Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chromogranin-mediated secretion of mutant superoxide dismutase proteins linked to amyotrophic lateral sclerosis

Abstract

Here we report that chromogranins, components of neurosecretory vesicles, interact with mutant forms of superoxide dismutase (SOD1) that are linked to amyotrophic lateral sclerosis (ALS), but not with wild-type SOD1. This interaction was confirmed by yeast two-hybrid screen and by co-immunoprecipitation assays using either lysates from Neuro2a cells coexpressing chromogranins and SOD1 mutants or lysates from spinal cord of ALS mice. Confocal and immunoelectron microscopy revealed a partial colocalization of mutant SOD1 with chromogranins in spinal cord of ALS mice. Mutant SOD1 was also found in immuno-isolated trans-Golgi network and in microsome preparations, suggesting that it can be secreted. Indeed we report evidence that chromogranins may act as chaperone-like proteins to promote secretion of SOD1 mutants. From these results, and our finding that extracellular mutant SOD1 can trigger microgliosis and neuronal death, we propose a new ALS pathogenic model based on the toxicity of secreted SOD1 mutants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Selective interactions of chromogranins with mutant SOD1 species but not with wild-type SOD1.
Figure 2: Expression pattern of chromogranins in SOD1 transgenic mice.
Figure 3: SOD1 mutants in spinal cord of ALS mice accumulate in TGN and co-immunoprecipitate with chromogranins.
Figure 4: Immunoelectron microscopy reveals partial colocalization of G37R SOD1 with chromogranins.
Figure 5: CgA is expressed in reactive astrocytes of spinal anterior horn from mutant SOD1 transgenic mice.
Figure 6: Chromogranins promote selective secretion of misfolded mutant SOD1.
Figure 7: Activation of microglia by extracellular mutant SOD1.
Figure 8: Extracellular SOD1 mutant triggers microgliosis and motor neuron death.

Similar content being viewed by others

References

  1. Rosen, D.R. et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59–62 (1993).

    Article  CAS  Google Scholar 

  2. Gurney, M.E. et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 264, 1772–1775 (1994).

    Article  CAS  Google Scholar 

  3. Subramaniam, J.R. et al. Mutant SOD1 causes motor neuron disease independent of copper chaperone-mediated copper loading. Nat. Neurosci. 5, 301–307 (2002).

    Article  CAS  Google Scholar 

  4. Wang, J., Xu, G. & Borchelt, D.R. High molecular weight complexes of mutant superoxide dismutase 1: age-dependent and tissue-specific accumulation. Neurobiol. Dis. 9, 139–148 (2002).

    Article  CAS  Google Scholar 

  5. Julien, J.P. Amyotrophic lateral sclerosis. unfolding the toxicity of the misfolded. Cell 104, 581–591 (2001).

    Article  CAS  Google Scholar 

  6. Cleveland, D.W. & Rothstein, J.D. From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat. Rev. Neurosci. 2, 806–819 (2001).

    Article  CAS  Google Scholar 

  7. Wiedau-Pazos, M. et al. Altered reactivity of superoxide dismutase in familial amyotrophic lateral sclerosis. Science 271, 515–518 (1996).

    Article  CAS  Google Scholar 

  8. Raoul, C. et al. Motoneuron death triggered by a specific pathway downstream of Fas: potentiation by ALS-linked SOD1 mutations. Neuron 35, 1067–1083 (2002).

    Article  CAS  Google Scholar 

  9. Durham, H.D., Roy, J., Dong, L. & Figlewicz, D.A. Aggregation of mutant Cu/Zn superoxide dismutase proteins in a culture model of ALS. J. Neuropathol. Exp. Neurol. 56, 523–530 (1997).

    Article  CAS  Google Scholar 

  10. Johnston, J.A., Dalton, M.J., Gurney, M.E. & Kopito, R.R. Formation of high molecular weight complexes of mutant Cu, Zn-superoxide dismutase in a mouse model for familial amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA 97, 12571–12576 (2000).

    Article  CAS  Google Scholar 

  11. Urushitani, M., Kurisu, J., Tsukita, K. & Takahashi, R. Proteasomal inhibition by misfolded mutant superoxide dismutase 1 induces selective motor neuron death in familial amyotrophic lateral sclerosis. J. Neurochem. 83, 1030–1042 (2002).

    Article  CAS  Google Scholar 

  12. Pramatarova, A., Laganière, J., Roussel, J., Brisebois, K. & Rouleau, G.A. Neuron-specific expression of mutant superoxide dismutase 1 in transgenic mice does not lead to motor impairment. J. Neurosci. 21, 3369–3374 (2001).

    Article  CAS  Google Scholar 

  13. Lino, M.M., Schneider, C. & Caroni, P. Accumulation of SOD1 mutants in postnatal motoneurons does not cause motoneuron pathology or motoneuron disease. J. Neurosci. 22, 4825–4832 (2002).

    Article  CAS  Google Scholar 

  14. Clement, A.M. et al. Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science 302, 113–117 (2003).

    Article  CAS  Google Scholar 

  15. Shinder, G.A., Lacourse, M.C., Minotti, S. & Durham, H.D. Mutant Cu/Zn-superoxide dismutase proteins have altered solubility and interact with heat shock/stress proteins in models of amyotrophic lateral sclerosis. J. Biol. Chem. 276, 12791–12796 (2001).

    Article  CAS  Google Scholar 

  16. Urushitani, M. et al. CHIP promotes proteasomal degradation of familial ALS-linked mutant SOD1 by ubiquitinating Hsp/Hsc70. J. Neurochem. 90, 231–244 (2004).

    Article  CAS  Google Scholar 

  17. Taupenot, L., Harper, K.L. & O'Connor, D.T. The chromogranin-secretogranin family. N. Engl. J. Med. 348, 1134–1149 (2003).

    Article  CAS  Google Scholar 

  18. Rudolf, R., Salm, T., Rustom, A. & Gerdes, H.H. Dynamics of immature secretory granules: role of cytoskeletal elements during transport, cortical restriction, and f-actin-dependent tethering. Mol. Biol. Cell 12, 1353–1365 (2001).

    Article  CAS  Google Scholar 

  19. Li, J.Y., Leitner, B., Lovisetti-Scamihorn, P., Winkler, H. & Dahlström, A. Proteolytic processing, axonal transport and differential distribution of chromogranins A and B, and secretogranin II (secretoneurin) in rat sciatic nerve and spinal cord. Eur. J. Neurosci. 11, 528–544 (1999).

    Article  CAS  Google Scholar 

  20. Booj, S., Goldstein, M., Fischer-Colbrie, R. & Dahlstrom, A. Calcitonin gene-related peptide and chromogranin A: presence and intra-axonal transport in lumbar motor neurons in the rat, a comparison with synaptic vesicle antigens in immunohistochemical studies. Neuroscience 30, 479–501 (1989).

    Article  CAS  Google Scholar 

  21. Marksteiner, J. et al. Distribution of chromogranin B-like immunoreactivity in the human hippocampus and its changes in Alzheimer's disease. Acta Neuropathol. (Berl.) 100, 205–212 (2000).

    Article  CAS  Google Scholar 

  22. Rangon, C.M. et al. Different chromogranin immunoreactivity between prion and a-beta amyloid plaque. Neuroreport 14, 755–758 (2003).

    Article  CAS  Google Scholar 

  23. Schiffer, D., Cordera, S., Giordana, M.T., Attanasio, A. & Pezzulo, T. Synaptic vesicle proteins, synaptophysin and chromogranin A in amyotrophic lateral sclerosis. J. Neurol. Sci. 129 Suppl, 68–74 (1995).

    Article  Google Scholar 

  24. Taupenot, L. et al. Chromogranin A triggers a phenotypic transformation and the generation of nitric oxide in brain microglial cells. Neuroscience 72, 377–389 (1996).

    Article  CAS  Google Scholar 

  25. Ciesielski-Treska, J. et al. Mechanisms underlying neuronal death induced by chromogranin A-activated microglia. J. Biol. Chem. 276, 13113–13120 (2001).

    Article  CAS  Google Scholar 

  26. Taylor, D.L., Diemel, L.T. & Pocock, J.M. Activation of microglial group III metabotropic glutamate receptors protects neurons against microglial neurotoxicity. J. Neurosci. 23, 2150–2160 (2003).

    Article  CAS  Google Scholar 

  27. Chanat, E., Weiss, U., Huttner, W.B. & Tooze, S.A. Reduction of the disulfide bond of chromogranin B (secretogranin I) in the trans-Golgi network causes its missorting to the constitutive secretory pathways. EMBO J. 12, 2159–2168 (1993).

    Article  CAS  Google Scholar 

  28. Cowley, D.J., Moore, Y.R., Darling, D.S., Joyce, P.B. & Gorr, S.U. N- and C-terminal domains direct cell type-specific sorting of chromogranin A to secretory granules. J. Biol. Chem. 275, 7743–7748 (2000).

    Article  CAS  Google Scholar 

  29. Li, J.Y., Kling-Petersen, A. & Dahlstrom, A. Influence of spinal cord transection on the presence and axonal transport of CGRP-, chromogranin A-, VIP-, synapsin I-, and synaptophysin-like immunoreactivities in rat motor nerve. J. Neurobiol. 23, 1094–1110 (1992).

    Article  CAS  Google Scholar 

  30. Kato, A. et al. Co-distribution patterns of chromogranin B-like immunoreactivity with chromogranin A and secretoneurin within the human brainstem. Brain Res. 852, 444–452 (2000).

    Article  CAS  Google Scholar 

  31. Stieber, A. et al. Disruption of the structure of the Golgi apparatus and the function of the secretory pathway by mutants G93A and G85R of Cu, Zn superoxide dismutase (SOD1) of familial amyotrophic lateral sclerosis. J. Neurol. Sci. 219, 45–53 (2004).

    Article  CAS  Google Scholar 

  32. Ciesielski-Treska, J. et al. Chromogranin A induces a neurotoxic phenotype in brain microglial cells. J. Biol. Chem. 273, 14339–14346 (1998).

    Article  CAS  Google Scholar 

  33. Huh, Y.H., Jeon, S.H. & Yoo, S.H. Chromogranin B-induced secretory granule biogenesis: comparison with the similar role of chromogranin A. J. Biol. Chem. 278, 40581–40589 (2003).

    Article  CAS  Google Scholar 

  34. Turner, B.J. et al. Impaired extracellular secretion of mutant superoxide dismutase 1 associates with neurotoxicity in familial amyotrophic lateral sclerosis. J. Neurosci. 25, 108–117 (2005).

    Article  CAS  Google Scholar 

  35. Jacobsson, J., Jonsson, P.A., Andersen, P.M., Forsgren, L. & Marklund, S.L. Superoxide dismutase in CSF from amyotrophic lateral sclerosis patients with and without CuZn-superoxide dismutase mutations. Brain 124, 1461–1466 (2001).

    Article  CAS  Google Scholar 

  36. Sharpless, N. et al. The restricted nature of HIV-1 tropism for cultured neural cells. Virology 191, 813–825 (1992).

    Article  CAS  Google Scholar 

  37. Miyakawa, K. & Imamura, T. Secretion of FGF-16 requires an uncleaved bipartite signal sequence. J. Biol. Chem. 278, 35718–35724 (2003).

    Article  CAS  Google Scholar 

  38. Tiwari, A. & Hayward, L.J. Familial amyotrophic lateral sclerosis mutants of copper/zinc superoxide dismutase are susceptible to disulfide reduction. J. Biol. Chem. 278, 5984–5992 (2003).

    Article  CAS  Google Scholar 

  39. Tobisawa, S. et al. Mutant SOD1 linked to familial amyotrophic lateral sclerosis, but not wild-type SOD1, induces ER stress in COS7 cells and transgenic mice. Biochem. Biophys. Res. Commun. 303, 496–503 (2003).

    Article  CAS  Google Scholar 

  40. Lafon-Cazal, M. et al. Proteomic analysis of astrocytic secretion in the mouse. Comparison with the cerebrospinal fluid proteome. J. Biol. Chem. 278, 24438–24448 (2003).

    Article  CAS  Google Scholar 

  41. Cimini, V. et al. CuZn-superoxide dismutase in human thymus: immunocytochemical localisation and secretion in thymus-derived epithelial and fibroblast cell lines. Histochem. Cell Biol. 118, 163–169 (2002).

    CAS  PubMed  Google Scholar 

  42. Nickel, W. The mystery of nonclassical protein secretion. A current view on cargo proteins and potential export routes. Eur. J. Biochem. 270, 2109–2119 (2003).

    Article  CAS  Google Scholar 

  43. Elam, J.S. et al. Amyloid-like filaments and water-filled nanotubes formed by SOD1 mutant proteins linked to familial ALS. Nat. Struct. Biol. 10, 461–467 (2003).

    Article  CAS  Google Scholar 

  44. Nguyen, M.D., D'Aigle, T., Gowing, G., Julien, J.P. & Rivest, S. Exacerbation of motor neuron disease by chronic stimulation of innate immunity in a mouse model of amyotrophic lateral sclerosis. J. Neurosci. 24, 1340–1349 (2004).

    Article  CAS  Google Scholar 

  45. Zhu, S. et al. Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature 417, 74–78 (2002).

    Article  CAS  Google Scholar 

  46. Parkin, E.T., Hussain, I., Karran, E.H., Turner, A.J. & Hooper, N.M. Characterization of detergent-insoluble complexes containing the familial Alzheimer's disease-associated presenilins. J. Neurochem. 72, 1534–1543 (1999).

    Article  CAS  Google Scholar 

  47. Stephens, D.J. & Banting, G. Direct interaction of the trans-Golgi network membrane protein, TGN38, with the F-actin binding protein, neurabin. J. Biol. Chem. 274, 30080–30086 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Janvier for sample preparation for immunoelectron microscopy and B. Gentil for advice on experimental procedures. The technical help from G. Soucy, S.A. Ezzi (Laval University) and J. Kurisu (RIKEN Brain Science Institute) is appreciated. We thank D. Cleveland (University of California San Diego) for the G37R SOD1 transgenic mice and Y. Imai for the DsRed-Golgi plasmid. This work was supported by the Canadian Institutes of Health Research (CIHR), the Robert Packard Centre for ALS Research at Johns Hopkins, the ALS Association (USA), the ALS Society of Canada, the Japan Society for the Promotion of Science (JSPS) and the Japan Foundation for Neuroscience and Mental Health. J.-P.J. holds a Canada Research Chair in Neurodegeneration. M.U. is a recipient of a Uehara Memorial Foundation research fellowship and a postdoctoral fellowship from CIHR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Julien.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Amino acid sequence alignment data. (PDF 240 kb)

Supplementary Fig. 2

Expression of chromogranin mRNA and proteins the mouse spinal cord. (PDF 283 kb)

Supplementary Fig. 3

Immunoelectron microscope showing different distribution pattern of G37R and wild-type SOD1 in the spinal motor neuron of human SOD1 transgenic mice (PDF 294 kb)

Supplementary Fig. 4

Generation of antibody recognizing amino-terminal peptides of mouse mature CgA. (PDF 249 kb)

Supplementary Fig. 5

CgA is expressed in reactive astrocytes in spinal anterior horn of the G93A SOD1 mutant transgenic mice. (PDF 292 kb)

Supplementary Fig. 6

A model of pathogenesis consistent with the notion of non-cell autonomous toxicity of mutant SOD1. (PDF 360 kb)

Supplementary Table 1

Cloning primer pairs for mouse chromogranin A (CgA), B (CgB), or deletion mutants of mouse chromogranin B (amino terminus deletion; ΔN, carboxyl terminus deletion; ΔC, inter-conserved domain deletion; ΔIBC) and for recombinant mouse chromogranin A (Rec CgA). (PDF 44 kb)

Supplementary Table 2

Primer pairs used for semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR). (PDF 42 kb)

Supplementary Methods (PDF 96 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urushitani, M., Sik, A., Sakurai, T. et al. Chromogranin-mediated secretion of mutant superoxide dismutase proteins linked to amyotrophic lateral sclerosis. Nat Neurosci 9, 108–118 (2006). https://doi.org/10.1038/nn1603

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1603

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing