig, J. et al. Inactivation properties of voltage-gated K+ channels altered by presence of β-subunit. Nature 369, 289–294 (1994).

    Article  CAS  PubMed  Google Scholar 

  49. Gulbis, J.M., Mann, S. & MacKinnon, R. Structure of a voltage-dependent K+ channel β subunit. Cell 97, 943–952 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Misonou, H. & Trimmer, J.S. Determinants of voltage-gated potassium channel surface expression and localization in mammalian neurons. Crit. Rev. Biochem. Mol. Biol. 39, 125–145 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. An, W.F. et al. Modulation of A-type potassium channels by a family of calcium sensors. Nature 403, 553–556 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Schopperle, W.M. et al. Slob, a novel protein that interacts with the slowpoke calcium-dependent potassium channel. Neuron 20, 565–573 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Xia, X., Hirschberg, B., Smolik, S., Forte, M. & Adelman, J.P. dSlo interacting protein 1, a novel protein that interacts with large-conductance calcium-activated potassium channels. J. Neurosci. 18, 2360–2369 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zeng, H., Fei, H. & Levitan, I.B. The slowpoke channel binding protein Slob from Drosophila melanogaster exhibits regulatable protein kinase activity. Neurosci. Lett. 365, 33–38 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Nadler, M.J. et al. LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability. Nature 411, 590–595 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Runnels, L.W., Yue, L. & Clapham, D.E. TRP-PLIK, a Bifunctional Protein with Kinase and Ion Channel Activities. Science 291, 1043–1047 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Yamaguchi, H., Matsushita, M., Nairn, A.C. & Kuriyan, J. Crystal structure of the atypical protein kinase domain of a TRP channel with phosphotransferase activity. Mol. Cell 7, 1047–1057 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Perraud, A.L. et al. ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411, 595–599 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Sano, Y. et al. Immunocyte Ca2+ influx system mediated by LTRPC2. Science 293, 1327–1330 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Cai, S.Q., Hernandez, L., Wang, Y., Park, K.H. & Sesti, F. MPS-1 is a K(+) channel beta-subunit and a serine/threonine kinase. Nat. Neurosci. 8, 1503–1509 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Brenner, R., Jegla, T.J., Wickenden, A., Liu, Y. & Aldrich, R.W. Cloning and functional characterization of novel large conductance calcium-activated potassium channel beta subunits, hKCNMB3 and hKCNMB4. J. Biol. Chem. 275, 6453–6461 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Brenner, R. et al. Vasoregulation by the β1 subunit of the calcium-activated potassium channel. Nature 407, 870–876 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Wallner, M., Meera, P. & Toro, L. Determinant for β-subunit regulation in high-conductance voltage-activated and Ca2+-sensitive K+ channels: an additional transmembrane region at the N terminus. Proc. Natl. Acad. Sci. USA 93, 14922–14927 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Weiger, T.M. et al. A novel nervous system beta subunit that downregulates human large conductance calcium-dependent potassium channels. J. Neurosci. 20, 3563–3570 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Xia, X.M., Ding, J.P., Zeng, X.H., Duan, K.L. & Lingle, C.J. Rectification and rapid activation at low Ca2+ of Ca2+-activated, voltage-dependent BK currents: consequences of rapid inactivation by a novel β subunit. J. Neurosci. 20, 4890–4903 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zeng, H., Weiger, T.M., Fei, H., Jaramillo, A.M. & Levitan, I.B. The amino terminus of Slob, Slowpoke channel binding protein, critically influences its modulation of the channel. J. Gen. Physiol. 125, 631–640 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhou, Y. et al. A dynamically regulated 14–3-3, Slob, and Slowpoke potassium channel complex in Drosophila presynaptic nerve terminals. Neuron 22, 809–818 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Petkov, G.V. et al. Beta1-subunit of the Ca2+-activated K+ channel regulates contractile activity of mouse urinary bladder smooth muscle. J. Physiol. (Lond.) 537, 443–452 (2001).

    Article  CAS  Google Scholar 

  69. Brenner, R. et al. BK channel beta4 subunit reduces dentate gyrus excitability and protects against temporal lobe seizures. Nat. Neurosci. 8, 1752–1759 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Ceriani, M.F. et al. Genome-wide expression analysis in Drosophila reveals genes controlling circadian behavior. J. Neurosci. 22, 9305–9319 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Claridge-Chang, A. et al. Circadian Regulation of Gene Expression Systems in the Drosophila Head. Neuron 32, 657–671 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Lin, Y. et al. Influence of the period-dependent circadian clock on diurnal, circadian, and aperiodic gene expression in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 99, 9562–9567 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. McDonald, M.J. & Rosbash, M. Microarray analysis and organization of circadian gene expression in Drosophila. Cell 107, 567–578 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Ueda, H.R. et al. Genome-wide transcriptional orchestration of circadian rhythms in Drosophila. J. Biol. Chem. 277, 14048–14052 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Jaramillo, A.M. et al. Pattern of distribution and cycling of SLOB, Slowpoke channel binding protein, in Drosophila. BMC Neurosci. [online] 5, 3 (2004) (10.1186/1471-2202-5-3).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Cloues, R.K. & Sather, W.A. Afterhyperpolarization regulates firing rate in neurons of the suprachiasmatic nucleus. J. Neurosci. 23, 1593–1604 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pennartz, C.M., de Jeu, M.T.G., Bos, N.P.A., Schaap, J. & Geurtsen, A.M.S. Diurnal modulation of pacemaker potentials and calcium current in the mammalian circadian clock. Nature 416, 286–290 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Joiner, W.J., Khanna, R., Schlichter, L.C. & Kaczmarek, L.K. Calmodulin regulates assembly and trafficking of SK4/IK1 Ca2+-activated K+ channels. J. Biol. Chem. 276, 37980–37985 (2001).

    CAS  PubMed  Google Scholar 

  79. Bildl, W. et al. Protein kinase CK2 is coassembled with small conductance Ca(2+)-activated K+ channels and regulates channel gating. Neuron 43, 847–858 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Nakajo, S., Masuda, Y., Nakaya, K. & Nakamura, Y. Determination of the phosphorylation sites of calmodulin catalyzed by casein kinase 2. J. Biochem. 104, 946–951 (1988).

    Article  CAS  PubMed  Google Scholar 

  81. Bond, C.T. et al. Small conductance Ca2+-activated K+ channel knock-out mice reveal the identity of calcium-dependent afterhyperpolarization currents. J. Neurosci. 24, 5301–5306 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Stocker, M., Krause, M. & Pedarzani, P. An apamin-sensitive Ca2+-activated K+ current in hippocampal pyramidal neurons. Proc. Natl. Acad. Sci. USA 96, 4662–4667 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Stackman, R.W. et al. Small conductance Ca2+-activated K+ channels modulate synaptic plasticity and memory encoding. J. Neurosci. 22, 10163–10171 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Brown, D.A. & Adams, P.R. Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neuron. Nature 283, 673–676 (1980).

    Article  CAS  PubMed  Google Scholar 

  85. Marrion, N.V. Control of M-current. Annu. Rev. Physiol. 59, 483–504 (1997).

    Article  CAS  PubMed  Google Scholar 

  86. Gutman, G.A. et al. International union of pharmacology. XLI. Compendium of voltage-gated ion channels: potassium channels. Pharmacol. Rev. 55, 583–586 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. McCrossan, Z.A. & Abbott, G.W. The MinK-related peptides. Neuropharmacology 47, 787–821 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Jentsch, T.J. Neuronal KCNQ potassium channels: physiology and role in disease. Nat. Rev. Neurosci. 1, 21–30 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Wang, H.S. et al. KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. Science 282, 1890–1893 (1998).

    Article  CAS  PubMed  Google Scholar 

  90. Selyanko, A.A. et al. Two types of K(+) channel subunit, Erg1 and KCNQ2/3, contribute to the M-like current in a mammalian neuronal cell. J. Neurosci. 19, 7742–7756 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Suh, B.C. & Hille, B. Recovery from muscarinic modulation of M current channels requires phosphatidylinositol 4,5-bisphosphate synthesis. Neuron 35, 507–520 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Zhang, H. et al. PIP(2) activates KCNQ channels, and its hydrolysis underlies receptor-mediated inhibition of M currents. Neuron 37, 963–975 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Hoshi, N. et al. AKAP150 signaling complex promotes suppression of the M-current by muscarinic agonists. Nat. Neurosci. 6, 564–571 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Marx, S.O. et al. Requirement of a macromolecular signaling complex for β adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel. Science 295, 496–499 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Kurokawa, J., Motoike, H.K., Rao, J. & Kass, R.S. Regulatory actions of the A-kinase anchoring protein Yotiao on a heart potassium channel downstream of PKA phosphorylation. Proc. Natl. Acad. Sci. USA 101, 16374–16378 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gamper, N. & Shapiro, M.S. Calmodulin mediates Ca2+-dependent modulation of M-type K+ channels. J. Gen. Physiol. 122, 17–31 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wen, H. & Levitan, I.B. Calmodulin is an auxiliary subunit of KCNQ2/3 potassium channels. J. Neurosci. 22, 7991–8001 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yus-Nájera, E., Santana-Castro, I. & Villarroel, A. The identification and characterization of a noncontinuous calmodulin-binding site in noninactivating voltage-dependent KCNQ potassium channels. J. Biol. Chem. 277, 28545–28553 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Shahidullah, M., Santarelli, L.C., Wen, H. & Levitan, I.B. Expression of a calmodulin-binding KCNQ2 potassium channel fragment modulates neuronal M-current and membrane excitability. Proc. Natl. Acad. Sci. USA 102, 16454–16459 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Li, C. & Naren, A.P. Macromolecular complexes of cystic fibrosis transmembrane conductance regulator and its interacting partners. Pharmacol. Ther. 108, 208–223 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I am grateful to N. Connors, T. Ferguson, S. Reddy, T. Weiger and H. Zeng for their critical comments on the manuscript. Work in my laboratory is supported by grants from the McKnight Endowment Fund for Neuroscience and the National Institute of Neurological Disorders and Stroke (NINDS) of the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levitan, I. Signaling protein complexes associated with neuronal ion channels. Nat Neurosci 9, 305–310 (2006). https://doi.org/10.1038/nn1647

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1647

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing