Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The subthalamic nucleus exerts opposite control on cocaine and 'natural' rewards

Abstract

A challenge in treating drug addicts is preventing their pathological motivation for the drug without impairing their general affective state toward natural reinforcers. Here we have shown that discrete lesions of the subthalamic nucleus greatly decreased the motivation of rats for cocaine while increasing it for food reward. The subthalamic nucleus, a key structure controlling basal ganglia outputs, is therefore able to oppositely modulate the effect of 'natural' rewards and drugs of abuse on behavior. Modulating the activity of the subthalamic nucleus might prove to be a new target for the treatment of cocaine addiction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Frontal sections at the level of the STN, stained with cresyl violet.
Figure 2: Effects of bilateral STN lesions on continuous reinforcement tasks for food and cocaine.
Figure 3: Effects of bilateral STN lesions on performance in the progressive ratio task for food and cocaine.
Figure 4: Effect of a change in dose during continuous reinforcement for cocaine self-administration.
Figure 5: Effects of bilateral STN lesions on conditioned place preference for food or cocaine.

Similar content being viewed by others

References

  1. Hollerman, J.R., Tremblay, L. & Schultz, W. Influence of reward expectation on behavior-related neuronal activity in primate striatum. J. Neurophysiol. 80, 947–963 (1998).

    Article  CAS  Google Scholar 

  2. Hassani, O.K., Cromwell, H.C. & Schultz, W. Influence of expectation of different rewards on behavior-related neuronal activity in the striatum. J. Neurophysiol. 85, 2477–2489 (2001).

    Article  CAS  Google Scholar 

  3. Ito, R., Dalley, J.W., Robbins, T.W. & Everitt, B.J. Dopamine release in the dorsal striatum during cocaine-seeking behavior under the control of a drug-associated cue. J. Neurosci. 22, 6247–6253 (2002).

    Article  CAS  Google Scholar 

  4. Porrino, L.J., Lyons, D., Smith, H.R., Daunais, J.B. & Nader, M.A. Cocaine self-administration produces a progressive involvement of limbic, association, and sensorimotor striatal domains. J. Neurosci. 24, 3554–3562 (2004).

    Article  CAS  Google Scholar 

  5. Limousin, P. et al. Effects on parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet 345, 91–95 (1995).

    Article  CAS  Google Scholar 

  6. Bergman, H., Wichmann, T. & DeLong, M.R. Reversal of experimental parkinsonism by lesion of the subthalamic nucleus. Science 249, 1436–1438 (1990).

    Article  CAS  Google Scholar 

  7. Benazzouz, A., Gross, C., Féger, J., Boraud, T. & Bioulac, B. Reversal of rigidity and improvement in motor performance by subthalamic high-frequency stimulation in MPTP-treated monkeys. Eur. J. Neurosci. 5, 382–389 (1993).

    Article  CAS  Google Scholar 

  8. Baunez, C., Nieoullon, A. & Amalric, M. In a rat model of parkinsonism, lesions of the subthalamic nucleus reverse increases of reaction time, but induce a dramatic premature responding deficit. J. Neurosci. 15, 6531–6541 (1995).

    Article  CAS  Google Scholar 

  9. Henderson, J.M. et al. Subthalamic nucleus lesions induce deficits as well as benefits in the hemiparkinsonian rat. Eur. J. Neurosci. 11, 2749–2757 (1999).

    Article  CAS  Google Scholar 

  10. Krack, P. et al. What is the influence of subthalamic nucleus stimulation on the limbic loop? in Basal Ganglia and Thalamus in Health and Movement Disorders (eds. Kultas-Ilinsky, K. & Ilinsky, I.A.) 333–340 (Kluwer Academic/Plenum, New York, 2001).

    Chapter  Google Scholar 

  11. Trépanier, L.L., Kumar, R., Lozano, A.M., Lang, A.E. & Saint-Cyr, J.A. Neuropsychological outcome of GPi pallidotomy and GPi or STN deep brain stimulation in Parkinson's Disease. Brain Cogn. 42, 324–347 (2000).

    Article  Google Scholar 

  12. Trillet, M., Vighetto, A., Croisile, B., Charles, N. & Aimard, G. Hemiballismus with logorrhea and thymo-affective disinhibition caused by hematoma of the left subthalamic nucleus. Rev. Neurol. (Paris) 151, 416–419 (1995).

    CAS  Google Scholar 

  13. Absher, J.R. et al. Hypersexuality and hemiballism due to subthalamic infarction. Neuropsychiatry Neuropsychol. Behav. Neurol. 13, 220–229 (2000).

    CAS  PubMed  Google Scholar 

  14. Moro, E. et al. Chronic subthalamic nucleus stimulation reduces medication requirements in Parkinson's disease. Neurology 53, 85–90 (1999).

    Article  CAS  Google Scholar 

  15. Baunez, C., Amalric, M. & Robbins, T.W. Enhanced food-related motivation after bilateral lesions of the subthalamic nucleus. J. Neurosci. 22, 562–568 (2002).

    Article  CAS  Google Scholar 

  16. Pontieri, F.E., Mainero, C., La Riccia, M., Passarelli, F. & Orzi, F. Functional correlates of repeated administration of cocaine and apomorphine in the rat. Eur. J. Pharmacol. 284, 205–209 (1995).

    Article  CAS  Google Scholar 

  17. Uslaner, J.M., Crombag, H.S., Ferguson, S.M. & Robinson, T.E. Cocaine-induced psychomotor activity is associated with its ability to induce c-fos mRNA expression in the subthalamic nucleus: effects of dose and repeated treatment. Eur. J. Neurosci. 17, 2180–2186 (2003).

    Article  Google Scholar 

  18. Darbaky, Y., Forni, C., Amalric, M. & Baunez, C. High frequency stimulation of the subthalamic nucleus has beneficial antiparkinsonian effects on motor functions in rats, but less efficiency in a choice-reaction time task. Eur. J. Neurosci. 18, 951–956 (2003).

    Article  Google Scholar 

  19. Lorrain, D.S., Arnold, G.M. & Vezina, P. Previous exposure to amphetamine increases incentive to obtain the drug: long-lasting effects revealed by the progressive ratio schedule. Behav. Brain Res. 107, 9–19 (2000).

    Article  CAS  Google Scholar 

  20. Vezina, P. Sensitization of midbrain dopamine neuron reactivity and the self-administration of psychomotor stimulant drugs. Neurosci. Biobehav. Rev. 27, 827–839 (2004).

    Article  CAS  Google Scholar 

  21. Hodos, W. Progressive ratio as a measure of reward strength. Science 134, 943–944 (1961).

    Article  CAS  Google Scholar 

  22. Baunez, C. & Robbins, T.W. Bilateral lesions of the subthalamic nucleus induce multiple deficits in attentional performance in rats. Eur. J. Neurosci. 9, 2086–2099 (1997).

    Article  CAS  Google Scholar 

  23. Baunez, C. & Robbins, T.W. Effects of transient inactivation of the subthalamic nucleus by local muscimol and APV infusions on performance on the five-choice serial reaction time task in rats. Psychopharmacology (Berl.) 141, 57–65 (1999).

    Article  CAS  Google Scholar 

  24. Whittier, J.R. Ballism and the subthalamic nucleus (nucleus hypothalamicus; corpus Luysii). Arch. Neurol. Psychiatry 58, 672–692 (1947).

    Article  CAS  Google Scholar 

  25. Phillips, J.M. & Brown, V.J. Reaction time performance following unilateral striatal dopamine depletion and lesions of the subthalamic nucleus in the rat. Eur. J. Neurosci. 11, 1003–1010 (1999).

    Article  CAS  Google Scholar 

  26. Carelli, R.M., Ijames, S.G. & Crumling, A.J. Evidence that separate neural circuits in the nucleus accumbens encode cocaine versus “natural” (water and food) reward. J. Neurosci. 20, 4255–4266 (2000).

    Article  CAS  Google Scholar 

  27. Carelli, R.M. Nucleus accumbens cell firing during goal-directed behaviors for cocaine vs. 'natural' reinforcement. Physiol. Behav. 76, 379–387 (2002).

    Article  CAS  Google Scholar 

  28. Bowman, E.M., Aigner, T.G. & Richmond, B.J. Neural signals in the monkey ventral striatum related to motivation for juice and cocaine rewards. J. Neurophysiol. 75, 1061–1073 (1996).

    Article  CAS  Google Scholar 

  29. Maurice, N., Deniau, J.M., Menetrey, A., Glowinski, J. & Thierry, A.M. Prefrontal cortex-basal ganglia circuits in the rat: involvement of ventral pallidum and subthalamic nucleus. Synapse 29, 363–370 (1998).

    Article  CAS  Google Scholar 

  30. Maurice, N., Deniau, J.M., Glowinski, J. & Thierry, A.M. Relationships between the prefrontal cortex and the basal ganglia in the rat: physiology of the corticosubthalamic circuits. J. Neurosci. 18, 9539–9546 (1998).

    Article  CAS  Google Scholar 

  31. Alexander, G.E., Crutcher, M.D. & DeLong, M.R. Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog. Brain Res. 85, 119–146 (1990).

    Article  CAS  Google Scholar 

  32. Groenewegen, H.J. & Berendse, H.W. Connections of the subthalamic nucleus with ventral striatopallidal parts of the basal ganglia in the rat. J. Comp. Neurol. 294, 607–622 (1990).

    Article  CAS  Google Scholar 

  33. Turner, M.S., Lavin, A., Grace, A.A. & Napier, T.C. Regulation of limbic information outflow by the subthalamic nucleus: excitatory amino acid projections to the ventral pallidum. J. Neurosci. 21, 2820–2832 (2001).

    Article  CAS  Google Scholar 

  34. Piazza, P.V., Deroche-Gamonet, V., Rouge-Pont, F. & Le Moal, M. Vertical shifts in self-administration dose-response functions predict a drug-vulnerable phenotype predisposed to addiction. J. Neurosci. 20, 4226–4232 (2000).

    Article  CAS  Google Scholar 

  35. Ahmed, S.H. & Koob, G.F. Transition from moderate to excessive drug intake: change in hedonic set point. Science 282, 298–300 (1998).

    Article  CAS  Google Scholar 

  36. Robledo, P. & Koob, G.F. Two discrete nucleus accumbens projection areas differentially mediate cocaine self-administration in the rat. Behav. Brain Res. 55, 159–166 (1993).

    Article  CAS  Google Scholar 

  37. Pontieri, F.E., Tanda, G. & Di Chiara, G. Intravenous cocaine, morphine, and amphetamine preferentially increase extracellular dopamine in the “shell” as compared with the “core” of the rat nucleus accumbens. Proc. Natl. Acad. Sci. USA 92, 12304–12308 (1995).

    Article  CAS  Google Scholar 

  38. Cardinal, R.N., Parkinson, J.A., Hall, J. & Everitt, B.J. Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci. Biobehav. Rev. 26, 321–352 (2002).

    Article  Google Scholar 

  39. Di Chiara, G. Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Behav. Brain Res. 137, 75–114 (2002).

    Article  CAS  Google Scholar 

  40. Ito, R., Robbins, T.W. & Everitt, B.J. Differential control over cocaine-seeking behavior by nucleus accumbens core and shell. Nat. Neurosci. 7, 389–397 (2004).

    Article  CAS  Google Scholar 

  41. Tanaka, S.C. et al. Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops. Nat. Neurosci. 7, 887–893 (2004).

    Article  CAS  Google Scholar 

  42. Schultz, W., Tremblay, L. & Hollerman, J.R. Reward processing in primate orbitofrontal cortex and basal ganglia. Cereb. Cortex 10, 272–283 (2000).

    Article  CAS  Google Scholar 

  43. Izquierdo, A., Suda, R.K. & Murray, E.A. Bilateral orbital prefrontal cortex lesions in rhesus monkeys disrupt choices guided by both reward value and reward contingency. J. Neurosci. 24, 7540–7548 (2004).

    Article  CAS  Google Scholar 

  44. Bolla, K.I. et al. Orbitofrontal dysfunction in abstinent cocaine abusers performing a decision-making task. Neuroimage 19, 1085–1094 (2003).

    Article  CAS  Google Scholar 

  45. Volkow, N.D. & Fowler, J.S. Addiction, a disease of compulsion and drive: involvement of the orbitofrontal cortex. Cereb. Cortex 10, 318–325 (2000).

    Article  CAS  Google Scholar 

  46. Volkow, N.D., Fowler, J.S., Wang, G-J. & Goldstein, R. Role of dopamine, the frontal cortex and memory circuits in drug addiction: insight from imaging studies. Neurobiol. Learn. Mem. 78, 610–624 (2002).

    Article  CAS  Google Scholar 

  47. Chudasama, Y., Baunez, C. & Robbins, T.W. Functional disconnection of the medial prefrontal cortex and subthalamic nucleus in attentional performance: Evidence for cortico-subthalamic interaction. J. Neurosci. 23, 5477–5485 (2003).

    Article  CAS  Google Scholar 

  48. Mallet, L. et al. Compulsions, Parkinson's disease, and stimulation. Lancet 360, 1302–1304 (2002).

    Article  Google Scholar 

  49. Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Coordinates 2nd edn. (Academic, Sydney, 1986).

    Google Scholar 

  50. Depoortere, R.Y., Li, D.H., Lane, J.D. & Emmett-Oglesby, M.W. Parameters of self-administration of cocaine in rats under a progressive-ratio schedule. Pharmacol. Biochem. Behav. 45, 539–548 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Centre National de la Recherche Scientifique, a European Community 5th PCRDT program funding (QLK6-1999-02173), and by the Fondation France Parkinson and Conseil Régional d'Aquitaine. The authors thank P.V. Piazza for critical reading and corrections of the manuscript; B. J. Everitt, T.W. Robbins, S.H. Ahmed and L. Vanderschuren for discussion of the results and manuscript; and Y. Darbaky and R. LeCozannet for help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christelle Baunez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baunez, C., Dias, C., Cador, M. et al. The subthalamic nucleus exerts opposite control on cocaine and 'natural' rewards. Nat Neurosci 8, 484–489 (2005). https://doi.org/10.1038/nn1429

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1429

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing