Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Serum response factor controls neuronal circuit assembly in the hippocampus

Abstract

Higher organisms rely on multiple modes of memory storage using the hippocampal network, which is built by precisely orchestrated mechanisms of axonal outgrowth, guidance and synaptic targeting. We demonstrate essential roles of the transcription factor serum response factor (SRF), a sensor of cytoskeletal actin dynamics, in all these processes. Conditional deletion of the mouse Srf gene reduced neurite outgrowth and abolished mossy fiber segregation, resulting in ectopic fiber growth inside the pyramidal layer. SRF-deficient mossy fibers aberrantly targeted CA3 somata for synapse formation. Axon guidance assays showed that SRF was a key mediator of ephrin-A and semaphorin guidance cues; in SRF-deficient neurons, these resulted in the formation of F-actin–microtubule rings rather than complete growth cone collapse. Dominant-negative variants of the SRF cofactor megakaryocytic acute leukemia (MAL) severely impeded neurite outgrowth and guidance. These data highlight essential links between SRF-mediated transcription and axon guidance and circuit formation in the hippocampus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 2: Aberrant synaptic targeting of SRF-deficient mossy fiber terminals.
Figure 8: Identification of putative Srf target genes in hippocampal neurons.
Figure 1: Srf mutants show hippocampal neurite loss and mossy fiber misrouting in vivo.
Figure 3: Srf mutants show impaired neurite outgrowth.
Figure 4: Overexpression of SRF-VP16 promotes neurite elongation.
Figure 5: SRF is required for contact-mediated, repulsive axon guidance in vitro.
Figure 6: Growth cone dynamics are severely impaired in Srf mutants.
Figure 7: Rho-GTPase activity and the function of the SRF cofactor MAL in hippocampal neurons.

Similar content being viewed by others

References

  1. Nicoll, R.A. & Malenka, R.C. Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature 377, 115–118 (1995).

    Article  CAS  Google Scholar 

  2. Morimoto, K., Fahnestock, M. & Racine, R.J. Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog. Neurobiol. 73, 1–60 (2004).

    Article  CAS  Google Scholar 

  3. Blackstad, T.W. & Kjaerheim, A. Special axo-dendritic synapses in the hippocampal cortex: electron and light microscopic studies on the layer of mossy fibers. J. Comp. Neurol. 117, 133–159 (1961).

    Article  CAS  Google Scholar 

  4. Norman, C., Runswick, M., Pollock, R. & Treisman, R. Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element. Cell 55, 989–1003 (1988).

    Article  CAS  Google Scholar 

  5. Wang, D.Z. & Olson, E.N. Control of smooth muscle development by the myocardin family of transcriptional coactivators. Curr. Opin. Genet. Dev. 14, 558–566 (2004).

    Article  CAS  Google Scholar 

  6. Cen, B., Selvaraj, A. & Prywes, R. Myocardin/MKL family of SRF coactivators: key regulators of immediate early and muscle specific gene expression. J. Cell. Biochem. 93, 74–82 (2004).

    Article  CAS  Google Scholar 

  7. Buchwalter, G., Gross, C. & Wasylyk, B. Ets ternary complex transcription factors. Gene 324, 1–14 (2004).

    Article  CAS  Google Scholar 

  8. Schratt, G. et al. Serum response factor is crucial for actin cytoskeletal organization and focal adhesion assembly in embryonic stem cells. J. Cell Biol. 156, 737–750 (2002).

    Article  CAS  Google Scholar 

  9. Somogyi, K. & Rorth, P. Evidence for tension-based regulation of Drosophila MAL and SRF during invasive cell migration. Dev. Cell 7, 85–93 (2004).

    Article  CAS  Google Scholar 

  10. Sotiropoulos, A., Gineitis, D., Copeland, J. & Treisman, R. Signal-regulated activation of serum response factor is mediated by changes in actin dynamics. Cell 98, 159–169 (1999).

    Article  CAS  Google Scholar 

  11. Hill, C.S., Wynne, J. & Treisman, R. The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell 81, 1159–1170 (1995).

    Article  CAS  Google Scholar 

  12. Etienne-Manneville, S. & Hall, A. Rho GTPases in cell biology. Nature 420, 629–635 (2002).

    Article  CAS  Google Scholar 

  13. Miralles, F., Posern, G., Zaromytidou, A.I. & Treisman, R. Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 113, 329–342 (2003).

    Article  CAS  Google Scholar 

  14. Philippar, U. et al. The SRF target gene Fhl2 antagonizes RhoA/MAL-dependent activation of SRF. Mol. Cell 16, 867–880 (2004).

    Article  CAS  Google Scholar 

  15. Xia, Z., Dudek, H., Miranti, C.K. & Greenberg, M.E. Calcium influx via the NMDA receptor induces immediate early gene transcription by a MAP kinase/ERK-dependent mechanism. J. Neurosci. 16, 5425–5436 (1996).

    Article  CAS  Google Scholar 

  16. Ramanan, N. et al. SRF mediates activity-induced gene expression and synaptic plasticity but not neuronal viability. Nat. Neurosci. 8, 759–767 (2005).

    Article  CAS  Google Scholar 

  17. Alberti, S. et al. Neuronal migration in the murine rostral migratory stream requires serum response factor. Proc. Natl. Acad. Sci. USA 102, 6148–6153 (2005).

    Article  CAS  Google Scholar 

  18. Arsenian, S., Weinhold, B., Oelgeschlager, M., Ruther, U. & Nordheim, A. Serum response factor is essential for mesoderm formation during mouse embryogenesis. EMBO J. 17, 6289–6299 (1998).

    Article  CAS  Google Scholar 

  19. Wiebel, F.F., Rennekampff, V., Vintersten, K. & Nordheim, A. Generation of mice carrying conditional knockout alleles for the transcription factor SRF. Genesis 32, 124–126 (2002).

    Article  CAS  Google Scholar 

  20. Casanova, E. et al. A CamKIIalpha iCre BAC allows brain-specific gene inactivation. Genesis 31, 37–42 (2001).

    Article  CAS  Google Scholar 

  21. Singec, I. et al. Synaptic vesicle protein synaptoporin is differently expressed by subpopulations of mouse hippocampal neurons. J. Comp. Neurol. 452, 139–153 (2002).

    Article  CAS  Google Scholar 

  22. Pasquale, E.B. Eph receptor signalling casts a wide net on cell behaviour. Nat. Rev. Mol. Cell Biol. 6, 462–475 (2005).

    Article  CAS  Google Scholar 

  23. Brownlee, H. et al. Multiple ephrins regulate hippocampal neurite outgrowth. J. Comp. Neurol. 425, 315–322 (2000).

    Article  CAS  Google Scholar 

  24. Murai, K.K., Nguyen, L.N., Irie, F., Yamaguchi, Y. & Pasquale, E.B. Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling. Nat. Neurosci. 6, 153–160 (2003).

    Article  CAS  Google Scholar 

  25. Hansen, M.J., Dallal, G.E. & Flanagan, J.G. Retinal axon response to ephrin-as shows a graded, concentration-dependent transition from growth promotion to inhibition. Neuron 42, 717–730 (2004).

    Article  CAS  Google Scholar 

  26. Dent, E.W. & Gertler, F.B. Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron 40, 209–227 (2003).

    Article  CAS  Google Scholar 

  27. Chedotal, A. et al. Semaphorins III and IV repel hippocampal axons via two distinct receptors. Development 125, 4313–4323 (1998).

    CAS  PubMed  Google Scholar 

  28. Swiercz, J.M., Kuner, R., Behrens, J. & Offermanns, S. Plexin-B1 directly interacts with PDZ-RhoGEF/LARG to regulate RhoA and growth cone morphology. Neuron 35, 51–63 (2002).

    Article  CAS  Google Scholar 

  29. Govek, E.E., Newey, S.E. & Van Aelst, L. The role of the Rho GTPases in neuronal development. Genes Dev. 19, 1–49 (2005).

    Article  CAS  Google Scholar 

  30. Schwamborn, J.C. & Puschel, A.W. The sequential activity of the GTPases Rap1B and Cdc42 determines neuronal polarity. Nat. Neurosci. 7, 923–929 (2004).

    Article  CAS  Google Scholar 

  31. Da Silva, J.S. et al. RhoA/ROCK regulation of neuritogenesis via profilin IIa-mediated control of actin stability. J. Cell Biol. 162, 1267–1279 (2003).

    Article  CAS  Google Scholar 

  32. Tabuchi, A. et al. Nuclear translocation of the SRF co-activator MAL in cortical neurons: role of RhoA signalling. J. Neurochem. 94, 169–180 (2005).

    Article  CAS  Google Scholar 

  33. Yue, Y. et al. Mistargeting hippocampal axons by expression of a truncated Eph receptor. Proc. Natl. Acad. Sci. USA 99, 10777–10782 (2002).

    Article  CAS  Google Scholar 

  34. Bagri, A., Cheng, H.J., Yaron, A., Pleasure, S.J. & Tessier-Lavigne, M. Stereotyped pruning of long hippocampal axon branches triggered by retraction inducers of the semaphorin family. Cell 113, 285–299 (2003).

    Article  CAS  Google Scholar 

  35. Chen, H. et al. Neuropilin-2 regulates the development of selective cranial and sensory nerves and hippocampal mossy fiber projections. Neuron 25, 43–56 (2000).

    Article  Google Scholar 

  36. Cheng, H.J. et al. Plexin-A3 mediates semaphorin signaling and regulates the development of hippocampal axonal projections. Neuron 32, 249–263 (2001).

    Article  CAS  Google Scholar 

  37. Lipp, H.P., Schwegler, H., Heimrich, B. & Driscoll, P. Infrapyramidal mossy fibers and two-way avoidance learning: developmental modification of hippocampal circuitry and adult behavior of rats and mice. J. Neurosci. 8, 1905–1921 (1988).

    Article  CAS  Google Scholar 

  38. Lipp, H.P. et al. Using genetically-defined rodent strains for the identification of hippocampal traits relevant for two-way avoidance behavior: a non-invasive approach. Experientia 45, 845–859 (1989).

    Article  CAS  Google Scholar 

  39. Krendel, M., Zenke, F.T. & Bokoch, G.M. Nucleotide exchange factor GEF-H1 mediates cross-talk between microtubules and the actin cytoskeleton. Nat. Cell Biol. 4, 294–301 (2002).

    Article  CAS  Google Scholar 

  40. Niwa, R., Nagata-Ohashi, K., Takeichi, M., Mizuno, K. & Uemura, T. Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell 108, 233–246 (2002).

    Article  CAS  Google Scholar 

  41. Gohla, A., Birkenfeld, J. & Bokoch, G.M. Chronophin, a novel HAD-type serine protein phosphatase, regulates cofilin-dependent actin dynamics. Nat. Cell Biol. 7, 21–29 (2005).

    Article  CAS  Google Scholar 

  42. Shamah, S.M. et al. EphA receptors regulate growth cone dynamics through the novel guanine nucleotide exchange factor ephexin. Cell 105, 233–244 (2001).

    Article  CAS  Google Scholar 

  43. Takasu, M.A., Dalva, M.B., Zigmond, R.E. & Greenberg, M.E. Modulation of NMDA receptor-dependent calcium influx and gene expression through EphB receptors. Science 295, 491–495 (2002).

    Article  CAS  Google Scholar 

  44. Graef, I.A. et al. Neurotrophins and netrins require calcineurin/NFAT signaling to stimulate outgrowth of embryonic axons. Cell 113, 657–670 (2003).

    Article  CAS  Google Scholar 

  45. Lonze, B.E., Riccio, A., Cohen, S. & Ginty, D.D. Apoptosis, axonal growth defects, and degeneration of peripheral neurons in mice lacking CREB. Neuron 34, 371–385 (2002).

    Article  CAS  Google Scholar 

  46. Rudolph, D. et al. Impaired fetal T cell development and perinatal lethality in mice lacking the cAMP response element binding protein. Proc. Natl. Acad. Sci. USA 95, 4481–4486 (1998).

    Article  CAS  Google Scholar 

  47. Goetze, B., Grunewald, B., Baldassa, S. & Kiebler, M. Chemically controlled formation of a DNA/calcium phosphate coprecipitate: application for transfection of mature hippocampal neurons. J. Neurobiol. 60, 517–525 (2004).

    Article  CAS  Google Scholar 

  48. Rashid, T. et al. Opposing gradients of ephrin-As and EphA7 in the superior colliculus are essential for topographic mapping in the mammalian visual system. Neuron 47, 57–69 (2005).

    Article  CAS  Google Scholar 

  49. Sterio, D.C. The unbiased estimation of number and sizes of arbitrary particles using the disector. J. Microsc. 134, 127–136 (1984).

    Article  CAS  Google Scholar 

  50. Braendgaard, H. & Gundersen, H.J. The impact of recent stereological advances on quantitative studies of the nervous system. J. Neurosci. Methods 18, 39–78 (1986).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Habermehl, M. Koch, B. Joch and D. Steuerwald for experimental help and T. Skutella for discussions. We received financial aid from the Deutsche Forschungsgemeinschaft (120/12-1, SFB 446 and SFB 505) and the Fonds der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred Nordheim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Expression profile of Srf RNA in the hippocampal system (PDF 6757 kb)

Supplementary Fig. 2

Identification of presynaptic cells with immunoelectron microscopy in Srf mutants (PDF 9046 kb)

Supplementary Fig. 3

SRF contributes to neuronal polarization (PDF 12579 kb)

Supplementary Fig. 4

Actin cannot fully compensate for SRF deficiency (PDF 10758 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knöll, B., Kretz, O., Fiedler, C. et al. Serum response factor controls neuronal circuit assembly in the hippocampus. Nat Neurosci 9, 195–204 (2006). https://doi.org/10.1038/nn1627

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1627

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing