Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reference frames for representing visual and tactile locations in parietal cortex

Abstract

The ventral intraparietal area (VIP) receives converging inputs from visual, somatosensory, auditory and vestibular systems that use diverse reference frames to encode sensory information. A key issue is how VIP combines those inputs together. We mapped the visual and tactile receptive fields of multimodal VIP neurons in macaque monkeys trained to gaze at three different stationary targets. Tactile receptive fields were found to be encoded into a single somatotopic, or head-centered, reference frame, whereas visual receptive fields were widely distributed between eye- to head-centered coordinates. These findings are inconsistent with a remapping of all sensory modalities in a common frame of reference. Instead, they support an alternative model of multisensory integration based on multidirectional sensory predictions (such as predicting the location of a visual stimulus given where it is felt on the skin and vice versa). This approach can also explain related findings in other multimodal areas.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neuronal responses to air puff stimuli.
Figure 2: Visual and tactile reference frames.
Figure 3: Distribution of the visual and tactile displacement indices for bimodal VIP cells.
Figure 4: Effects of eye position on the tactile and visual RF alignment in bimodal neurons.
Figure 5: Effect of eye position on visual activity of VIP neurons.
Figure 6: Effect of eye position on somatosensory activity of VIP neurons.
Figure 7: Distribution of visual and tactile response latencies.
Figure 8: Multisensory integration by multidirectional sensory prediction.

Similar content being viewed by others

References

  1. Hyvärinen, J. Regional distribution of functions in parietal association area 7 of the monkey. Brain Res. 206, 287–303 (1981).

    Article  Google Scholar 

  2. Graziano, M.S.A. & Gross, C.G. The representation of extrapersonal space: a possible role for bimodal, visual-tactile neurons. In The Cognitive Neurosciences (ed. M.S. Gazzaniga), 1021–1034 (MIT Press, Cambridge, Massachusetts 1994).

    Google Scholar 

  3. Duhamel, J-R., Colby, C.L. & Goldberg, M.E. Ventral intraparietal area of the macaque: congruent visual and somatic response properties. J. Neurophysiol. 79, 126–136 (1998).

    Article  CAS  Google Scholar 

  4. Bruce, C., Desimone, R. & Gross, C.G. Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. J. Neurophysiol. 46, 369–384 (1981).

    Article  CAS  Google Scholar 

  5. Rizzolatti, G., Scandolara, C., Matelli, M. & Gentilucci, M. Afferent properties of periarcuate neurons in macaque monkeys. I. Somatosensory responses. Behav. Brain Res. 2, 125–146 (1981).

    Article  CAS  Google Scholar 

  6. Graziano, M.S.A., Reiss, L.A. & Gross, C.G. A neuronal representation of the location of nearby sounds. Nature 397, 428–430 (1999).

    Article  CAS  Google Scholar 

  7. Wallace, M.T., Wilkinson, L.K. & Stein, B.E. Representation and integration of multiple sensory inputs in primate superior colliculus. J. Neurophysiol. 76, 1246–1266 (1996).

    Article  CAS  Google Scholar 

  8. Stein, B.E. & Meredith, M.A. The Merging of the Senses (Bradford, Cambridge, Massachusetts 1993).

    Google Scholar 

  9. Jay, M.F. & Sparks, D.L. Auditory receptive fields in primate superior colliculus shift with changes in eye position. Nature 309, 345–347 (1984).

    Article  CAS  Google Scholar 

  10. Jay, M.F. & Sparks, D.L. Sensorimotor integration in the primate superior colliculus. II. Coordinates of auditory signals. J. Neurophysiol. 57, 35–55 (1987).

    Article  CAS  Google Scholar 

  11. Russo, G.S. & Bruce, C.J. Frontal eye field activity preceding aurally guided saccades. J. Neurophysiol. 71, 1250–1253 (1994).

    Article  CAS  Google Scholar 

  12. Fogassi, L. et al. Space coding by premotor cortex. Exp. Brain Res. 89, 686–690 (1992).

    Article  CAS  Google Scholar 

  13. Fogassi, L. et al. Coding of peripersonal space in inferior premotor cortex (area F4). J. Neurophysiol. 76, 141–157 (1996).

    Article  CAS  Google Scholar 

  14. Graziano, M.S.A., Yap, G.S. & Gross, C.G. Coding of visual space by premotor neurons. Science 266, 1054–1057 (1994).

    Article  CAS  Google Scholar 

  15. Stricanne, B., Andersen, R.A. & Mazzoni, P. Eye-centered, head-centered, and intermediate coding of remembered sound locations in area LIP. J. Neurophysiol. 76, 2071–2076 (1996).

    Article  CAS  Google Scholar 

  16. Duhamel, J-R., Bremmer, F., Ben Hamed, S. & Graf, W. Spatial invariance of visual receptive fields in parietal cortex neurons. Nature 389, 845–848 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Colby, C.L., Duhamel, J.-R. & Goldberg, M.E. Ventral intraparietal area of the macaque: anatomic location and visual response properties. J. Neurophysiol. 69, 902–914 (1993).

    Article  CAS  Google Scholar 

  18. Schlack, A., Sterbing-D'Angelo, S.J., Hartung, K., Hoffmann, K.P. & Bremmer, F. Multisensory space representations in the macaque ventral intraparietal area. J. Neurosci. 25, 4616–4625 (2005).

    Article  CAS  Google Scholar 

  19. Bremmer, F., Klam, F., Duhamel, J.-R., Ben Hamed, S. & Graf, W. Visual-vestibular interactive responses in the macaque ventral intraparietal area (VIP). Eur. J. Neurosci. 16, 1569–1586 (2002).

    Article  Google Scholar 

  20. Schlack, A., Hoffmann, K-P. & Bremmer, F. Interaction of linear vestibular and visual stimulation in the macaque ventral intraparietal area (VIP). Eur. J. Neurosci. 16, 1877–1886 (2002).

    Article  Google Scholar 

  21. Neppi-Modona, M., Auclair, D., Sirigu, A. & Duhamel, J.-R. Spatial coding of the predicted impact location of a looming object. Curr. Biol. 14, 1174–1180 (2004).

    Article  CAS  Google Scholar 

  22. Deneve, S., Latham, P.E. & Pouget, A. Efficient computation and cue integration with noisy population codes. Nat. Neurosci. 4, 826–831 (2001).

    Article  CAS  Google Scholar 

  23. Cooke, D.F., Taylor, C.S.R., Moore, T. & Graziano, M.S.A. Complex movements evoked by microstimulation of the ventral intraparietal area. Proc. Natl. Acad. Sci. USA 100, 6163–6168 (2003).

    Article  CAS  Google Scholar 

  24. Pouget, A., Deneve, S. & Duhamel, J.R. A computational perspective on the neural basis of multisensory spatial representations. Nat. Rev. Neurosci. 3, 741–747 (2002).

    Article  CAS  Google Scholar 

  25. Squatrito, S. & Maioli, M. Gaze field properties of eye position neurons in areas MST and 7a of macaque monkey. Vis. Neurosci. 13, 385–398 (1996).

    Article  CAS  Google Scholar 

  26. Bremmer, F., Graf, W., Ben Hamed, S. & Duhamel, J.R. Eye position encoding in the macaque ventral intraparietal area (VIP). Neuroreport 10, 873–878 (1999).

    Article  CAS  Google Scholar 

  27. Rosenbluth, D. & Allman, J.M. The effect of gaze angle and fixation distance on the responses of neurons in V1, V2, and V4. Neuron 33, 143–149 (2002).

    Article  CAS  Google Scholar 

  28. Galletti, C. & Battaglini, P.P. Gaze-dependent visual neurons in area V3A of monkey prestriate cortex. J. Neurosci. 9, 1112–1125 (1989).

    Article  CAS  Google Scholar 

  29. Bremmer, F., Ilg, U.J., Thiele, A., Distler, C. & Hoffmann, K.-P. Eye position effects in monkey cortex. I. Visual and pursuit related activity in extrastiate areas MT and MST. J. Neurophysiol. 77, 944–956 (1997).

    Article  CAS  Google Scholar 

  30. Galletti, C., Battaglini, P.P. & Fattori, P. Eye position influence on the parieto-occipital area PO(V6) of the macaque monkey. Eur. J. Neurosci. 7, 2486–2501 (1995).

    Article  CAS  Google Scholar 

  31. Andersen, R.A. & Mountcastle, V.B. The influence of the angle of gaze upon the excitability of the light-sensitive neurons of the posterior parietal cortex. J. Neurosci. 3, 532–548 (1983).

    Article  CAS  Google Scholar 

  32. Andersen, R.A. Encoding of intention and spatial location in the posterior parietal cortex. Cereb. Cortex 5, 457–469 (1995).

    Article  CAS  Google Scholar 

  33. Groh, J.M., Trause, A.S., Underhill, A.M., Clark, K.R. & Inati, S. Eye position influences auditory responses in primate inferior colliculus. Neuron 29, 509–518 (2001).

    Article  CAS  Google Scholar 

  34. Boussaoud, D., Barth, T.M. & Wise, S.P. Effect of gaze on apparent visual responses of monkey frontal cortex neurons. Exp. Brain Res. 93, 423–434 (1993).

    Article  CAS  Google Scholar 

  35. Brotchie, P.R., Andersen, R.A., Snyder, L.H. & Goodman, S.J. Head position signals used by parietal neurons to encode locations of visual stimuli. Nature 375, 232–235 (1995).

    Article  CAS  Google Scholar 

  36. Salinas, E. & Thier, P. Gain modulation: a major computational principle of the central nervous system. Neuron 27, 15–21 (2000).

    Article  CAS  Google Scholar 

  37. Zipser, D. & Andersen, R.A. A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature 331, 679–684 (1988).

    Article  CAS  Google Scholar 

  38. Pouget, A. & Sejnowski, T. Spatial transformations in the parietal cortex using basis functions. J. Cogn. Neurosci. 9, 222–237 (1997).

    Article  CAS  Google Scholar 

  39. Luppino, G., Murata, A., Govoni, P. & Matelli, M. Largely segregated parietofrontal connections linking rostral intraparietal cortex (areas AIP and VIP) and the ventral premotor cortex (areas F5 ans F4). Exp. Brain Res. 128, 181–187 (1999).

    Article  CAS  Google Scholar 

  40. Lewis, J.W. & Van Essen, D.C. Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. J. Comp. Neurol. 428, 112–137 (2000).

    Article  CAS  Google Scholar 

  41. Gentilucci, M., Scandolara, C., Pigarev, I.N. & Rizzolatti, G. Visual responses in the postarcuate cortex (area 6) of the monkey that are independent of eye position. Exp. Brain Res. 50, 464–468 (1983).

    CAS  Google Scholar 

  42. Lynch, J.C., Graybiel, A.M. & Lobeck, L.J. The differential projection of two cytoarchitectonic subregions of the inferior parietal lobule of macaque upon the deep layers of the superior colliculus. J. Comp. Neurol. 235, 241–254 (1985).

    Article  CAS  Google Scholar 

  43. Baizer, J.S., Desimone, R. & Ungerleider, L.G. Comparison of subcortical connections of inferior temporal and posterior parietal cortex in monkeys. Vis. Neurosci. 10, 59–72 (1993).

    Article  CAS  Google Scholar 

  44. Gardner, E.P., Hamalainen, H.A., Warren, S., Davis, J. & Young, W. Somatosensory evoked potenials (SEPs) and cortical single unit responses elicited by mechanical tactile stimuli in awake monkeys. Electroencephalogr. Clin. Neurophysiol. 58, 537–552 (1984).

    Article  CAS  Google Scholar 

  45. Raiguel, S.E., Xiao, D.-K., Marcar, V.L. & Orban, G.A. Response latency of macaque area MT/V5 neurons and its relationship to stimulus parameters. J. Neurophysiol. 82, 1944–1956 (1999).

    Article  CAS  Google Scholar 

  46. Schmolesky, M.T. et al. Signal timing across the macaque visual system. J. Neurophysiol. 79, 3272–3278 (1998).

    Article  CAS  Google Scholar 

  47. Bullier, J. & Nowak, G. Parallel versus serial processing: new vistas on the distributed organization of the visual system. Curr. Opin. Neurobiol. 5, 497–503 (1995).

    Article  CAS  Google Scholar 

  48. Judge, S.J., Richmond, B.J. & Chu, F.C. Implantation of magnetic search coils for measurement of eye position: an improved method. Vision Res. 20, 535–538 (1980).

    Article  CAS  Google Scholar 

  49. Ben Hamed, S., Duhamel, J.-R., Bremmer, F. & Graf, W. Representation of the visual field in the lateral intraparietal area of macaque monkeys: a quantitative receptive field analysis. Exp. Brain Res. 140, 132–144 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank B. Averbeck and D. Knill for their feedback on the Monte-Carlo simulations. J.-R.D. and A.P. were supported by US National Science Foundation grant 0346785.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-René Duhamel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avillac, M., Denève, S., Olivier, E. et al. Reference frames for representing visual and tactile locations in parietal cortex. Nat Neurosci 8, 941–949 (2005). https://doi.org/10.1038/nn1480

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1480

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing