Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Activity-dependent decrease of excitability in rat hippocampal neurons through increases in Ih

A Corrigendum to this article was published on 01 January 2006

This article has been updated

Abstract

Hippocampal long-term potentiation (LTP) induced by theta-burst pairing of Schaffer collateral inputs and postsynaptic firing is associated with localized increases in synaptic strength and dendritic excitability. Using the same protocol, we now demonstrate a decrease in cellular excitability that was blocked by the h-channel blocker ZD7288. This decrease was also induced by postsynaptic theta-burst firing alone, yet it was blocked by NMDA receptor antagonists, postsynaptic Ca2+ chelation, low concentrations of tetrodotoxin, ω-conotoxin MVIIC, calcium/calmodulin-dependent protein kinase II (CaMKII) inhibitors and a protein synthesis inhibitor. Increasing network activity with high extracellular K+ caused a similar reduction of cellular excitability and an increase in h-channel HCN1 protein. We propose that backpropagating action potentials open glutamate-bound NMDA receptors, resulting in an increase in Ih and a decrease in overall excitability. The occurrence of such a reduction in cellular excitability in parallel with synaptic potentiation would be a negative feedback mechanism to normalize neuronal output firing and thus promote network stability.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TBP-induced LTP was accompanied by a decrease in input resistance (RN).
Figure 2: TBP-LTP was associated with a persistent decrease in excitability.
Figure 3: Blockade of h-channels reversed and occluded the decrease in excitability without affecting LTP of EPSPs.
Figure 4: Theta-burst firing (TBF) alone sufficed to produce a decrease in excitability.
Figure 5: Decreased excitability required postsynaptic Ca2+ and NMDA-receptor activation.
Figure 6: Backpropagating action potentials were necessary for a TBF-induced decrease in excitability.
Figure 7: Spontaneous glutamate release was required for TBF-induced decrease in excitability.
Figure 8: CaMKII and de novo protein synthesis were required for the TBP- and TBF-induced decrease in excitability.

Similar content being viewed by others

Change history

  • 14 December 2005

    The PDF version of this article was corrected on December 14, 2005. Please see the PDF for details.

References

  1. Bliss, T.V. & Collingridge, G.L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

    CAS  PubMed  Google Scholar 

  2. Andersen, P., Sundberg, S.H., Sveen, O., Swann, J.W. & Wigstrom, H. Possible mechanisms for long-lasting potentiation of synaptic transmission in hippocampal slices from guinea-pigs. J. Physiol. (Lond.) 302, 463–482 (1980).

    CAS  Google Scholar 

  3. Bliss, T.V. & Lomo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. (Lond.) 232, 331–356 (1973).

    CAS  Google Scholar 

  4. Zhang, W. & Linden, D.J. The other side of the engram: experience-driven changes in neuronal intrinsic excitability. Nat. Rev. Neurosci. 4, 885–900 (2003).

    CAS  PubMed  Google Scholar 

  5. Frick, A., Magee, J. & Johnston, D. LTP is accompanied by an enhanced local excitability of pyramidal neuron dendrites. Nat. Neurosci. 7, 126–135 (2004).

    CAS  PubMed  Google Scholar 

  6. Spitzer, N.C. A developmental handshake: neuronal control of ionic currents and their control of neuronal differentiation. J. Neurobiol. 22, 659–673 (1991).

    CAS  PubMed  Google Scholar 

  7. Turrigiano, G.G. & Nelson, S.B. Homeostatic plasticity in the developing nervous system. Nat. Rev. Neurosci. 5, 97–107 (2004).

    CAS  PubMed  Google Scholar 

  8. Cudmore, R.H. & Turrigiano, G.G. Long-term potentiation of intrinsic excitability in LV visual cortical neurons. J. Neurophysiol. 92, 341–348 (2004).

    PubMed  Google Scholar 

  9. Desai, N.S., Rutherford, L.C. & Turrigiano, G.G. Plasticity in the intrinsic excitability of cortical pyramidal neurons. Nat. Neurosci. 2, 515–520 (1999).

    CAS  PubMed  Google Scholar 

  10. Turrigiano, G., Abbott, L.F. & Marder, E. Activity-dependent changes in the intrinsic properties of cultured neurons. Science 264, 974–977 (1994).

    CAS  PubMed  Google Scholar 

  11. Aizenman, C.D. & Linden, D.J. Rapid, synaptically driven increases in the intrinsic excitability of cerebellar deep nuclear neurons. Nat. Neurosci. 3, 109–111 (2000).

    CAS  PubMed  Google Scholar 

  12. Wang, Z., Xu, N.L., Wu, C.P., Duan, S. & Poo, M.M. Bidirectional changes in spatial dendritic integration accompanying long-term synaptic modifications. Neuron 37, 463–472 (2003).

    CAS  PubMed  Google Scholar 

  13. van Welie, I., van Hooft, J.A. & Wadman, W.J. Homeostatic scaling of neuronal excitability by synaptic modulation of somatic hyperpolarization-activated Ih channels. Proc. Natl. Acad. Sci. USA 101, 5123–5128 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Xu, J., Kang, N., Jiang, L., Nedergaard, M. & Kang, J. Activity-dependent long-term potentiation of intrinsic excitability in hippocampal CA1 pyramidal neurons. J. Neurosci. 25, 1750–1760 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Daoudal, G., Hanada, Y. & Debanne, D. Bidirectional plasticity of excitatory postsynaptic potential (EPSP)-spike coupling in CA1 hippocampal pyramidal neurons. Proc. Natl. Acad. Sci. USA 99, 14512–14517 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Marder, C.P. & Buonomano, D.V. Timing and balance of inhibition enhance the effect of long-term potentiation on cell firing. J. Neurosci. 24, 8873–8884 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Roberson, E.D., English, J.D. & Sweatt, J.D. A biochemist's view of long-term potentiation. Learn. Mem. 3, 1–24 (1996).

    CAS  PubMed  Google Scholar 

  18. Watanabe, S., Hoffman, D.A., Migliore, M. & Johnston, D. Dendritic K+ channels contribute to spike-timing dependent long-term potentiation in hippocampal pyramidal neurons. Proc. Natl. Acad. Sci. USA 99, 8366–8371 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Magee, J.C. & Johnston, D. A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275, 209–213 (1997).

    CAS  PubMed  Google Scholar 

  20. Buzsaki, G. Theta oscillations in the hippocampus. Neuron 33, 325–340 (2002).

    CAS  PubMed  Google Scholar 

  21. Thomas, M.J., Watabe, A.M., Moody, T.D., Makhinson, M. & O'Dell, T.J. Postsynaptic complex spike bursting enables the induction of LTP by theta frequency synaptic stimulation. J. Neurosci. 18, 7118–7126 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Poolos, N.P., Migliore, M. & Johnston, D. Pharmacological upregulation of h-channels reduces the excitability of pyramidal neuron dendrites. Nat. Neurosci. 5, 767–774 (2002).

    CAS  PubMed  Google Scholar 

  23. Shah, M.M., Anderson, A.E., Leung, V., Lin, X. & Johnston, D. Seizure-induced plasticity of h channels in entorhinal cortical layer III pyramidal neurons. Neuron 44, 495–508 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Maccaferri, G., Mangoni, M., Lazzari, A. & DiFrancesco, D. Properties of the hyperpolarization-activated current in rat hippocampal CA1 pyramidal cells. J. Neurophysiol. 69, 2129–2136 (1993).

    CAS  PubMed  Google Scholar 

  25. Shin, K.S., Rothberg, B.S. & Yellen, G. Blocker state dependence and trapping in hyperpolarization-activated cation channels: evidence for an intracellular activation gate. J. Gen. Physiol. 117, 91–101 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Magee, J.C. Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J. Neurosci. 18, 7613–7624 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Johnston, D., Magee, J.C., Colbert, C.M. & Christie, B.R. Active properties of neuronal dendrites. Annu. Rev. Neurosci. 19, 165–186 (1996).

    CAS  PubMed  Google Scholar 

  28. Schiller, J., Schiller, Y. & Clapham, D.E. NMDA receptors amplify calcium influx into dendritic spines during associative pre- and postsynaptic activation. Nat. Neurosci. 1, 114–118 (1998).

    CAS  PubMed  Google Scholar 

  29. Mackenzie, P.J. & Murphy, T.H. High safety factor for action potential conduction along axons but not dendrites of cultured hippocampal and cortical neurons. J. Neurophysiol. 80, 2089–2101 (1998).

    CAS  PubMed  Google Scholar 

  30. Magee, J.C. & Carruth, M. Dendritic voltage-gated ion channels regulate the action potential firing mode of hippocampal CA1 pyramidal neurons. J. Neurophysiol. 82, 1895–1901 (1999).

    CAS  PubMed  Google Scholar 

  31. Robinson, R.B. & Siegelbaum, S.A. Hyperpolarization-activated cation currents: from molecules to physiological function. Annu. Rev. Physiol. 65, 453–480 (2003).

    CAS  PubMed  Google Scholar 

  32. Nolan, M.F. et al. A behavioral role for dendritic integration: HCN1 channels constrain spatial memory and plasticity at inputs to distal dendrites of CA1 pyramidal neurons. Cell 119, 719–732 (2004).

    CAS  PubMed  Google Scholar 

  33. Saar, D. & Barkai, E. Long-term modifications in intrinsic neuronal properties and rule learning in rats. Eur. J. Neurosci. 17, 2727–2734 (2003).

    PubMed  Google Scholar 

  34. Vasilyev, D.V. & Barish, M.E. Postnatal development of the hyperpolarization-activated excitatory current Ih in mouse hippocampal pyramidal neurons. J. Neurosci. 22, 8992–9004 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Bender, R.A. et al. Differential and age-dependent expression of hyperpolarization-activated, cyclic nucleotide-gated cation channel isoforms 1–4 suggests evolving roles in the developing rat hippocampus. Neuroscience 106, 689–698 (2001).

    CAS  PubMed  Google Scholar 

  36. Zhu, J.J. Maturation of layer 5 neocortical pyramidal neurons: amplifying salient layer 1 and layer 4 inputs by Ca2+ action potentials in adult rat tuft dendrites. J. Physiol. (Lond.) 526, 571–587 (2000).

    CAS  Google Scholar 

  37. Yuan, L.L., Adams, J.P., Swank, M., Sweatt, J.D. & Johnston, D. Protein kinase modulation of dendritic K+ channels in hippocampus involves a mitogen-activated protein kinase pathway. J. Neurosci. 22, 4860–4868 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Magee, J.C. Dendritic Ih normalizes temporal summation in hippocampal CA1 neurons. Nat. Neurosci. 2, 508 (1999).

    CAS  PubMed  Google Scholar 

  39. Berger, T., Larkum, M.E. & Luscher, H.R. High I(h) channel density in the distal apical dendrite of layer V pyramidal cells increases bidirectional attenuation of EPSPs. J. Neurophysiol. 85, 855–868 (2001).

    CAS  PubMed  Google Scholar 

  40. Berger, T. & Luscher, H.R. Associative somatodendritic interaction in layer V pyramidal neurons is not affected by the antiepileptic drug lamotrigine. Eur. J. Neurosci. 20, 1688–1693 (2004).

    PubMed  Google Scholar 

  41. Frick, A., Magee, J., Koester, H.J., Migliore, M. & Johnston, D. Normalization of Ca2+ signals by small oblique dendrites of CA1 pyramidal neurons. J. Neurosci. 23, 3243–3250 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Berridge, M.J. Neuronal calcium signaling. Neuron 21, 13–26 (1998).

    CAS  PubMed  Google Scholar 

  43. Erondu, N.E. & Kennedy, M.B. Regional distribution of type II Ca2+/calmodulin-dependent protein kinase in rat brain. J. Neurosci. 5, 3270–3277 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Shen, K. & Meyer, T. Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. Science 284, 162–166 (1999).

    CAS  PubMed  Google Scholar 

  45. Lisman, J., Schulman, H. & Cline, H. The molecular basis of CaMKII function in synaptic and behavioural memory. Nat. Rev. Neurosci. 3, 175–190 (2002).

    CAS  PubMed  Google Scholar 

  46. Santoro, B., Wainger, B.J. & Siegelbaum, S.A. Regulation of HCN channel surface expression by a novel C-terminal protein-protein interaction. J. Neurosci. 24, 10750–10762 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Bi, G. & Poo, M. Synaptic modification by correlated activity: Hebb's postulate revisited. Annu. Rev. Neurosci. 24, 139–166 (2001).

    CAS  PubMed  Google Scholar 

  48. Bienenstock, E.L., Cooper, L.N. & Munro, P.W. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J. Neurosci. 2, 32–48 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ganguly, K., Kiss, L. & Poo, M. Enhancement of presynaptic neuronal excitability by correlated presynaptic and postsynaptic spiking. Nat. Neurosci. 3, 1018–1026 (2000).

    CAS  PubMed  Google Scholar 

  50. Pouille, F. & Scanziani, M. Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. Science 293, 1159–1163 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Gray, N. Poolos and A. Frick for discussions and help with data acquisition and analysis software. We also thank W.S. She for technical help with western blotting. This work was supported by US NIH grants MH48432, MH44754 and NS37444 (D.J.) and NS48884 and AHA0465158Y (H.-C.L.); a fellowship from the American Heart Association (Y.F.); and a fellowship from the North Atlantic Treaty Organization (D.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Johnston.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

EPSP-spike transitions at an expanded time scale. (PDF 238 kb)

Supplementary Fig. 2

Sag ratio increased after LTP. (PDF 372 kb)

Supplementary Fig. 3

TBP-LTP but not 100 Hz-LTP was accompanied by a decrease in RN. (PDF 683 kb)

Supplementary Fig. 4

TBF-induced decrease in excitability could be prevented by ZD7288. (PDF 1244 kb)

Supplementary Fig. 5

Background synaptic inputs were less efficient after TBF. (PDF 769 kb)

Supplementary Fig. 6

A brief episode of extracellular high K+ challenge produced a reduction in input resistance similar to TBF. (PDF 1496 kb)

Supplementary Fig. 7

High extracellular K+ stimulated differential regulation of HCN protein levels. (PDF 1724 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, Y., Fricker, D., Brager, D. et al. Activity-dependent decrease of excitability in rat hippocampal neurons through increases in Ih. Nat Neurosci 8, 1542–1551 (2005). https://doi.org/10.1038/nn1568

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1568

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing